Systematic Data Placement Optimization in Multi-Cloud Storage for Complex Requirements
Multi-cloud storage can provide better features such as availability and scalability. Current works use multiple cloud storage providers with erasure coding to achieve certain benefits including fault-tolerance improving or vendor lock-in avoiding. However, these works only use the multi-cloud stora...
Uložené v:
| Vydané v: | IEEE transactions on computers Ročník 65; číslo 6; s. 1964 - 1977 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
New York
IEEE
01.06.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0018-9340, 1557-9956 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Multi-cloud storage can provide better features such as availability and scalability. Current works use multiple cloud storage providers with erasure coding to achieve certain benefits including fault-tolerance improving or vendor lock-in avoiding. However, these works only use the multi-cloud storage in ad-hoc ways, and none of them considers the optimization issue in general. In fact, the key to optimize the multi-cloud storage is to effectively choose providers and erasure coding parameters. Meanwhile, the data placement should satisfy system or application developers' requirements. As developers often demand various objectives to be optimized simultaneously, such complex requirement optimization cannot be easily fulfilled by ad-hoc ways. This paper presents Triones, a systematic model to formally formulate data placement in multi-cloud storage by using erasure coding. Firstly, Triones addresses the problem of data placement optimization by applying non-linear programming and geometric space abstraction. It could satisfy complex requirements involving multi-objective optimization. Secondly, Triones can effectively balance among different objectives in optimization and is scalable to incorporate new ones. The effectiveness of the model is proved by extensive experiments on multiple cloud storage providers in the real world. For simple requirements, Triones can achieve 50 percent access latency reduction, compared with the model in μLibCloud. For complex requirements, Triones can improve fault-tolerance level by 2× and reduce access latency and vendor lock-in level by 30~70 percent and 49.85 percent respectively with about 19.19 percent more cost, compared with the model only optimizing cost in Scalia. |
|---|---|
| AbstractList | Multi-cloud storage can provide better features such as availability and scalability. Current works use multiple cloud storage providers with erasure coding to achieve certain benefits including fault-tolerance improving or vendor lock-in avoiding. However, these works only use the multi-cloud storage in ad-hoc ways, and none of them considers the optimization issue in general. In fact, the key to optimize the multi-cloud storage is to effectively choose providers and erasure coding parameters. Meanwhile, the data placement should satisfy system or application developers' requirements. As developers often demand various objectives to be optimized simultaneously, such complex requirement optimization cannot be easily fulfilled by ad-hoc ways. This paper presents Triones, a systematic model to formally formulate data placement in multi-cloud storage by using erasure coding. Firstly, Triones addresses the problem of data placement optimization by applying non-linear programming and geometric space abstraction. It could satisfy complex requirements involving multi-objective optimization. Secondly, Triones can effectively balance among different objectives in optimization and is scalable to incorporate new ones. The effectiveness of the model is proved by extensive experiments on multiple cloud storage providers in the real world. For simple requirements, Triones can achieve 50 percent access latency reduction, compared with the model in $\mu$[formula graphic omitted, see PDF] LibCloud. For complex requirements, Triones can improve fault-tolerance level by 2 $\times$ [formula graphic omitted, see PDF] and reduce access latency and vendor lock-in level by 30$\sim$ [formula graphic omitted, see PDF]70 percent and 49.85 percent respectively with about 19.19 percent more cost, compared with the model only optimizing cost in Scalia. Multi-cloud storage can provide better features such as availability and scalability. Current works use multiple cloud storage providers with erasure coding to achieve certain benefits including fault-tolerance improving or vendor lock-in avoiding. However, these works only use the multi-cloud storage in ad-hoc ways, and none of them considers the optimization issue in general. In fact, the key to optimize the multi-cloud storage is to effectively choose providers and erasure coding parameters. Meanwhile, the data placement should satisfy system or application developers' requirements. As developers often demand various objectives to be optimized simultaneously, such complex requirement optimization cannot be easily fulfilled by ad-hoc ways. This paper presents Triones, a systematic model to formally formulate data placement in multi-cloud storage by using erasure coding. Firstly, Triones addresses the problem of data placement optimization by applying non-linear programming and geometric space abstraction. It could satisfy complex requirements involving multi-objective optimization. Secondly, Triones can effectively balance among different objectives in optimization and is scalable to incorporate new ones. The effectiveness of the model is proved by extensive experiments on multiple cloud storage providers in the real world. For simple requirements, Triones can achieve 50 percent access latency reduction, compared with the model in μLibCloud. For complex requirements, Triones can improve fault-tolerance level by 2× and reduce access latency and vendor lock-in level by 30~70 percent and 49.85 percent respectively with about 19.19 percent more cost, compared with the model only optimizing cost in Scalia. Multi-cloud storage can provide better features such as availability and scalability. Current works use multiple cloud storage providers with erasure coding to achieve certain benefits including fault-tolerance improving or vendor lock-in avoiding. However, these works only use the multi-cloud storage in ad-hoc ways, and none of them considers the optimization issue in general. In fact, the key to optimize the multi-cloud storage is to effectively choose providers and erasure coding parameters. Meanwhile, the data placement should satisfy system or application developers' requirements. As developers often demand various objectives to be optimized simultaneously, such complex requirement optimization cannot be easily fulfilled by ad-hoc ways. This paper presents Triones, a systematic model to formally formulate data placement in multi-cloud storage by using erasure coding. Firstly, Triones addresses the problem of data placement optimization by applying non-linear programming and geometric space abstraction. It could satisfy complex requirements involving multi-objective optimization. Secondly, Triones can effectively balance among different objectives in optimization and is scalable to incorporate new ones. The effectiveness of the model is proved by extensive experiments on multiple cloud storage providers in the real world. For simple requirements, Triones can achieve 50 percent access latency reduction, compared with the model in [Formula Omitted]LibCloud. For complex requirements, Triones can improve fault-tolerance level by 2[Formula Omitted] and reduce access latency and vendor lock-in level by 30[Formula Omitted]70 percent and 49.85 percent respectively with about 19.19 percent more cost, compared with the model only optimizing cost in Scalia. |
| Author | Lei Zhang Keqin Li Maomeng Su Yongwei Wu Kang Chen |
| Author_xml | – sequence: 1 givenname: Maomeng surname: Su fullname: Su, Maomeng – sequence: 2 givenname: Lei surname: Zhang fullname: Zhang, Lei – sequence: 3 givenname: Yongwei surname: Wu fullname: Wu, Yongwei – sequence: 4 givenname: Kang surname: Chen fullname: Chen, Kang – sequence: 5 givenname: Keqin surname: Li fullname: Li, Keqin |
| BookMark | eNp9kDFP3DAUgK0KpN4dzB26WOrSJcezHTv2WKWlIIFAcOpq-WynMkriO9uRevz6Bg51YOj0hvd9T0_fEp2McfQIfSKwJgTUxaZdUyB8TWtBJSUf0IJw3lRKcXGCFgBEVorV8BEtc34CAEFBLdCvx0MufjAlWPzdFIPve2P94MeC73YlDOF5XsURhxHfTn0JVdvHyeHHEpP57XEXE27jsOv9H_zg91NIr24-Q6ed6bM_f5srtLn8sWmvqpu7n9ftt5vKMkpLRUXjSK26hhFGraO1UdbxjgpnOSgAJqXrnN3WhFDHmYOaK1ELufWCbx1lK_T1eHaX4n7yueghZOv73ow-TlkTSQQwJkDO6Jd36FOc0jg_p0kjJbBGUjFT_EjZFHNOvtM2lNcCJZnQawL6JbbetPoltn6LPXsX77xdCoNJh_8Yn49G8N7_oxvSMJi__QsCFYp3 |
| CODEN | ITCOB4 |
| CitedBy_id | crossref_primary_10_1155_2017_2376484 crossref_primary_10_1002_ett_4541 crossref_primary_10_1155_2022_6805460 crossref_primary_10_1109_TCC_2023_3287653 crossref_primary_10_1109_TPDS_2023_3306150 crossref_primary_10_1002_cpe_4830 crossref_primary_10_1016_j_procs_2021_05_062 crossref_primary_10_1109_ACCESS_2019_2937511 crossref_primary_10_1109_TSG_2017_2763954 crossref_primary_10_1016_j_jksuci_2020_10_015 crossref_primary_10_1088_1742_6596_2290_1_012096 crossref_primary_10_1109_TII_2022_3179733 crossref_primary_10_1007_s10586_018_2885_5 crossref_primary_10_1109_TMC_2019_2942306 crossref_primary_10_3390_info11060303 crossref_primary_10_1088_1742_6596_2170_1_012010 crossref_primary_10_1016_j_asoc_2019_105649 crossref_primary_10_1016_j_jnca_2018_09_006 crossref_primary_10_3390_s20185392 crossref_primary_10_3390_info9110286 crossref_primary_10_3390_s18093030 crossref_primary_10_1109_TETCI_2019_2910242 crossref_primary_10_1007_s13198_024_02695_z |
| Cites_doi | 10.1145/1807128.1807165 10.1007/s00158-003-0368-6 10.1145/1807128.1807166 10.1145/1653662.1653686 10.1109/SC.2012.101 10.1016/j.future.2013.09.006 10.1137/0108018 10.1145/2535929 10.1109/VISUAL.1993.398868 10.1145/1327452.1327492 10.1109/TIT.1964.1053661 10.1145/2517349.2522730 10.1093/comjnl/7.4.308 10.1016/0305-0548(91)90046-T 10.1109/INFOCOM.2014.6847921 10.1007/978-3-0348-0439-4_18 10.1007/3-540-45748-8_31 10.1109/TC.2013.167 10.1109/TETC.2014.2348196 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016 |
| DBID | 97E RIA RIE AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| DOI | 10.1109/TC.2015.2462821 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ANTE: Abstracts in New Technology & Engineering Engineering Research Database |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional Engineering Research Database ANTE: Abstracts in New Technology & Engineering |
| DatabaseTitleList | Technology Research Database Technology Research Database |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Computer Science |
| EISSN | 1557-9956 |
| EndPage | 1977 |
| ExternalDocumentID | 4051820381 10_1109_TC_2015_2462821 7173008 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Natural Science Foundation of China grantid: 61433008; 61373145; 61170210; U1435216 funderid: 10.13039/501100001809 – fundername: Chinese Special Project of Science and Technology grantid: 2013zx01039-002-002 – fundername: National High-Tech R&D (863) Program of China grantid: 2013AA01A213 |
| GroupedDBID | --Z -DZ -~X .DC 0R~ 29I 4.4 5GY 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK ACNCT AENEX AETEA AGQYO AGSQL AHBIQ AKQYR ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD HZ~ IEDLZ IFIPE IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 TWZ UHB UPT XZL YZZ AAYXX ABUFD CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D F28 FR3 |
| ID | FETCH-LOGICAL-c322t-267d149f73132cd24a9cd5f26dc50900388dfdcb4112d53d04596468be65bd23 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 38 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000376879300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9340 |
| IngestDate | Sun Sep 28 01:26:36 EDT 2025 Mon Jun 30 03:22:34 EDT 2025 Tue Nov 18 20:53:18 EST 2025 Sat Nov 29 01:35:38 EST 2025 Wed Aug 27 02:49:03 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 6 |
| Keywords | data placement optimization multi-cloud storage complex requirements Systematic model |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-267d149f73132cd24a9cd5f26dc50900388dfdcb4112d53d04596468be65bd23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| PQID | 1788037826 |
| PQPubID | 85452 |
| PageCount | 14 |
| ParticipantIDs | crossref_citationtrail_10_1109_TC_2015_2462821 proquest_miscellaneous_1816033608 crossref_primary_10_1109_TC_2015_2462821 ieee_primary_7173008 proquest_journals_1788037826 |
| PublicationCentury | 2000 |
| PublicationDate | 2016-June-1 2016-6-1 20160601 |
| PublicationDateYYYYMMDD | 2016-06-01 |
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-June-1 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York |
| PublicationTitle | IEEE transactions on computers |
| PublicationTitleAbbrev | TC |
| PublicationYear | 2016 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref13 prabhakaran (ref24) 0 ref34 s (ref8) 1960; 8 (ref20) 0 huang (ref36) 0; 12 khan (ref35) 0 ref30 ref33 ref11 ref32 ford (ref22) 0 ref2 ref17 ref19 (ref1) 0 pless (ref10) 2011; 48 rodrigues (ref12) 0 (ref28) 0 (ref26) 0 t (ref15) 2004; 26 ref23 mu (ref6) 0 bertsekas (ref16) 1999 granvilliers (ref31) 1998; 4 s (ref14) 1991; 18 (ref29) 0 ref7 ref9 ref4 ref3 ref5 a (ref18) 1965; 7 (ref27) 0 (ref21) 0 (ref25) 0 |
| References_xml | – ident: ref2 doi: 10.1145/1807128.1807165 – volume: 26 start-page: 369 year: 2004 ident: ref15 article-title: Survey of multi-objective optimization methods for engineering publication-title: Struct Multidisciplinary Optimization doi: 10.1007/s00158-003-0368-6 – start-page: 251 year: 0 ident: ref35 article-title: Rethinking erasure codes for cloud file systems: Minimizing I/O for recovery and degraded reads publication-title: Proc 10th USENIX Conf File Storage Technol – year: 1999 ident: ref16 publication-title: Nonlinear Programming – ident: ref23 doi: 10.1145/1807128.1807166 – ident: ref4 doi: 10.1145/1653662.1653686 – ident: ref7 doi: 10.1109/SC.2012.101 – ident: ref33 doi: 10.1016/j.future.2013.09.006 – start-page: 201 year: 0 ident: ref6 article-title: $\mu$ libcloud: Providing high available and uniform accessing to multiple cloud storages publication-title: Proc ACM/IEEE 13th Int Conf Grid Comput – year: 0 ident: ref21 – year: 0 ident: ref1 – volume: 8 start-page: 300 year: 1960 ident: ref8 article-title: Polynomial codes over certain finite fields publication-title: J Soc Ind Appl Math doi: 10.1137/0108018 – year: 0 ident: ref20 – start-page: 61 year: 0 ident: ref22 article-title: Availability in globally distributed storage systems publication-title: Proc 9th USENIX Symp Operating Syst Des Implementation – ident: ref5 doi: 10.1145/2535929 – ident: ref19 doi: 10.1109/VISUAL.1993.398868 – ident: ref30 doi: 10.1145/1327452.1327492 – ident: ref9 doi: 10.1109/TIT.1964.1053661 – ident: ref13 doi: 10.1145/2517349.2522730 – volume: 7 start-page: 308 year: 1965 ident: ref18 article-title: A simplex method for function minimization publication-title: Comput J doi: 10.1093/comjnl/7.4.308 – volume: 18 start-page: 97 year: 1991 ident: ref14 article-title: Interactive multiple objective optimization: Survey I - continuous case publication-title: Comput Operations Res doi: 10.1016/0305-0548(91)90046-T – year: 0 ident: ref25 – volume: 48 year: 2011 ident: ref10 publication-title: Introduction to the Theory of Error-Correcting Codes – year: 0 ident: ref26 – ident: ref32 doi: 10.1109/INFOCOM.2014.6847921 – volume: 4 start-page: 125 year: 1998 ident: ref31 article-title: A symbolic-numerical branch and prune algorithm for solving non-linear polynomial systems publication-title: J Universal Comput Sci – volume: 12 start-page: 2 year: 0 ident: ref36 article-title: Erasure coding in windows azure storage publication-title: Proc Annu Conf USENIX Ann Tech Conf – start-page: 105 year: 0 ident: ref24 article-title: Analysis and evolution of journaling file systems publication-title: Proc General Track USENIX Annual Technical Conf – ident: ref17 doi: 10.1007/978-3-0348-0439-4_18 – year: 0 ident: ref29 – ident: ref11 doi: 10.1007/3-540-45748-8_31 – start-page: 226 year: 0 ident: ref12 article-title: High availability in DHTs: Erasure coding vs. replication publication-title: Proc 4th Int Conf Peer-to-Peer Syst – year: 0 ident: ref28 – year: 0 ident: ref27 – ident: ref3 doi: 10.1109/TC.2013.167 – ident: ref34 doi: 10.1109/TETC.2014.2348196 |
| SSID | ssj0006209 |
| Score | 2.368595 |
| Snippet | Multi-cloud storage can provide better features such as availability and scalability. Current works use multiple cloud storage providers with erasure coding to... |
| SourceID | proquest crossref ieee |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1964 |
| SubjectTerms | Cloud computing Coding complex requirements Cost engineering data placement optimization Data storage Encoding Fault tolerance Fault tolerant systems Linear programming Mathematical models multi-cloud storage Optimization Placement Systematic model Systematics |
| Title | Systematic Data Placement Optimization in Multi-Cloud Storage for Complex Requirements |
| URI | https://ieeexplore.ieee.org/document/7173008 https://www.proquest.com/docview/1788037826 https://www.proquest.com/docview/1816033608 |
| Volume | 65 |
| WOSCitedRecordID | wos000376879300022&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9956 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006209 issn: 0018-9340 databaseCode: RIE dateStart: 19680101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3LS8MwGP9Q8aAHH5vifBHBgwc72zRJk6NMxZMOHbJbaZMUhNmJ28Q_3y9ZVhT14K3QPEp-_V75XgCnCZcol1IWaZT2ERNSR9JwHtk4ragS0mjLfLOJ7O5ODoeqvwTnTS6MtdYHn9mue_S-fDPWM3dVduE8xj6zdznLsnmuVsN1xSKcI0ECTlkcyvgksboY9FwIF-9Sl4dJk28SyLdU-cGHvXC52fzfZ23BRlAiyeUc9W1YsnULNhcNGkig1xasf6k22Ianx6ZqM7kqpgXpuyt0tza5R8bxEjIyyXNNfFpu1BuNZ4Y8olWOTIegdkvcFiP7QR6sCyD2cyc7MLi5HvRuo9BWIdJIvdOIisygXVRlrmqjNpQVShteUWE0ag_OVShNZXTJUBUzPDWo9CmBKJZW8NLQdBdW6nFt94AozVVimLG2kizJREmrNClKRqnlOlayA93FSec6lBx3nS9GuTc9YpUPermDJg_QdOCsmfA6r7bx99C2Q6IZFkDowOECyjxQ4yRP0M6PU9SFRAdOmtdIR845UtR2PMMx0jXcTkUs939f-QDWcH8xDxM7hJXp28wewap-nz5P3o79z_gJ2EfbDQ |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NT9swFH9CDIntML42rRswI3HgQErs2K59RAUEGhQEEeIWJbYjIXUpoi3an79n141AwIFbpNiO5V_el98XwC4VCuVSxhOD0j7hUplEWSESl2Y101JZ43hoNtEbDNTdnb5agP02F8Y5F4LPXNc_Bl--HZmpvyo78B7jkNn7SXDO6Cxbq-W7ch7QQZGEM57GQj401Qd53wdxiS7zmZiMvpBBoanKK04cxMvJysc2tgpfoxpJDme4r8GCa9ZhZd6igUSKXYcvz-oNbsDtTVu3mRyVk5Jc-Ut0vza5RNbxN-ZkkvuGhMTcpD8cTS25Qbsc2Q5B_Zb4TwzdP3LtfAhxmDv-BvnJcd4_TWJjhcQg_U4SJnsWLaO65-s2Gst4qY0VNZPWoP7gnYXK1tZUHJUxKzKLap-WiGPlpKgsy77DYjNq3A8g2ghNLbfO1YrTnqxYndGy4ow5YVKtOtCdn3RhYtFx3_tiWATjI9VF3i88NEWEpgN77YSHWb2N94dueCTaYRGEDmzOoSwiPY4LipZ-mqE2JDuw075GSvLukbJxoymOUb7ldiZT9fPtlX_D8ml-cV6cnw3-_ILPuBc5CxrbhMXJ49RtwZJ5mtyPH7fDj_kfY4TeVA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Systematic+Data+Placement+Optimization+in+Multi-Cloud+Storage+for+Complex+Requirements&rft.jtitle=IEEE+transactions+on+computers&rft.au=Su%2C+Maomeng&rft.au=Zhang%2C+Lei&rft.au=Wu%2C+Yongwei&rft.au=Chen%2C+Kang&rft.date=2016-06-01&rft.issn=0018-9340&rft.volume=65&rft.issue=6&rft.spage=1964&rft.epage=1977&rft_id=info:doi/10.1109%2FTC.2015.2462821&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9340&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9340&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9340&client=summon |