A k-Deviation Density Based Clustering Algorithm

Due to the adoption of global parameters, DBSCAN fails to identify clusters with different and varied densities. To solve the problem, this paper extends DBSCAN by exploiting a new density definition and proposes a novel algorithm called k-deviation density based DBSCAN (kDDBSCAN). Various datasets...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Mathematical problems in engineering Ročník 2018; číslo 2018; s. 1 - 16
Hlavní autori: Jun, Li, Dongyong, Yang, Jinyin, Chen, Jungan, Chen
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cairo, Egypt Hindawi Publishing Corporation 01.01.2018
Hindawi
John Wiley & Sons, Inc
Predmet:
ISSN:1024-123X, 1563-5147
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Due to the adoption of global parameters, DBSCAN fails to identify clusters with different and varied densities. To solve the problem, this paper extends DBSCAN by exploiting a new density definition and proposes a novel algorithm called k-deviation density based DBSCAN (kDDBSCAN). Various datasets containing clusters with arbitrary shapes and different or varied densities are used to demonstrate the performance and investigate the feasibility and practicality of kDDBSCAN. The results show that kDDBSCAN performs better than DBSCAN.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1024-123X
1563-5147
DOI:10.1155/2018/3742048