Applications of Physics-Informed Neural Networks in Power Systems - A Review

The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, prod...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on power systems Jg. 38; H. 1; S. 572 - 588
Hauptverfasser: Huang, Bin, Wang, Jianhui
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York IEEE 01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:0885-8950, 1558-0679
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, production of physically infeasible/inconsistent solutions, and low generalizability and interpretability. There is a growing consensus that physics-informed neural networks (PINNs) can address these concerns by integrating physics-informed (PI) rules or laws into state-of-the-art DL methodology. This survey presents a systematic overview of the PINN in the domain of PSs. Specifically, several paradigms of PINN (e.g., PI loss function, PI initialization, PI design of architecture, and hybrid physics-DL models) are summarized. The applications of PINN in PSs in recent years, including state/parameter estimation, dynamic analysis, power flow calculation, optimal power flow, anomaly detection and location, and model and data synthesis, etc., are investigated in detail, followed by the summary and assessment of relevant works so far. Revolving around the characteristics of PSs and the state-of-the-art DL techniques, this paper outlines the potential research directions and attempts to shed light on the deeper and broader application of PINN on PSs.
AbstractList The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, production of physically infeasible/inconsistent solutions, and low generalizability and interpretability. There is a growing consensus that physics-informed neural networks (PINNs) can address these concerns by integrating physics-informed (PI) rules or laws into state-of-the-art DL methodology. This survey presents a systematic overview of the PINN in the domain of PSs. Specifically, several paradigms of PINN (e.g., PI loss function, PI initialization, PI design of architecture, and hybrid physics-DL models) are summarized. The applications of PINN in PSs in recent years, including state/parameter estimation, dynamic analysis, power flow calculation, optimal power flow, anomaly detection and location, and model and data synthesis, etc., are investigated in detail, followed by the summary and assessment of relevant works so far. Revolving around the characteristics of PSs and the state-of-the-art DL techniques, this paper outlines the potential research directions and attempts to shed light on the deeper and broader application of PINN on PSs.
Not provided.
Author Wang, Jianhui
Huang, Bin
Author_xml – sequence: 1
  givenname: Bin
  orcidid: 0000-0001-5883-7370
  surname: Huang
  fullname: Huang, Bin
  email: bin@smu.edu
  organization: Electrical and Computer Engineering Department, Southern Methodist University, Dallas, TX, USA
– sequence: 2
  givenname: Jianhui
  orcidid: 0000-0001-7162-509X
  surname: Wang
  fullname: Wang, Jianhui
  email: jianhui@smu.edu
  organization: Electrical and Computer Engineering Department, Southern Methodist University, Dallas, TX, USA
BackLink https://www.osti.gov/biblio/2418785$$D View this record in Osti.gov
BookMark eNp9kMtOAjEUhhujiYi-gG4aXQ_2Qi-zJMQLCVGiGJfNTDkNRZhiWyS8vaMYFy5c_Yvzf-ecfCfosAkNIHROSY9SUl5PJ69Pzz1GGOtxKllf8QPUoULogkhVHqIO0VoUuhTkGJ2ktCCEyHbQQePBer30tso-NAkHhyfzXfI2FaPGhbiCGX6ATayWbeRtiG8J-wZPwhYift6lDKuECzzAT_DhYXuKjly1THD2k130cnszHd4X48e70XAwLixnLBeUKM0ZcVzOVF1xbiWpNe1brUQJgrBaCQeu5s7qys1qZkFUksiZpMoKzhXvosv93pCyN8n6DHZuQ9OAzYb1qVZatKWrfWkdw_sGUjaLsIlN-5dhSiiqpNa6bbF9y8aQUgRn1tGvqrgzlJgvteZbrflSa37UtpD-A7UvfCvMsfLL_9GLPeoB4PdWqfqcM8U_AT2Wh9o
CODEN ITPSEG
CitedBy_id crossref_primary_10_1016_j_inffus_2025_102996
crossref_primary_10_1016_j_rineng_2024_102741
crossref_primary_10_1007_s13369_025_10222_w
crossref_primary_10_1016_j_engappai_2025_110072
crossref_primary_10_3390_app15148092
crossref_primary_10_1109_TPWRS_2024_3423381
crossref_primary_10_1080_10667857_2024_2443211
crossref_primary_10_1109_TPWRS_2023_3266236
crossref_primary_10_1002_aisy_202300385
crossref_primary_10_1109_TIA_2024_3522496
crossref_primary_10_1109_TSG_2024_3365614
crossref_primary_10_3390_su16177259
crossref_primary_10_1080_15325008_2024_2311340
crossref_primary_10_1016_j_apenergy_2025_126592
crossref_primary_10_1109_TPWRS_2025_3544312
crossref_primary_10_1021_acs_iecr_5c00283
crossref_primary_10_1016_j_istruc_2024_107361
crossref_primary_10_1016_j_apenergy_2023_122439
crossref_primary_10_3390_en17215307
crossref_primary_10_1007_s40313_025_01149_6
crossref_primary_10_1016_j_est_2023_108915
crossref_primary_10_1109_TSG_2025_3555228
crossref_primary_10_1109_TPWRS_2024_3518098
crossref_primary_10_1016_j_engappai_2025_110091
crossref_primary_10_1016_j_isatra_2025_08_021
crossref_primary_10_1063_5_0147592
crossref_primary_10_3390_pr13092929
crossref_primary_10_1109_ACCESS_2025_3529853
crossref_primary_10_3390_computers14040121
crossref_primary_10_1007_s12008_025_02364_w
crossref_primary_10_1016_j_epsr_2025_111946
crossref_primary_10_1016_j_jmsy_2024_07_002
crossref_primary_10_4274_tjo_galenos_2025_29345
crossref_primary_10_1016_j_optlastec_2025_113828
crossref_primary_10_1007_s00170_025_15620_w
crossref_primary_10_1016_j_rser_2023_114151
crossref_primary_10_1109_ACCESS_2023_3337118
crossref_primary_10_1109_TPEL_2024_3481158
crossref_primary_10_1016_j_egyr_2024_01_027
crossref_primary_10_3390_computers13070176
crossref_primary_10_1109_JIOT_2025_3578314
crossref_primary_10_1016_j_ces_2025_121506
crossref_primary_10_1109_JPROC_2024_3405709
crossref_primary_10_1088_2632_2153_ad45b2
crossref_primary_10_1016_j_energy_2025_138290
crossref_primary_10_1109_TIA_2025_3529799
crossref_primary_10_1177_14759217241289575
crossref_primary_10_1016_j_cma_2024_117389
crossref_primary_10_3390_en18081968
crossref_primary_10_1016_j_conengprac_2024_106167
crossref_primary_10_1109_TCAD_2024_3522878
crossref_primary_10_3390_bdcc6040140
crossref_primary_10_1007_s10409_023_22438_x
crossref_primary_10_1109_JIOT_2024_3349381
crossref_primary_10_1016_j_jobe_2025_111788
crossref_primary_10_1109_TPWRS_2024_3373399
crossref_primary_10_1109_TPWRS_2025_3585727
crossref_primary_10_1109_TSG_2024_3396434
crossref_primary_10_1016_j_ress_2024_110169
crossref_primary_10_1016_j_asoc_2023_111208
crossref_primary_10_3390_en16227644
crossref_primary_10_3390_en18071809
crossref_primary_10_1109_TTE_2024_3412909
crossref_primary_10_1016_j_energy_2025_135678
crossref_primary_10_3390_en17071562
crossref_primary_10_1016_j_jcp_2024_113284
crossref_primary_10_1016_j_cnsns_2025_109274
crossref_primary_10_1016_j_epsr_2024_111185
crossref_primary_10_3390_biomimetics10080490
crossref_primary_10_1109_JESTPE_2024_3392684
crossref_primary_10_1109_TPWRS_2024_3447783
crossref_primary_10_1109_TNNLS_2022_3232630
crossref_primary_10_1016_j_apenergy_2024_125169
crossref_primary_10_1016_j_icheatmasstransfer_2025_109085
crossref_primary_10_1109_TPWRS_2023_3336072
crossref_primary_10_1016_j_ijepes_2024_110279
crossref_primary_10_1109_TMAG_2023_3281863
crossref_primary_10_1016_j_jii_2025_100845
crossref_primary_10_1007_s11356_023_30118_2
crossref_primary_10_3390_en17040777
crossref_primary_10_1016_j_physd_2023_133957
crossref_primary_10_1002_adma_202308505
crossref_primary_10_1016_j_buildenv_2025_113640
crossref_primary_10_1016_j_energy_2025_135641
crossref_primary_10_1049_gtd2_70089
crossref_primary_10_1016_j_procs_2024_01_137
crossref_primary_10_1016_j_renene_2025_123657
crossref_primary_10_1016_j_asoc_2025_113691
crossref_primary_10_1186_s42162_022_00233_4
crossref_primary_10_3390_electricity6020034
crossref_primary_10_1016_j_epsr_2024_111166
crossref_primary_10_1109_TII_2022_3211075
crossref_primary_10_3390_app15137507
crossref_primary_10_1088_1742_6596_2707_1_012095
crossref_primary_10_1109_TSG_2025_3538012
crossref_primary_10_1016_j_aei_2024_102663
crossref_primary_10_1016_j_aei_2025_103805
crossref_primary_10_1109_TPWRS_2023_3282413
crossref_primary_10_1016_j_ress_2023_109790
crossref_primary_10_1109_TIA_2025_3529675
crossref_primary_10_1109_TPEL_2025_3566513
crossref_primary_10_1016_j_est_2023_110016
crossref_primary_10_1016_j_jmps_2025_106222
crossref_primary_10_1111_mice_13326
crossref_primary_10_1016_j_ress_2024_110081
crossref_primary_10_1016_j_epsr_2024_111014
crossref_primary_10_1016_j_epsr_2025_111651
crossref_primary_10_1109_TIA_2024_3383806
crossref_primary_10_3390_en17061381
crossref_primary_10_23919_PCMP_2023_000159
crossref_primary_10_1007_s10462_025_11303_w
crossref_primary_10_1109_TPWRS_2024_3383688
crossref_primary_10_1103_PRXEnergy_2_043003
crossref_primary_10_1109_TVT_2024_3399918
crossref_primary_10_3390_ai5030074
crossref_primary_10_1016_j_epsr_2025_111885
crossref_primary_10_1049_gtd2_70030
crossref_primary_10_3390_app14010189
crossref_primary_10_1016_j_epsr_2024_111268
crossref_primary_10_1016_j_rser_2025_115786
crossref_primary_10_1016_j_egyai_2025_100474
crossref_primary_10_1016_j_apenergy_2023_121740
crossref_primary_10_1016_j_enbuild_2024_114853
crossref_primary_10_1109_TII_2024_3507953
crossref_primary_10_1038_s41598_025_93337_2
crossref_primary_10_1109_TPEL_2023_3328438
crossref_primary_10_1016_j_geoen_2023_212554
crossref_primary_10_1109_TPWRS_2024_3405543
crossref_primary_10_1016_j_ijepes_2025_110897
crossref_primary_10_3390_app13095683
crossref_primary_10_1038_s41598_023_49977_3
crossref_primary_10_1016_j_ress_2025_111599
crossref_primary_10_1016_j_apenergy_2025_125637
crossref_primary_10_1016_j_apenergy_2023_122602
crossref_primary_10_1049_gtd2_13339
crossref_primary_10_1109_TSG_2023_3267069
crossref_primary_10_1109_MPEL_2023_3328164
crossref_primary_10_1049_rpg2_13086
crossref_primary_10_3390_batteries11060204
crossref_primary_10_1109_TPWRS_2023_3302340
crossref_primary_10_1016_j_trgeo_2024_101409
crossref_primary_10_1088_2632_2153_ad2973
crossref_primary_10_1109_ACCESS_2025_3540626
crossref_primary_10_1016_j_energy_2025_134406
crossref_primary_10_3390_s23218665
crossref_primary_10_1016_j_ymssp_2024_111663
crossref_primary_10_2478_amns_2024_3426
crossref_primary_10_3390_en17040796
crossref_primary_10_1016_j_rser_2025_115977
crossref_primary_10_1016_j_engstruct_2025_120461
crossref_primary_10_1177_13694332241260140
crossref_primary_10_1016_j_measurement_2025_116728
crossref_primary_10_1016_j_apenergy_2025_125977
crossref_primary_10_3390_electronics13020391
crossref_primary_10_1109_TIA_2024_3430231
crossref_primary_10_1016_j_engappai_2025_112044
crossref_primary_10_1109_TPEL_2024_3501573
crossref_primary_10_1142_S1664360725500092
crossref_primary_10_1063_5_0290594
crossref_primary_10_1016_j_jqsrt_2024_109229
crossref_primary_10_1016_j_automatica_2024_111851
crossref_primary_10_1109_TGRS_2024_3357797
crossref_primary_10_1016_j_knosys_2025_113717
crossref_primary_10_1007_s44379_025_00015_1
crossref_primary_10_5334_rss_6
crossref_primary_10_1007_s10462_024_10728_z
crossref_primary_10_1016_j_cscm_2024_e03769
crossref_primary_10_1109_TPWRS_2024_3382266
crossref_primary_10_3390_en18133356
crossref_primary_10_1109_TII_2024_3394553
crossref_primary_10_1016_j_energy_2025_134711
crossref_primary_10_1109_ACCESS_2024_3406471
crossref_primary_10_1109_TIA_2025_3529813
crossref_primary_10_1109_TPWRS_2024_3392770
crossref_primary_10_1016_j_engappai_2025_111098
crossref_primary_10_1016_j_ymssp_2024_111117
crossref_primary_10_3390_aerospace12080704
crossref_primary_10_1109_TIM_2025_3545981
crossref_primary_10_1109_TSG_2025_3552958
crossref_primary_10_1016_j_ymssp_2024_111599
crossref_primary_10_1109_TPWRS_2025_3576968
crossref_primary_10_1109_TPWRS_2024_3421902
crossref_primary_10_1155_mmce_6233356
crossref_primary_10_1109_TIA_2025_3529822
crossref_primary_10_3390_computers14090356
crossref_primary_10_1016_j_autcon_2025_106241
crossref_primary_10_1016_j_epsr_2025_111984
crossref_primary_10_1109_ACCESS_2025_3573271
crossref_primary_10_3390_electricity5040039
crossref_primary_10_1016_j_ndteint_2025_103360
crossref_primary_10_1016_j_segan_2024_101524
crossref_primary_10_3390_electronics13132590
crossref_primary_10_1016_j_ifacol_2024_08_411
crossref_primary_10_1109_ACCESS_2023_3347989
crossref_primary_10_1038_s42005_025_02063_8
crossref_primary_10_1016_j_energy_2024_132493
crossref_primary_10_1109_TII_2025_3567400
crossref_primary_10_3390_en17174317
Cites_doi 10.1049/iet-gtd.2016.1734
10.1038/s41586-019-0912-1
10.1109/TPWRS.2020.2988352
10.1109/JSEN.2019.2898634
10.1109/TSG.2020.3047890
10.1109/LCSYS.2021.3088402
10.1109/DDCLS52934.2021.9455657
10.1561/2200000049
10.1007/978-3-319-67361-5_40
10.1109/JETCAS.2022.3142051
10.1016/j.energy.2019.115883
10.1109/NAPS.2017.8107397
10.1145/3447814
10.1109/ACCESS.2020.2987324
10.1109/PowerTech46648.2021.9494950
10.1088/2515-7639/ab084b
10.1109/CDC45484.2021.9682779
10.1007/978-3-030-25446-9_9
10.1038/nature24270
10.1016/j.apenergy.2019.04.071
10.1109/TPWRS.2020.2989725
10.1109/TCNS.2014.2309732
10.1109/TSG.2021.3113085
10.1109/PowerTech46648.2021.9494807
10.1145/3424116
10.1109/SmartGridComm51999.2021.9632308
10.1109/TPWRS.2017.2767318
10.1109/TSG.2021.3072251
10.37686/qrl.v1i2.80
10.1109/TSG.2015.2399333
10.1073/pnas.0609476104
10.1109/ICMLA.2019.00274
10.1109/TPWRS.2013.2287235
10.1145/3447555.3464864
10.1109/TPWRS.2020.2999102
10.1016/j.engappai.2021.104195
10.1109/CVPR.2009.5206848
10.1126/sciadv.aay2631
10.1109/TCNS.2021.3124283
10.1109/SEST50973.2021.9543363
10.35833/MPCE.2021.000058
10.1002/9781118535561
10.1109/TII.2021.3078110
10.1109/TPWRS.2020.3029557
10.17775/CSEEJPES.2020.02700
10.1137/1.9781611976236.60
10.1109/PowerTech46648.2021.9495063
10.1109/MPE.2017.2779554
10.1016/j.epsr.2020.106547
10.1049/iet-stg.2019.0272
10.1109/SmartGridComm51999.2021.9631995
10.1038/s41467-018-07210-0
10.1016/j.arcontrol.2019.09.008
10.1609/aaai.v34i01.5403
10.1109/TPAS.1974.293985
10.1137/18M1225409
10.1146/annurev-physchem-042018-052331
10.1109/TKDE.2017.2720168
10.1002/rnc.5043
10.1016/j.ijepes.2019.04.011
10.1109/PESGM41954.2020.9282004
10.1109/TPWRS.2020.3001919
10.1109/JSAC.2019.2951964
10.1109/TPWRS.2014.2368078
10.1016/j.jcp.2015.11.012
10.1109/TPWRS.2020.2987292
10.1103/PhysRevLett.121.040502
10.1109/TSG.2020.3009401
10.1109/IJCNN.2019.8851855
10.1109/TSG.2020.3025259
10.1190/geo2019-0138.1
10.1109/TPWRS.2018.2846744
10.1039/C7SC04934J
10.1109/RWS50334.2020.9241276
10.1109/TSG.2021.3052998
10.1109/TAC.2019.2913768
10.1109/TSG.2016.2555909
10.23919/ACC.2019.8815339
10.1016/j.jcp.2018.10.045
10.1016/j.ifacol.2018.11.718
10.1109/CDC45484.2021.9683760
10.1109/TPWRS.2021.3134952
10.1109/TSP.2019.2926023
10.1109/SmartGridComm47815.2020.9302970
10.1109/TPWRS.2020.3017684
10.1109/SmartGridComm47815.2020.9302942
10.1126/science.1165893
10.1016/j.ifacol.2020.12.2182
10.1109/TSG.2018.2805169
10.1146/annurev-control-053018-023825
10.1016/j.ifacol.2018.11.790
10.2172/1655434
10.1007/978-3-030-78615-1_54
10.1109/TNNLS.2020.2968486
10.1137/19M1267246
10.35833/MPCE.2019.000565
10.1016/j.buildenv.2018.10.035
10.1146/annurev-control-042920-020211
10.1145/3514228
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
CorporateAuthor Univ. of North Carolina, Charlotte, NC (United States)
CorporateAuthor_xml – name: Univ. of North Carolina, Charlotte, NC (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
OTOTI
DOI 10.1109/TPWRS.2022.3162473
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE/IET Electronic Library
CrossRef
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: RIE
  name: IEEE/IET Electronic Library
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1558-0679
EndPage 588
ExternalDocumentID 2418785
10_1109_TPWRS_2022_3162473
9743327
Genre orig-research
GrantInformation_xml – fundername: Solar Energy Technologies Office
  grantid: DE-EE0009337
  funderid: 10.13039/100011883
– fundername: Office of Energy Efficiency and Renewable Energy
  funderid: 10.13039/100006134
– fundername: U.S. Department of Energy
  funderid: 10.13039/100000015
GroupedDBID -~X
.DC
0R~
29I
3EH
4.4
5GY
5VS
6IK
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
VJK
AAYXX
CITATION
7SP
7TB
8FD
FR3
KR7
L7M
OTOTI
ID FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373
IEDL.DBID RIE
ISICitedReferencesCount 286
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000922154400046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-8950
IngestDate Mon Aug 12 05:46:51 EDT 2024
Fri Jul 25 19:12:07 EDT 2025
Sat Nov 29 02:52:27 EST 2025
Tue Nov 18 22:27:47 EST 2025
Wed Aug 27 02:14:28 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
USDOE Office of Energy Efficiency and Renewable Energy (EERE)
EE0009337
ORCID 0000-0001-5883-7370
0000-0001-7162-509X
0000000158837370
000000017162509X
PQID 2757176888
PQPubID 85441
PageCount 17
ParticipantIDs proquest_journals_2757176888
osti_scitechconnect_2418785
crossref_primary_10_1109_TPWRS_2022_3162473
crossref_citationtrail_10_1109_TPWRS_2022_3162473
ieee_primary_9743327
PublicationCentury 2000
PublicationDate 2023-Jan.
2023-1-00
20230101
2023-01-01
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-Jan.
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle IEEE transactions on power systems
PublicationTitleAbbrev TPWRS
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref59
ref58
ref53
ref52
ref55
ref54
Zhou (ref63) 2020
Goodfellow (ref14) 2016; 1
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
Ma (ref102) 2020
ref49
ref8
ref7
ref9
ref4
ref3
ref6
Pagnier (ref32) 2021
ref100
ref101
ref40
ref35
ref34
ref36
ref30
ref33
ref39
Bahmani (ref99) 2021
Li (ref66) 2021
ref24
Zhang (ref2) 2020
ref23
ref26
ref25
ref20
ref22
ref21
ref28
ref27
ref29
Pagnier (ref31) 2021
Misyris (ref38) 2021
ref13
ref12
ref15
Nair (ref106) 2020
ref97
ref96
ref11
ref10
ref98
ref17
ref16
ref19
ref18
ref93
ref92
ref95
ref94
ref91
ref90
ref89
ref85
ref88
ref87
Vaswani (ref108) 2017
ref82
ref81
ref84
ref83
Zhang (ref107) 2018; 31
ref80
Stiasny (ref37) 2021
ref79
ref78
ref109
ref75
ref104
ref74
ref105
ref77
ref76
ref103
ref1
Xu (ref86) 2020; 33
ref71
ref111
ref70
ref73
ref72
ref110
ref68
ref67
ref69
ref64
ref115
ref116
ref113
ref65
ref114
Babaeinejadsarookolaee (ref118) 2019
Verdon (ref112) 2019
Schtt (ref5) 2017; 2017
ref60
ref62
ref61
Brockman (ref117) 2016
References_xml – volume: 1
  volume-title: Deep Learning
  year: 2016
  ident: ref14
– ident: ref47
  doi: 10.1049/iet-gtd.2016.1734
– ident: ref7
  doi: 10.1038/s41586-019-0912-1
– ident: ref28
  doi: 10.1109/TPWRS.2020.2988352
– ident: ref98
  doi: 10.1109/JSEN.2019.2898634
– ident: ref81
  doi: 10.1109/TSG.2020.3047890
– start-page: 11268
  volume-title: Proc. Int. Conf. Mach. Learn.
  year: 2020
  ident: ref2
  article-title: Fast learning of graph neural networks with guaranteed generalizability: One-hidden-layer case
– volume: 33
  start-page: 18784
  year: 2020
  ident: ref86
  article-title: Preference-based reinforcement learning with finite-time guarantees
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref101
  doi: 10.1109/LCSYS.2021.3088402
– ident: ref39
  doi: 10.1109/DDCLS52934.2021.9455657
– ident: ref87
  doi: 10.1561/2200000049
– ident: ref15
  doi: 10.1007/978-3-319-67361-5_40
– ident: ref26
  doi: 10.1109/JETCAS.2022.3142051
– ident: ref69
  doi: 10.1016/j.energy.2019.115883
– ident: ref94
  doi: 10.1109/NAPS.2017.8107397
– ident: ref4
  doi: 10.1145/3447814
– ident: ref11
  doi: 10.1109/ACCESS.2020.2987324
– year: 2021
  ident: ref99
  article-title: Training multi-objective/multi-task collocation physics-informed neural network with student/teachers transfer learnings
– ident: ref29
  doi: 10.1109/PowerTech46648.2021.9494950
– ident: ref6
  doi: 10.1088/2515-7639/ab084b
– ident: ref40
  doi: 10.1109/CDC45484.2021.9682779
– ident: ref77
  doi: 10.1007/978-3-030-25446-9_9
– ident: ref105
  doi: 10.1038/nature24270
– ident: ref70
  doi: 10.1016/j.apenergy.2019.04.071
– ident: ref21
  doi: 10.1109/TPWRS.2020.2989725
– year: 2021
  ident: ref66
  article-title: Physics-informed graph learning for robust fault location in distribution systems
– ident: ref97
  doi: 10.1109/TCNS.2014.2309732
– ident: ref60
  doi: 10.1109/TSG.2021.3113085
– ident: ref64
  doi: 10.1109/PowerTech46648.2021.9494807
– ident: ref100
  doi: 10.1145/3424116
– ident: ref55
  doi: 10.1109/SmartGridComm51999.2021.9632308
– ident: ref46
  doi: 10.1109/TPWRS.2017.2767318
– ident: ref61
  doi: 10.1109/TSG.2021.3072251
– year: 2020
  ident: ref102
  article-title: Physics-informed Gaussian process regression for probabilistic states estimation and forecasting in power grids
– ident: ref56
  doi: 10.1109/SmartGridComm51999.2021.9632308
– ident: ref110
  doi: 10.37686/qrl.v1i2.80
– ident: ref19
  doi: 10.1109/TSG.2015.2399333
– ident: ref113
  doi: 10.1073/pnas.0609476104
– ident: ref49
  doi: 10.1109/ICMLA.2019.00274
– ident: ref75
  doi: 10.1109/TPWRS.2013.2287235
– ident: ref73
  doi: 10.1145/3447555.3464864
– ident: ref71
  doi: 10.1109/TPWRS.2020.2999102
– ident: ref84
  doi: 10.1016/j.engappai.2021.104195
– ident: ref116
  doi: 10.1109/CVPR.2009.5206848
– ident: ref115
  doi: 10.1126/sciadv.aay2631
– ident: ref53
  doi: 10.1109/TCNS.2021.3124283
– year: 2019
  ident: ref118
  article-title: The power grid library for benchmarking ac optimal power flow algorithms
– ident: ref68
  doi: 10.1109/SEST50973.2021.9543363
– ident: ref18
  doi: 10.35833/MPCE.2021.000058
– ident: ref20
  doi: 10.1002/9781118535561
– volume: 31
  start-page: 4939
  year: 2018
  ident: ref107
  article-title: Efficient neural network robustness certification with general activation functions
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref62
  doi: 10.1109/TII.2021.3078110
– ident: ref48
  doi: 10.1109/TPWRS.2020.3029557
– year: 2019
  ident: ref112
  article-title: Quantum graph neural networks
– ident: ref9
  doi: 10.17775/CSEEJPES.2020.02700
– ident: ref16
  doi: 10.1137/1.9781611976236.60
– ident: ref34
  doi: 10.1109/PowerTech46648.2021.9495063
– ident: ref83
  doi: 10.1109/MPE.2017.2779554
– ident: ref51
  doi: 10.1016/j.epsr.2020.106547
– ident: ref24
  doi: 10.1049/iet-stg.2019.0272
– ident: ref36
  doi: 10.1109/SmartGridComm51999.2021.9631995
– ident: ref79
  doi: 10.1038/s41467-018-07210-0
– ident: ref82
  doi: 10.1016/j.arcontrol.2019.09.008
– ident: ref52
  doi: 10.1609/aaai.v34i01.5403
– ident: ref96
  doi: 10.1109/TPAS.1974.293985
– year: 2021
  ident: ref32
  article-title: Embedding power flow into machine learning for parameter and state estimation
– ident: ref90
  doi: 10.1137/18M1225409
– ident: ref10
  doi: 10.1146/annurev-physchem-042018-052331
– ident: ref1
  doi: 10.1109/TKDE.2017.2720168
– ident: ref41
  doi: 10.1002/rnc.5043
– ident: ref43
  doi: 10.1016/j.ijepes.2019.04.011
– ident: ref13
  doi: 10.1109/PESGM41954.2020.9282004
– ident: ref104
  doi: 10.1109/TPWRS.2020.3001919
– ident: ref65
  doi: 10.1109/JSAC.2019.2951964
– ident: ref76
  doi: 10.1109/TPWRS.2014.2368078
– ident: ref22
  doi: 10.1016/j.jcp.2015.11.012
– ident: ref58
  doi: 10.1109/TPWRS.2020.2987292
– ident: ref111
  doi: 10.1103/PhysRevLett.121.040502
– volume-title: Proc. Adv. Neural Inf. Process. Syst.: Workshop: Mach. Learn. Eng. Model.
  year: 2020
  ident: ref63
  article-title: Rethink AI-based power grid control: Diving into algorithm design
– ident: ref91
  doi: 10.1109/TSG.2020.3009401
– ident: ref50
  doi: 10.1109/IJCNN.2019.8851855
– ident: ref67
  doi: 10.1109/TSG.2020.3025259
– ident: ref17
  doi: 10.1190/geo2019-0138.1
– year: 2020
  ident: ref106
  article-title: Solving mixed integer programs using neural networks
– ident: ref72
  doi: 10.1109/TPWRS.2018.2846744
– ident: ref23
  doi: 10.1039/C7SC04934J
– year: 2021
  ident: ref38
  article-title: Towards zero-inertia power systems: Stability analysis, control & physics-informed neural networks
– year: 2021
  ident: ref37
  article-title: Transient stability analysis with physics-informed neural networks
– ident: ref78
  doi: 10.1109/RWS50334.2020.9241276
– ident: ref59
  doi: 10.1109/TSG.2021.3052998
– ident: ref88
  doi: 10.1109/TAC.2019.2913768
– ident: ref45
  doi: 10.1109/TSG.2016.2555909
– ident: ref44
  doi: 10.23919/ACC.2019.8815339
– year: 2021
  ident: ref31
  article-title: Physics-informed graphical neural network for parameter & state estimations in power systems
– ident: ref12
  doi: 10.1016/j.jcp.2018.10.045
– start-page: 5998
  volume-title: Proc. Adv. neural Inf. Process. Syst.
  year: 2017
  ident: ref108
  article-title: Attention is all you need
– year: 2016
  ident: ref117
  article-title: Openai gym
– ident: ref74
  doi: 10.1016/j.ifacol.2018.11.718
– ident: ref103
  doi: 10.1109/CDC45484.2021.9683760
– ident: ref30
  doi: 10.1109/TPWRS.2021.3134952
– volume: 2017
  start-page: 992
  year: 2017
  ident: ref5
  article-title: Schnet: A continuous-filter convolutional neural network for modeling quantum interactions
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: ref25
  doi: 10.1109/TSP.2019.2926023
– ident: ref57
  doi: 10.1109/SmartGridComm47815.2020.9302970
– ident: ref92
  doi: 10.1109/TPWRS.2020.3017684
– ident: ref54
  doi: 10.1109/SmartGridComm47815.2020.9302942
– ident: ref114
  doi: 10.1126/science.1165893
– ident: ref85
  doi: 10.1016/j.ifacol.2020.12.2182
– ident: ref93
  doi: 10.1109/TSG.2018.2805169
– ident: ref95
  doi: 10.1146/annurev-control-053018-023825
– ident: ref42
  doi: 10.1016/j.ifacol.2018.11.790
– ident: ref27
  doi: 10.2172/1655434
– ident: ref109
  doi: 10.1007/978-3-030-78615-1_54
– ident: ref35
  doi: 10.1109/TNNLS.2020.2968486
– ident: ref80
  doi: 10.1137/19M1267246
– ident: ref33
  doi: 10.35833/MPCE.2019.000565
– ident: ref8
  doi: 10.1016/j.buildenv.2018.10.035
– ident: ref89
  doi: 10.1146/annurev-control-042920-020211
– ident: ref3
  doi: 10.1145/3514228
SSID ssj0006679
Score 2.7215228
Snippet The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the...
Not provided.
SourceID osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 572
SubjectTerms Anomalies
Data models
Deep learning
Domains
Engineering
first principle
Mathematical models
Neural networks
Optimization
Parameter estimation
Physics
physics-informed neural networks
Power flow
smart grids
State of the art
Training
Training data
Title Applications of Physics-Informed Neural Networks in Power Systems - A Review
URI https://ieeexplore.ieee.org/document/9743327
https://www.proquest.com/docview/2757176888
https://www.osti.gov/biblio/2418785
Volume 38
WOSCitedRecordID wos000922154400046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE/IET Electronic Library
  customDbUrl:
  eissn: 1558-0679
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006679
  issn: 0885-8950
  databaseCode: RIE
  dateStart: 19860101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NaxsxEB2ckEBzSFunJc5H0aG3RslaslbS0YSGHIIxaUp9E9ZIgkCwS-zk92ekXRuHhEJPu7CSWDSa0Rtp5g3Ad2t80Aolz6uJD2qRuCXYzJP2NlQhoQ-FxPVGj0ZmMrHjDpytc2FijCX4LJ7n13KXH-b4lI_KLgj7Sin0FmxpXTe5WmurW9cNr54xihurqlWCTGUv7sZ_bn-RKygEeai1GGj5ahMqVVXoMSedemORyzZz9fH_fvAT7Ldwkg0b-X-GTpx1YW-DZLALuyXIExcHcDPcuK1m88TaL7zJSYqBZaoOGm7UxIYv2P2MjXMZNdYSmzPOhqy5TvgCv69-3l1e87aaAkdS2iXZW03aWyVZB-2nUmJdedMfIDksNqpKeK1STF4mNNMUvMCopuTdBII4SJhQy6-wPZvP4iGwlA9ByBOyZA8GMQkbpl4jWoV942WoetBfTa_Dlmo8V7x4cMXlqKwrInFZJK4VSQ9-rPv8bYg2_tn6IM_-umU78T04zlJ0hB4yBS7mWCFcOkIpRhvVg5OVcF2rqQsntCKPtjbGHL0_5jF8yCXmm2OXE9hePj7FU9jB5-X94vFbWYQv-rnXiA
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RaxQxEB5qVdSHtraKZ2ubB980di-5bJLHQ1oqXo-jnti3cJkkUJA76V39_U6yuaOiCD7twiZhyWQm3yQz3wC8tcYHrVDyvJr4oBWJW4LNPGlvQxMS-lBIXEd6PDbX13ayBe83uTAxxhJ8Fj_k13KXHxZ4l4_KTgn7Sin0A3iYK2fVbK2N3W3bjlnPGMWNVc06Raaxp9PJt6sv5AwKQT5qKwZa_rYNlboq9FiQVv1hk8tGc777f7-4BzsVULJhtwKew1ac78OzezSD-_C4hHni8gBGw3v31WyRWP3Cu6ykGFgm66Dhxl10-JLdzNkkF1JjldqccTZk3YXCC_h6fjb9eMFrPQWOpLYrsria9LdJsg3az6TEtvGmP0ByWWxUjfBapZi8TGhmKXiBUc3IvwkEcpBQoZYvYXu-mMdXwFI-BiFfyJJFGMQkbJh5jWgV9o2XoelBfz29DivZeK558d0Vp6OxrojEZZG4KpIevNv0-dFRbfyz9UGe_U3LOvE9OMxSdIQfMgku5mghXDnCKUYb1YOjtXBd1dWlE1qRT9saY17_fcwTeHIxvRy50afx50N4mgvOd4cwR7C9ur2Lb-AR_lzdLG-Py4L8BV_P2tE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+Physics-Informed+Neural+Networks+in+Power+Systems+-+A+Review&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Huang%2C+Bin&rft.au=Wang%2C+Jianhui&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0885-8950&rft.volume=38&rft.issue=1&rft.spage=572&rft.epage=588&rft_id=info:doi/10.1109%2FTPWRS.2022.3162473&rft.externalDocID=9743327
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon