Applications of Physics-Informed Neural Networks in Power Systems - A Review
The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, prod...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on power systems Jg. 38; H. 1; S. 572 - 588 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
New York
IEEE
01.01.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Schlagworte: | |
| ISSN: | 0885-8950, 1558-0679 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, production of physically infeasible/inconsistent solutions, and low generalizability and interpretability. There is a growing consensus that physics-informed neural networks (PINNs) can address these concerns by integrating physics-informed (PI) rules or laws into state-of-the-art DL methodology. This survey presents a systematic overview of the PINN in the domain of PSs. Specifically, several paradigms of PINN (e.g., PI loss function, PI initialization, PI design of architecture, and hybrid physics-DL models) are summarized. The applications of PINN in PSs in recent years, including state/parameter estimation, dynamic analysis, power flow calculation, optimal power flow, anomaly detection and location, and model and data synthesis, etc., are investigated in detail, followed by the summary and assessment of relevant works so far. Revolving around the characteristics of PSs and the state-of-the-art DL techniques, this paper outlines the potential research directions and attempts to shed light on the deeper and broader application of PINN on PSs. |
|---|---|
| AbstractList | The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the application of DL in the domain of PSs has encountered challenges, e.g., high requirement for the quality and quantity of training data, production of physically infeasible/inconsistent solutions, and low generalizability and interpretability. There is a growing consensus that physics-informed neural networks (PINNs) can address these concerns by integrating physics-informed (PI) rules or laws into state-of-the-art DL methodology. This survey presents a systematic overview of the PINN in the domain of PSs. Specifically, several paradigms of PINN (e.g., PI loss function, PI initialization, PI design of architecture, and hybrid physics-DL models) are summarized. The applications of PINN in PSs in recent years, including state/parameter estimation, dynamic analysis, power flow calculation, optimal power flow, anomaly detection and location, and model and data synthesis, etc., are investigated in detail, followed by the summary and assessment of relevant works so far. Revolving around the characteristics of PSs and the state-of-the-art DL techniques, this paper outlines the potential research directions and attempts to shed light on the deeper and broader application of PINN on PSs. Not provided. |
| Author | Wang, Jianhui Huang, Bin |
| Author_xml | – sequence: 1 givenname: Bin orcidid: 0000-0001-5883-7370 surname: Huang fullname: Huang, Bin email: bin@smu.edu organization: Electrical and Computer Engineering Department, Southern Methodist University, Dallas, TX, USA – sequence: 2 givenname: Jianhui orcidid: 0000-0001-7162-509X surname: Wang fullname: Wang, Jianhui email: jianhui@smu.edu organization: Electrical and Computer Engineering Department, Southern Methodist University, Dallas, TX, USA |
| BackLink | https://www.osti.gov/biblio/2418785$$D View this record in Osti.gov |
| BookMark | eNp9kMtOAjEUhhujiYi-gG4aXQ_2Qi-zJMQLCVGiGJfNTDkNRZhiWyS8vaMYFy5c_Yvzf-ecfCfosAkNIHROSY9SUl5PJ69Pzz1GGOtxKllf8QPUoULogkhVHqIO0VoUuhTkGJ2ktCCEyHbQQePBer30tso-NAkHhyfzXfI2FaPGhbiCGX6ATayWbeRtiG8J-wZPwhYift6lDKuECzzAT_DhYXuKjly1THD2k130cnszHd4X48e70XAwLixnLBeUKM0ZcVzOVF1xbiWpNe1brUQJgrBaCQeu5s7qys1qZkFUksiZpMoKzhXvosv93pCyN8n6DHZuQ9OAzYb1qVZatKWrfWkdw_sGUjaLsIlN-5dhSiiqpNa6bbF9y8aQUgRn1tGvqrgzlJgvteZbrflSa37UtpD-A7UvfCvMsfLL_9GLPeoB4PdWqfqcM8U_AT2Wh9o |
| CODEN | ITPSEG |
| CitedBy_id | crossref_primary_10_1016_j_inffus_2025_102996 crossref_primary_10_1016_j_rineng_2024_102741 crossref_primary_10_1007_s13369_025_10222_w crossref_primary_10_1016_j_engappai_2025_110072 crossref_primary_10_3390_app15148092 crossref_primary_10_1109_TPWRS_2024_3423381 crossref_primary_10_1080_10667857_2024_2443211 crossref_primary_10_1109_TPWRS_2023_3266236 crossref_primary_10_1002_aisy_202300385 crossref_primary_10_1109_TIA_2024_3522496 crossref_primary_10_1109_TSG_2024_3365614 crossref_primary_10_3390_su16177259 crossref_primary_10_1080_15325008_2024_2311340 crossref_primary_10_1016_j_apenergy_2025_126592 crossref_primary_10_1109_TPWRS_2025_3544312 crossref_primary_10_1021_acs_iecr_5c00283 crossref_primary_10_1016_j_istruc_2024_107361 crossref_primary_10_1016_j_apenergy_2023_122439 crossref_primary_10_3390_en17215307 crossref_primary_10_1007_s40313_025_01149_6 crossref_primary_10_1016_j_est_2023_108915 crossref_primary_10_1109_TSG_2025_3555228 crossref_primary_10_1109_TPWRS_2024_3518098 crossref_primary_10_1016_j_engappai_2025_110091 crossref_primary_10_1016_j_isatra_2025_08_021 crossref_primary_10_1063_5_0147592 crossref_primary_10_3390_pr13092929 crossref_primary_10_1109_ACCESS_2025_3529853 crossref_primary_10_3390_computers14040121 crossref_primary_10_1007_s12008_025_02364_w crossref_primary_10_1016_j_epsr_2025_111946 crossref_primary_10_1016_j_jmsy_2024_07_002 crossref_primary_10_4274_tjo_galenos_2025_29345 crossref_primary_10_1016_j_optlastec_2025_113828 crossref_primary_10_1007_s00170_025_15620_w crossref_primary_10_1016_j_rser_2023_114151 crossref_primary_10_1109_ACCESS_2023_3337118 crossref_primary_10_1109_TPEL_2024_3481158 crossref_primary_10_1016_j_egyr_2024_01_027 crossref_primary_10_3390_computers13070176 crossref_primary_10_1109_JIOT_2025_3578314 crossref_primary_10_1016_j_ces_2025_121506 crossref_primary_10_1109_JPROC_2024_3405709 crossref_primary_10_1088_2632_2153_ad45b2 crossref_primary_10_1016_j_energy_2025_138290 crossref_primary_10_1109_TIA_2025_3529799 crossref_primary_10_1177_14759217241289575 crossref_primary_10_1016_j_cma_2024_117389 crossref_primary_10_3390_en18081968 crossref_primary_10_1016_j_conengprac_2024_106167 crossref_primary_10_1109_TCAD_2024_3522878 crossref_primary_10_3390_bdcc6040140 crossref_primary_10_1007_s10409_023_22438_x crossref_primary_10_1109_JIOT_2024_3349381 crossref_primary_10_1016_j_jobe_2025_111788 crossref_primary_10_1109_TPWRS_2024_3373399 crossref_primary_10_1109_TPWRS_2025_3585727 crossref_primary_10_1109_TSG_2024_3396434 crossref_primary_10_1016_j_ress_2024_110169 crossref_primary_10_1016_j_asoc_2023_111208 crossref_primary_10_3390_en16227644 crossref_primary_10_3390_en18071809 crossref_primary_10_1109_TTE_2024_3412909 crossref_primary_10_1016_j_energy_2025_135678 crossref_primary_10_3390_en17071562 crossref_primary_10_1016_j_jcp_2024_113284 crossref_primary_10_1016_j_cnsns_2025_109274 crossref_primary_10_1016_j_epsr_2024_111185 crossref_primary_10_3390_biomimetics10080490 crossref_primary_10_1109_JESTPE_2024_3392684 crossref_primary_10_1109_TPWRS_2024_3447783 crossref_primary_10_1109_TNNLS_2022_3232630 crossref_primary_10_1016_j_apenergy_2024_125169 crossref_primary_10_1016_j_icheatmasstransfer_2025_109085 crossref_primary_10_1109_TPWRS_2023_3336072 crossref_primary_10_1016_j_ijepes_2024_110279 crossref_primary_10_1109_TMAG_2023_3281863 crossref_primary_10_1016_j_jii_2025_100845 crossref_primary_10_1007_s11356_023_30118_2 crossref_primary_10_3390_en17040777 crossref_primary_10_1016_j_physd_2023_133957 crossref_primary_10_1002_adma_202308505 crossref_primary_10_1016_j_buildenv_2025_113640 crossref_primary_10_1016_j_energy_2025_135641 crossref_primary_10_1049_gtd2_70089 crossref_primary_10_1016_j_procs_2024_01_137 crossref_primary_10_1016_j_renene_2025_123657 crossref_primary_10_1016_j_asoc_2025_113691 crossref_primary_10_1186_s42162_022_00233_4 crossref_primary_10_3390_electricity6020034 crossref_primary_10_1016_j_epsr_2024_111166 crossref_primary_10_1109_TII_2022_3211075 crossref_primary_10_3390_app15137507 crossref_primary_10_1088_1742_6596_2707_1_012095 crossref_primary_10_1109_TSG_2025_3538012 crossref_primary_10_1016_j_aei_2024_102663 crossref_primary_10_1016_j_aei_2025_103805 crossref_primary_10_1109_TPWRS_2023_3282413 crossref_primary_10_1016_j_ress_2023_109790 crossref_primary_10_1109_TIA_2025_3529675 crossref_primary_10_1109_TPEL_2025_3566513 crossref_primary_10_1016_j_est_2023_110016 crossref_primary_10_1016_j_jmps_2025_106222 crossref_primary_10_1111_mice_13326 crossref_primary_10_1016_j_ress_2024_110081 crossref_primary_10_1016_j_epsr_2024_111014 crossref_primary_10_1016_j_epsr_2025_111651 crossref_primary_10_1109_TIA_2024_3383806 crossref_primary_10_3390_en17061381 crossref_primary_10_23919_PCMP_2023_000159 crossref_primary_10_1007_s10462_025_11303_w crossref_primary_10_1109_TPWRS_2024_3383688 crossref_primary_10_1103_PRXEnergy_2_043003 crossref_primary_10_1109_TVT_2024_3399918 crossref_primary_10_3390_ai5030074 crossref_primary_10_1016_j_epsr_2025_111885 crossref_primary_10_1049_gtd2_70030 crossref_primary_10_3390_app14010189 crossref_primary_10_1016_j_epsr_2024_111268 crossref_primary_10_1016_j_rser_2025_115786 crossref_primary_10_1016_j_egyai_2025_100474 crossref_primary_10_1016_j_apenergy_2023_121740 crossref_primary_10_1016_j_enbuild_2024_114853 crossref_primary_10_1109_TII_2024_3507953 crossref_primary_10_1038_s41598_025_93337_2 crossref_primary_10_1109_TPEL_2023_3328438 crossref_primary_10_1016_j_geoen_2023_212554 crossref_primary_10_1109_TPWRS_2024_3405543 crossref_primary_10_1016_j_ijepes_2025_110897 crossref_primary_10_3390_app13095683 crossref_primary_10_1038_s41598_023_49977_3 crossref_primary_10_1016_j_ress_2025_111599 crossref_primary_10_1016_j_apenergy_2025_125637 crossref_primary_10_1016_j_apenergy_2023_122602 crossref_primary_10_1049_gtd2_13339 crossref_primary_10_1109_TSG_2023_3267069 crossref_primary_10_1109_MPEL_2023_3328164 crossref_primary_10_1049_rpg2_13086 crossref_primary_10_3390_batteries11060204 crossref_primary_10_1109_TPWRS_2023_3302340 crossref_primary_10_1016_j_trgeo_2024_101409 crossref_primary_10_1088_2632_2153_ad2973 crossref_primary_10_1109_ACCESS_2025_3540626 crossref_primary_10_1016_j_energy_2025_134406 crossref_primary_10_3390_s23218665 crossref_primary_10_1016_j_ymssp_2024_111663 crossref_primary_10_2478_amns_2024_3426 crossref_primary_10_3390_en17040796 crossref_primary_10_1016_j_rser_2025_115977 crossref_primary_10_1016_j_engstruct_2025_120461 crossref_primary_10_1177_13694332241260140 crossref_primary_10_1016_j_measurement_2025_116728 crossref_primary_10_1016_j_apenergy_2025_125977 crossref_primary_10_3390_electronics13020391 crossref_primary_10_1109_TIA_2024_3430231 crossref_primary_10_1016_j_engappai_2025_112044 crossref_primary_10_1109_TPEL_2024_3501573 crossref_primary_10_1142_S1664360725500092 crossref_primary_10_1063_5_0290594 crossref_primary_10_1016_j_jqsrt_2024_109229 crossref_primary_10_1016_j_automatica_2024_111851 crossref_primary_10_1109_TGRS_2024_3357797 crossref_primary_10_1016_j_knosys_2025_113717 crossref_primary_10_1007_s44379_025_00015_1 crossref_primary_10_5334_rss_6 crossref_primary_10_1007_s10462_024_10728_z crossref_primary_10_1016_j_cscm_2024_e03769 crossref_primary_10_1109_TPWRS_2024_3382266 crossref_primary_10_3390_en18133356 crossref_primary_10_1109_TII_2024_3394553 crossref_primary_10_1016_j_energy_2025_134711 crossref_primary_10_1109_ACCESS_2024_3406471 crossref_primary_10_1109_TIA_2025_3529813 crossref_primary_10_1109_TPWRS_2024_3392770 crossref_primary_10_1016_j_engappai_2025_111098 crossref_primary_10_1016_j_ymssp_2024_111117 crossref_primary_10_3390_aerospace12080704 crossref_primary_10_1109_TIM_2025_3545981 crossref_primary_10_1109_TSG_2025_3552958 crossref_primary_10_1016_j_ymssp_2024_111599 crossref_primary_10_1109_TPWRS_2025_3576968 crossref_primary_10_1109_TPWRS_2024_3421902 crossref_primary_10_1155_mmce_6233356 crossref_primary_10_1109_TIA_2025_3529822 crossref_primary_10_3390_computers14090356 crossref_primary_10_1016_j_autcon_2025_106241 crossref_primary_10_1016_j_epsr_2025_111984 crossref_primary_10_1109_ACCESS_2025_3573271 crossref_primary_10_3390_electricity5040039 crossref_primary_10_1016_j_ndteint_2025_103360 crossref_primary_10_1016_j_segan_2024_101524 crossref_primary_10_3390_electronics13132590 crossref_primary_10_1016_j_ifacol_2024_08_411 crossref_primary_10_1109_ACCESS_2023_3347989 crossref_primary_10_1038_s42005_025_02063_8 crossref_primary_10_1016_j_energy_2024_132493 crossref_primary_10_1109_TII_2025_3567400 crossref_primary_10_3390_en17174317 |
| Cites_doi | 10.1049/iet-gtd.2016.1734 10.1038/s41586-019-0912-1 10.1109/TPWRS.2020.2988352 10.1109/JSEN.2019.2898634 10.1109/TSG.2020.3047890 10.1109/LCSYS.2021.3088402 10.1109/DDCLS52934.2021.9455657 10.1561/2200000049 10.1007/978-3-319-67361-5_40 10.1109/JETCAS.2022.3142051 10.1016/j.energy.2019.115883 10.1109/NAPS.2017.8107397 10.1145/3447814 10.1109/ACCESS.2020.2987324 10.1109/PowerTech46648.2021.9494950 10.1088/2515-7639/ab084b 10.1109/CDC45484.2021.9682779 10.1007/978-3-030-25446-9_9 10.1038/nature24270 10.1016/j.apenergy.2019.04.071 10.1109/TPWRS.2020.2989725 10.1109/TCNS.2014.2309732 10.1109/TSG.2021.3113085 10.1109/PowerTech46648.2021.9494807 10.1145/3424116 10.1109/SmartGridComm51999.2021.9632308 10.1109/TPWRS.2017.2767318 10.1109/TSG.2021.3072251 10.37686/qrl.v1i2.80 10.1109/TSG.2015.2399333 10.1073/pnas.0609476104 10.1109/ICMLA.2019.00274 10.1109/TPWRS.2013.2287235 10.1145/3447555.3464864 10.1109/TPWRS.2020.2999102 10.1016/j.engappai.2021.104195 10.1109/CVPR.2009.5206848 10.1126/sciadv.aay2631 10.1109/TCNS.2021.3124283 10.1109/SEST50973.2021.9543363 10.35833/MPCE.2021.000058 10.1002/9781118535561 10.1109/TII.2021.3078110 10.1109/TPWRS.2020.3029557 10.17775/CSEEJPES.2020.02700 10.1137/1.9781611976236.60 10.1109/PowerTech46648.2021.9495063 10.1109/MPE.2017.2779554 10.1016/j.epsr.2020.106547 10.1049/iet-stg.2019.0272 10.1109/SmartGridComm51999.2021.9631995 10.1038/s41467-018-07210-0 10.1016/j.arcontrol.2019.09.008 10.1609/aaai.v34i01.5403 10.1109/TPAS.1974.293985 10.1137/18M1225409 10.1146/annurev-physchem-042018-052331 10.1109/TKDE.2017.2720168 10.1002/rnc.5043 10.1016/j.ijepes.2019.04.011 10.1109/PESGM41954.2020.9282004 10.1109/TPWRS.2020.3001919 10.1109/JSAC.2019.2951964 10.1109/TPWRS.2014.2368078 10.1016/j.jcp.2015.11.012 10.1109/TPWRS.2020.2987292 10.1103/PhysRevLett.121.040502 10.1109/TSG.2020.3009401 10.1109/IJCNN.2019.8851855 10.1109/TSG.2020.3025259 10.1190/geo2019-0138.1 10.1109/TPWRS.2018.2846744 10.1039/C7SC04934J 10.1109/RWS50334.2020.9241276 10.1109/TSG.2021.3052998 10.1109/TAC.2019.2913768 10.1109/TSG.2016.2555909 10.23919/ACC.2019.8815339 10.1016/j.jcp.2018.10.045 10.1016/j.ifacol.2018.11.718 10.1109/CDC45484.2021.9683760 10.1109/TPWRS.2021.3134952 10.1109/TSP.2019.2926023 10.1109/SmartGridComm47815.2020.9302970 10.1109/TPWRS.2020.3017684 10.1109/SmartGridComm47815.2020.9302942 10.1126/science.1165893 10.1016/j.ifacol.2020.12.2182 10.1109/TSG.2018.2805169 10.1146/annurev-control-053018-023825 10.1016/j.ifacol.2018.11.790 10.2172/1655434 10.1007/978-3-030-78615-1_54 10.1109/TNNLS.2020.2968486 10.1137/19M1267246 10.35833/MPCE.2019.000565 10.1016/j.buildenv.2018.10.035 10.1146/annurev-control-042920-020211 10.1145/3514228 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| CorporateAuthor | Univ. of North Carolina, Charlotte, NC (United States) |
| CorporateAuthor_xml | – name: Univ. of North Carolina, Charlotte, NC (United States) |
| DBID | 97E RIA RIE AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M OTOTI |
| DOI | 10.1109/TPWRS.2022.3162473 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE/IET Electronic Library CrossRef Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace OSTI.GOV |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace Electronics & Communications Abstracts |
| DatabaseTitleList | Civil Engineering Abstracts |
| Database_xml | – sequence: 1 dbid: RIE name: IEEE/IET Electronic Library url: https://ieeexplore.ieee.org/ sourceTypes: Publisher |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1558-0679 |
| EndPage | 588 |
| ExternalDocumentID | 2418785 10_1109_TPWRS_2022_3162473 9743327 |
| Genre | orig-research |
| GrantInformation_xml | – fundername: Solar Energy Technologies Office grantid: DE-EE0009337 funderid: 10.13039/100011883 – fundername: Office of Energy Efficiency and Renewable Energy funderid: 10.13039/100006134 – fundername: U.S. Department of Energy funderid: 10.13039/100000015 |
| GroupedDBID | -~X .DC 0R~ 29I 3EH 4.4 5GY 5VS 6IK 85S 97E AAJGR AARMG AASAJ AAWTH ABAZT ABFSI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 E.L EBS EJD HZ~ H~9 ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P RIA RIE RNS TAE TN5 VH1 VJK AAYXX CITATION 7SP 7TB 8FD FR3 KR7 L7M OTOTI |
| ID | FETCH-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 286 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000922154400046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0885-8950 |
| IngestDate | Mon Aug 12 05:46:51 EDT 2024 Fri Jul 25 19:12:07 EDT 2025 Sat Nov 29 02:52:27 EST 2025 Tue Nov 18 22:27:47 EST 2025 Wed Aug 27 02:14:28 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c322t-1078320f36d7ba33c60b814c8759e502b75fefb3fc8afdb2ce5a606d617c53373 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 USDOE Office of Energy Efficiency and Renewable Energy (EERE) EE0009337 |
| ORCID | 0000-0001-5883-7370 0000-0001-7162-509X 0000000158837370 000000017162509X |
| PQID | 2757176888 |
| PQPubID | 85441 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2757176888 osti_scitechconnect_2418785 crossref_primary_10_1109_TPWRS_2022_3162473 crossref_citationtrail_10_1109_TPWRS_2022_3162473 ieee_primary_9743327 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-Jan. 2023-1-00 20230101 2023-01-01 |
| PublicationDateYYYYMMDD | 2023-01-01 |
| PublicationDate_xml | – month: 01 year: 2023 text: 2023-Jan. |
| PublicationDecade | 2020 |
| PublicationPlace | New York |
| PublicationPlace_xml | – name: New York – name: United States |
| PublicationTitle | IEEE transactions on power systems |
| PublicationTitleAbbrev | TPWRS |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref57 ref56 ref59 ref58 ref53 ref52 ref55 ref54 Zhou (ref63) 2020 Goodfellow (ref14) 2016; 1 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 ref43 Ma (ref102) 2020 ref49 ref8 ref7 ref9 ref4 ref3 ref6 Pagnier (ref32) 2021 ref100 ref101 ref40 ref35 ref34 ref36 ref30 ref33 ref39 Bahmani (ref99) 2021 Li (ref66) 2021 ref24 Zhang (ref2) 2020 ref23 ref26 ref25 ref20 ref22 ref21 ref28 ref27 ref29 Pagnier (ref31) 2021 Misyris (ref38) 2021 ref13 ref12 ref15 Nair (ref106) 2020 ref97 ref96 ref11 ref10 ref98 ref17 ref16 ref19 ref18 ref93 ref92 ref95 ref94 ref91 ref90 ref89 ref85 ref88 ref87 Vaswani (ref108) 2017 ref82 ref81 ref84 ref83 Zhang (ref107) 2018; 31 ref80 Stiasny (ref37) 2021 ref79 ref78 ref109 ref75 ref104 ref74 ref105 ref77 ref76 ref103 ref1 Xu (ref86) 2020; 33 ref71 ref111 ref70 ref73 ref72 ref110 ref68 ref67 ref69 ref64 ref115 ref116 ref113 ref65 ref114 Babaeinejadsarookolaee (ref118) 2019 Verdon (ref112) 2019 Schtt (ref5) 2017; 2017 ref60 ref62 ref61 Brockman (ref117) 2016 |
| References_xml | – volume: 1 volume-title: Deep Learning year: 2016 ident: ref14 – ident: ref47 doi: 10.1049/iet-gtd.2016.1734 – ident: ref7 doi: 10.1038/s41586-019-0912-1 – ident: ref28 doi: 10.1109/TPWRS.2020.2988352 – ident: ref98 doi: 10.1109/JSEN.2019.2898634 – ident: ref81 doi: 10.1109/TSG.2020.3047890 – start-page: 11268 volume-title: Proc. Int. Conf. Mach. Learn. year: 2020 ident: ref2 article-title: Fast learning of graph neural networks with guaranteed generalizability: One-hidden-layer case – volume: 33 start-page: 18784 year: 2020 ident: ref86 article-title: Preference-based reinforcement learning with finite-time guarantees publication-title: Adv. Neural Inf. Process. Syst. – ident: ref101 doi: 10.1109/LCSYS.2021.3088402 – ident: ref39 doi: 10.1109/DDCLS52934.2021.9455657 – ident: ref87 doi: 10.1561/2200000049 – ident: ref15 doi: 10.1007/978-3-319-67361-5_40 – ident: ref26 doi: 10.1109/JETCAS.2022.3142051 – ident: ref69 doi: 10.1016/j.energy.2019.115883 – ident: ref94 doi: 10.1109/NAPS.2017.8107397 – ident: ref4 doi: 10.1145/3447814 – ident: ref11 doi: 10.1109/ACCESS.2020.2987324 – year: 2021 ident: ref99 article-title: Training multi-objective/multi-task collocation physics-informed neural network with student/teachers transfer learnings – ident: ref29 doi: 10.1109/PowerTech46648.2021.9494950 – ident: ref6 doi: 10.1088/2515-7639/ab084b – ident: ref40 doi: 10.1109/CDC45484.2021.9682779 – ident: ref77 doi: 10.1007/978-3-030-25446-9_9 – ident: ref105 doi: 10.1038/nature24270 – ident: ref70 doi: 10.1016/j.apenergy.2019.04.071 – ident: ref21 doi: 10.1109/TPWRS.2020.2989725 – year: 2021 ident: ref66 article-title: Physics-informed graph learning for robust fault location in distribution systems – ident: ref97 doi: 10.1109/TCNS.2014.2309732 – ident: ref60 doi: 10.1109/TSG.2021.3113085 – ident: ref64 doi: 10.1109/PowerTech46648.2021.9494807 – ident: ref100 doi: 10.1145/3424116 – ident: ref55 doi: 10.1109/SmartGridComm51999.2021.9632308 – ident: ref46 doi: 10.1109/TPWRS.2017.2767318 – ident: ref61 doi: 10.1109/TSG.2021.3072251 – year: 2020 ident: ref102 article-title: Physics-informed Gaussian process regression for probabilistic states estimation and forecasting in power grids – ident: ref56 doi: 10.1109/SmartGridComm51999.2021.9632308 – ident: ref110 doi: 10.37686/qrl.v1i2.80 – ident: ref19 doi: 10.1109/TSG.2015.2399333 – ident: ref113 doi: 10.1073/pnas.0609476104 – ident: ref49 doi: 10.1109/ICMLA.2019.00274 – ident: ref75 doi: 10.1109/TPWRS.2013.2287235 – ident: ref73 doi: 10.1145/3447555.3464864 – ident: ref71 doi: 10.1109/TPWRS.2020.2999102 – ident: ref84 doi: 10.1016/j.engappai.2021.104195 – ident: ref116 doi: 10.1109/CVPR.2009.5206848 – ident: ref115 doi: 10.1126/sciadv.aay2631 – ident: ref53 doi: 10.1109/TCNS.2021.3124283 – year: 2019 ident: ref118 article-title: The power grid library for benchmarking ac optimal power flow algorithms – ident: ref68 doi: 10.1109/SEST50973.2021.9543363 – ident: ref18 doi: 10.35833/MPCE.2021.000058 – ident: ref20 doi: 10.1002/9781118535561 – volume: 31 start-page: 4939 year: 2018 ident: ref107 article-title: Efficient neural network robustness certification with general activation functions publication-title: Adv. Neural Inf. Process. Syst. – ident: ref62 doi: 10.1109/TII.2021.3078110 – ident: ref48 doi: 10.1109/TPWRS.2020.3029557 – year: 2019 ident: ref112 article-title: Quantum graph neural networks – ident: ref9 doi: 10.17775/CSEEJPES.2020.02700 – ident: ref16 doi: 10.1137/1.9781611976236.60 – ident: ref34 doi: 10.1109/PowerTech46648.2021.9495063 – ident: ref83 doi: 10.1109/MPE.2017.2779554 – ident: ref51 doi: 10.1016/j.epsr.2020.106547 – ident: ref24 doi: 10.1049/iet-stg.2019.0272 – ident: ref36 doi: 10.1109/SmartGridComm51999.2021.9631995 – ident: ref79 doi: 10.1038/s41467-018-07210-0 – ident: ref82 doi: 10.1016/j.arcontrol.2019.09.008 – ident: ref52 doi: 10.1609/aaai.v34i01.5403 – ident: ref96 doi: 10.1109/TPAS.1974.293985 – year: 2021 ident: ref32 article-title: Embedding power flow into machine learning for parameter and state estimation – ident: ref90 doi: 10.1137/18M1225409 – ident: ref10 doi: 10.1146/annurev-physchem-042018-052331 – ident: ref1 doi: 10.1109/TKDE.2017.2720168 – ident: ref41 doi: 10.1002/rnc.5043 – ident: ref43 doi: 10.1016/j.ijepes.2019.04.011 – ident: ref13 doi: 10.1109/PESGM41954.2020.9282004 – ident: ref104 doi: 10.1109/TPWRS.2020.3001919 – ident: ref65 doi: 10.1109/JSAC.2019.2951964 – ident: ref76 doi: 10.1109/TPWRS.2014.2368078 – ident: ref22 doi: 10.1016/j.jcp.2015.11.012 – ident: ref58 doi: 10.1109/TPWRS.2020.2987292 – ident: ref111 doi: 10.1103/PhysRevLett.121.040502 – volume-title: Proc. Adv. Neural Inf. Process. Syst.: Workshop: Mach. Learn. Eng. Model. year: 2020 ident: ref63 article-title: Rethink AI-based power grid control: Diving into algorithm design – ident: ref91 doi: 10.1109/TSG.2020.3009401 – ident: ref50 doi: 10.1109/IJCNN.2019.8851855 – ident: ref67 doi: 10.1109/TSG.2020.3025259 – ident: ref17 doi: 10.1190/geo2019-0138.1 – year: 2020 ident: ref106 article-title: Solving mixed integer programs using neural networks – ident: ref72 doi: 10.1109/TPWRS.2018.2846744 – ident: ref23 doi: 10.1039/C7SC04934J – year: 2021 ident: ref38 article-title: Towards zero-inertia power systems: Stability analysis, control & physics-informed neural networks – year: 2021 ident: ref37 article-title: Transient stability analysis with physics-informed neural networks – ident: ref78 doi: 10.1109/RWS50334.2020.9241276 – ident: ref59 doi: 10.1109/TSG.2021.3052998 – ident: ref88 doi: 10.1109/TAC.2019.2913768 – ident: ref45 doi: 10.1109/TSG.2016.2555909 – ident: ref44 doi: 10.23919/ACC.2019.8815339 – year: 2021 ident: ref31 article-title: Physics-informed graphical neural network for parameter & state estimations in power systems – ident: ref12 doi: 10.1016/j.jcp.2018.10.045 – start-page: 5998 volume-title: Proc. Adv. neural Inf. Process. Syst. year: 2017 ident: ref108 article-title: Attention is all you need – year: 2016 ident: ref117 article-title: Openai gym – ident: ref74 doi: 10.1016/j.ifacol.2018.11.718 – ident: ref103 doi: 10.1109/CDC45484.2021.9683760 – ident: ref30 doi: 10.1109/TPWRS.2021.3134952 – volume: 2017 start-page: 992 year: 2017 ident: ref5 article-title: Schnet: A continuous-filter convolutional neural network for modeling quantum interactions publication-title: Adv. Neural Inf. Process. Syst. – ident: ref25 doi: 10.1109/TSP.2019.2926023 – ident: ref57 doi: 10.1109/SmartGridComm47815.2020.9302970 – ident: ref92 doi: 10.1109/TPWRS.2020.3017684 – ident: ref54 doi: 10.1109/SmartGridComm47815.2020.9302942 – ident: ref114 doi: 10.1126/science.1165893 – ident: ref85 doi: 10.1016/j.ifacol.2020.12.2182 – ident: ref93 doi: 10.1109/TSG.2018.2805169 – ident: ref95 doi: 10.1146/annurev-control-053018-023825 – ident: ref42 doi: 10.1016/j.ifacol.2018.11.790 – ident: ref27 doi: 10.2172/1655434 – ident: ref109 doi: 10.1007/978-3-030-78615-1_54 – ident: ref35 doi: 10.1109/TNNLS.2020.2968486 – ident: ref80 doi: 10.1137/19M1267246 – ident: ref33 doi: 10.35833/MPCE.2019.000565 – ident: ref8 doi: 10.1016/j.buildenv.2018.10.035 – ident: ref89 doi: 10.1146/annurev-control-042920-020211 – ident: ref3 doi: 10.1145/3514228 |
| SSID | ssj0006679 |
| Score | 2.7215228 |
| Snippet | The advances of deep learning (DL) techniques bring new opportunities to numerous intractable tasks in power systems (PSs). Nevertheless, the extension of the... Not provided. |
| SourceID | osti proquest crossref ieee |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 572 |
| SubjectTerms | Anomalies Data models Deep learning Domains Engineering first principle Mathematical models Neural networks Optimization Parameter estimation Physics physics-informed neural networks Power flow smart grids State of the art Training Training data |
| Title | Applications of Physics-Informed Neural Networks in Power Systems - A Review |
| URI | https://ieeexplore.ieee.org/document/9743327 https://www.proquest.com/docview/2757176888 https://www.osti.gov/biblio/2418785 |
| Volume | 38 |
| WOSCitedRecordID | wos000922154400046&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE/IET Electronic Library customDbUrl: eissn: 1558-0679 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006679 issn: 0885-8950 databaseCode: RIE dateStart: 19860101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NaxsxEB2ckEBzSFunJc5H0aG3RslaslbS0YSGHIIxaUp9E9ZIgkCwS-zk92ekXRuHhEJPu7CSWDSa0Rtp5g3Ad2t80Aolz6uJD2qRuCXYzJP2NlQhoQ-FxPVGj0ZmMrHjDpytc2FijCX4LJ7n13KXH-b4lI_KLgj7Sin0FmxpXTe5WmurW9cNr54xihurqlWCTGUv7sZ_bn-RKygEeai1GGj5ahMqVVXoMSedemORyzZz9fH_fvAT7Ldwkg0b-X-GTpx1YW-DZLALuyXIExcHcDPcuK1m88TaL7zJSYqBZaoOGm7UxIYv2P2MjXMZNdYSmzPOhqy5TvgCv69-3l1e87aaAkdS2iXZW03aWyVZB-2nUmJdedMfIDksNqpKeK1STF4mNNMUvMCopuTdBII4SJhQy6-wPZvP4iGwlA9ByBOyZA8GMQkbpl4jWoV942WoetBfTa_Dlmo8V7x4cMXlqKwrInFZJK4VSQ9-rPv8bYg2_tn6IM_-umU78T04zlJ0hB4yBS7mWCFcOkIpRhvVg5OVcF2rqQsntCKPtjbGHL0_5jF8yCXmm2OXE9hePj7FU9jB5-X94vFbWYQv-rnXiA |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1RaxQxEB5qVdSHtraKZ2ubB980di-5bJLHQ1oqXo-jnti3cJkkUJA76V39_U6yuaOiCD7twiZhyWQm3yQz3wC8tcYHrVDyvJr4oBWJW4LNPGlvQxMS-lBIXEd6PDbX13ayBe83uTAxxhJ8Fj_k13KXHxZ4l4_KTgn7Sin0A3iYK2fVbK2N3W3bjlnPGMWNVc06Raaxp9PJt6sv5AwKQT5qKwZa_rYNlboq9FiQVv1hk8tGc777f7-4BzsVULJhtwKew1ac78OzezSD-_C4hHni8gBGw3v31WyRWP3Cu6ykGFgm66Dhxl10-JLdzNkkF1JjldqccTZk3YXCC_h6fjb9eMFrPQWOpLYrsria9LdJsg3az6TEtvGmP0ByWWxUjfBapZi8TGhmKXiBUc3IvwkEcpBQoZYvYXu-mMdXwFI-BiFfyJJFGMQkbJh5jWgV9o2XoelBfz29DivZeK558d0Vp6OxrojEZZG4KpIevNv0-dFRbfyz9UGe_U3LOvE9OMxSdIQfMgku5mghXDnCKUYb1YOjtXBd1dWlE1qRT9saY17_fcwTeHIxvRy50afx50N4mgvOd4cwR7C9ur2Lb-AR_lzdLG-Py4L8BV_P2tE |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Applications+of+Physics-Informed+Neural+Networks+in+Power+Systems+-+A+Review&rft.jtitle=IEEE+transactions+on+power+systems&rft.au=Huang%2C+Bin&rft.au=Wang%2C+Jianhui&rft.date=2023-01-01&rft.pub=IEEE&rft.issn=0885-8950&rft.volume=38&rft.issue=1&rft.spage=572&rft.epage=588&rft_id=info:doi/10.1109%2FTPWRS.2022.3162473&rft.externalDocID=9743327 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-8950&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-8950&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-8950&client=summon |