Polynomials with integer coefficients and Chebyshev polynomials
The paper is devoted to the popularization of one of the topics at the border between analysis and number theory that is related to polynomial with integer coefficients. Keywords. Extreme properties of polynomials, transfinite diameter, basic theorem for symmetric polynomials, polynomial with intege...
Uloženo v:
| Vydáno v: | Journal of mathematical sciences (New York, N.Y.) Ročník 222; číslo 6; s. 797 - 818 |
|---|---|
| Hlavní autor: | |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
New York
Springer US
02.05.2017
Springer Springer Nature B.V |
| Témata: | |
| ISSN: | 1072-3374, 1573-8795 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | The paper is devoted to the popularization of one of the topics at the border between analysis and number theory that is related to polynomial with integer coefficients. Keywords. Extreme properties of polynomials, transfinite diameter, basic theorem for symmetric polynomials, polynomial with integer coefficients polynomial, Minkowski theorem for convex bodies, power of an algebraic number, Eisenstein criterion, asymptotic law of distribution of prime numbers, approximation of functions by polynomial with integer coefficients polynomials and polynomials with natural coefficients, the best approximation of a constant. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1072-3374 1573-8795 |
| DOI: | 10.1007/s10958-017-3333-4 |