Automatic differential equations identification by self-configuring genetic programming algorithm

The paper considers a reduction of differential equations identification problem to the symbolic regression task. The current approach allows automatic determining the structure of a differential equation via the usage of the self-configuring genetic programming algorithm. The a priori information n...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IOP conference series. Materials Science and Engineering Jg. 734; H. 1; S. 12093 - 12100
1. Verfasser: Karaseva, T S
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Bristol IOP Publishing 01.01.2020
Schlagworte:
ISSN:1757-8981, 1757-899X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The paper considers a reduction of differential equations identification problem to the symbolic regression task. The current approach allows automatic determining the structure of a differential equation via the usage of the self-configuring genetic programming algorithm. The a priori information needed is only the dynamic system initial point and the sample of input and output effects. The stability of the proposed approach to the presence of noise in the sample and the small amount of data is investigated.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/734/1/012093