Automatic differential equations identification by self-configuring genetic programming algorithm

The paper considers a reduction of differential equations identification problem to the symbolic regression task. The current approach allows automatic determining the structure of a differential equation via the usage of the self-configuring genetic programming algorithm. The a priori information n...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IOP conference series. Materials Science and Engineering Ročník 734; číslo 1; s. 12093 - 12100
Hlavní autor: Karaseva, T S
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bristol IOP Publishing 01.01.2020
Témata:
ISSN:1757-8981, 1757-899X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:The paper considers a reduction of differential equations identification problem to the symbolic regression task. The current approach allows automatic determining the structure of a differential equation via the usage of the self-configuring genetic programming algorithm. The a priori information needed is only the dynamic system initial point and the sample of input and output effects. The stability of the proposed approach to the presence of noise in the sample and the small amount of data is investigated.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1757-8981
1757-899X
DOI:10.1088/1757-899X/734/1/012093