Machine learning model for predicting the crack detection and pattern recognition of geopolymer concrete beams
•Crack acquisition of experimented geopolymer concrete beams with BFRP & GFRP bars.•Well-equipped image pre-processing python packages used to collect crack patterns.•Automated quality check using machine learning python packages.•Support Vector Machine (SVM) is used to classify the failure patt...
Gespeichert in:
| Veröffentlicht in: | Construction & building materials Jg. 297; S. 123785 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
23.08.2021
|
| Schlagworte: | |
| ISSN: | 0950-0618, 1879-0526 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | •Crack acquisition of experimented geopolymer concrete beams with BFRP & GFRP bars.•Well-equipped image pre-processing python packages used to collect crack patterns.•Automated quality check using machine learning python packages.•Support Vector Machine (SVM) is used to classify the failure patterns.•SVM compared with other five machine learning classifiers using confusion matrix.
One of the major challenges in the construction industry is the detection of cracks in concrete structures and identification of failure types of these structures that lead to their degradation. Manual quality checks are prone to human error, and require longer response time and specialist experience and knowledge. Therefore, visualizing the cracks and identifying failures in concrete structures using computer techniques is now a preferred option. The present work focuses on identifying the cracks using image processing and failure pattern recognition technique by employing suitable machine learning algorithms, and validating the techniques using Python programming. For this purpose, M30 grade geopolymer and conventional concrete beams were cast using Basalt Fibre Reinforced Polymer/Glass Fibre Reinforced Polymer and Steel bars. The beams were subjected to four point static bending test by varying the shear span to the effective depth ratio. The experimental images were used for image processing and failure pattern recognition in Python language. Employing six machine learning classifiers, the failures in the structures were classified into three classes namely, flexure, shear, and compression. The machine learning classifiers were also adopted to determine the confusion matrix, accuracy, precision, and recall scores. It was found that among the six classifiers used, the support vector classifier gave the best performance with 100% accuracy in identifying the failure patterns. |
|---|---|
| AbstractList | •Crack acquisition of experimented geopolymer concrete beams with BFRP & GFRP bars.•Well-equipped image pre-processing python packages used to collect crack patterns.•Automated quality check using machine learning python packages.•Support Vector Machine (SVM) is used to classify the failure patterns.•SVM compared with other five machine learning classifiers using confusion matrix.
One of the major challenges in the construction industry is the detection of cracks in concrete structures and identification of failure types of these structures that lead to their degradation. Manual quality checks are prone to human error, and require longer response time and specialist experience and knowledge. Therefore, visualizing the cracks and identifying failures in concrete structures using computer techniques is now a preferred option. The present work focuses on identifying the cracks using image processing and failure pattern recognition technique by employing suitable machine learning algorithms, and validating the techniques using Python programming. For this purpose, M30 grade geopolymer and conventional concrete beams were cast using Basalt Fibre Reinforced Polymer/Glass Fibre Reinforced Polymer and Steel bars. The beams were subjected to four point static bending test by varying the shear span to the effective depth ratio. The experimental images were used for image processing and failure pattern recognition in Python language. Employing six machine learning classifiers, the failures in the structures were classified into three classes namely, flexure, shear, and compression. The machine learning classifiers were also adopted to determine the confusion matrix, accuracy, precision, and recall scores. It was found that among the six classifiers used, the support vector classifier gave the best performance with 100% accuracy in identifying the failure patterns. |
| ArticleNumber | 123785 |
| Author | Aravind, N Nagajothi, S Elavenil, S |
| Author_xml | – sequence: 1 givenname: N surname: Aravind fullname: Aravind, N email: aravind@nu.edu.om organization: Department of Civil and Environmental Environment, National University of Science and Technology, Oman – sequence: 2 givenname: S surname: Nagajothi fullname: Nagajothi, S email: naga.jothis2014phd1138@vit.ac.in organization: School of Civil Engineering, Vellore Institute of Technology, Chennai Campus, Chennai 127, India – sequence: 3 givenname: S surname: Elavenil fullname: Elavenil, S email: elavenil.s@vit.ac.in organization: School of Civil Engineering, Vellore Institute of Technology, Chennai Campus, Chennai 127, India |
| BookMark | eNqNkMtKAzEUhoNUsK2-Q3yAGXOZ60qkeIOKG12HzJmTNnUmKZko9O2dsS7EVVcHfvg__vMtyMx5h4Rcc5ZyxoubXQreNZ-2a3sdU8EET7mQZZWfkTmvyjphuShmZM7qnCWs4NUFWQzDjjFWiELMiXvRsLUOaYc6OOs2tPctdtT4QPcBWwtxCuMWKQQNH7TFiGPmHdWupXsdIwZHA4LfOPuTe0M36Pe-O_QY6DgPwtihDep-uCTnRncDXv3eJXl_uH9bPSXr18fn1d06ASl4TIyRACXUUCDmGceqRNMwk2EDYHgmKo0oZVGCzAvBtBhNQN7q2qCsRWakXJLbIxeCH4aARoGNepoXg7ad4kxN-tRO_dGnJn3qqG8k1P8I-2B7HQ4ndVfHLo4vflkMagCLDkado6ioWm9PoHwD1VSYDw |
| CitedBy_id | crossref_primary_10_1007_s40996_024_01469_8 crossref_primary_10_3390_buildings14061711 crossref_primary_10_1007_s11709_025_1192_5 crossref_primary_10_3390_fractalfract5040142 crossref_primary_10_1016_j_conbuildmat_2023_131900 crossref_primary_10_1061_JSENDH_STENG_13396 crossref_primary_10_1002_suco_202201145 crossref_primary_10_1088_2053_1591_adf8c4 crossref_primary_10_1007_s42107_022_00526_9 crossref_primary_10_1038_s41598_023_45276_z crossref_primary_10_1007_s13349_022_00577_1 crossref_primary_10_3390_buildings14113402 crossref_primary_10_1016_j_cemconcomp_2025_106142 crossref_primary_10_1016_j_cscm_2025_e04900 crossref_primary_10_1016_j_ijdrr_2025_105358 crossref_primary_10_3390_app15136951 crossref_primary_10_1007_s42107_025_01361_4 crossref_primary_10_1016_j_conbuildmat_2023_134129 crossref_primary_10_1016_j_conbuildmat_2022_129054 crossref_primary_10_1016_j_mtcomm_2021_103117 crossref_primary_10_1038_s41524_022_00810_x crossref_primary_10_1038_s41598_024_51164_x crossref_primary_10_1007_s44416_025_00011_x crossref_primary_10_1016_j_conbuildmat_2024_136452 crossref_primary_10_1038_s40494_025_01690_2 crossref_primary_10_1016_j_cscm_2023_e01928 crossref_primary_10_1080_10589759_2024_2334434 crossref_primary_10_1007_s42107_025_01396_7 crossref_primary_10_1016_j_conbuildmat_2022_128158 crossref_primary_10_1371_journal_pone_0301865 crossref_primary_10_1111_mice_12932 crossref_primary_10_1109_ACCESS_2023_3305670 crossref_primary_10_1016_j_autcon_2022_104427 crossref_primary_10_1016_j_measurement_2022_110729 crossref_primary_10_1007_s40997_025_00855_5 crossref_primary_10_3390_ma16031090 crossref_primary_10_1007_s42107_022_00502_3 crossref_primary_10_1007_s13243_024_00147_2 crossref_primary_10_1007_s11668_024_02049_8 crossref_primary_10_1016_j_mtcomm_2024_111047 crossref_primary_10_1016_j_cscm_2025_e05034 crossref_primary_10_1002_suco_202400886 crossref_primary_10_1002_eng2_12676 crossref_primary_10_1016_j_matlet_2021_130867 crossref_primary_10_1007_s41062_024_01583_6 crossref_primary_10_1016_j_engfailanal_2024_108769 crossref_primary_10_1007_s42452_025_07152_5 crossref_primary_10_1007_s12145_024_01511_3 crossref_primary_10_1007_s41024_023_00371_6 crossref_primary_10_3390_su16010011 crossref_primary_10_1002_suco_202200344 crossref_primary_10_1016_j_engappai_2025_110210 crossref_primary_10_1016_j_istruc_2022_02_003 crossref_primary_10_3390_buildings13081934 crossref_primary_10_1016_j_aei_2024_102584 crossref_primary_10_1016_j_conbuildmat_2023_131165 crossref_primary_10_3390_app12157403 crossref_primary_10_1080_23744731_2025_2538381 crossref_primary_10_1007_s12145_024_01574_2 crossref_primary_10_1016_j_mtcomm_2024_111005 crossref_primary_10_1016_j_mtsust_2025_101095 |
| Cites_doi | 10.1109/ACCESS.2018.2844100 10.1117/12.757864 10.1061/(ASCE)0887-3801(2003)17:4(255) 10.2208/jscej.2003.742_115 10.1007/s12205-015-0461-6 10.1016/j.advengsoft.2006.06.002 10.1002/tee.20244 10.1007/s42452-019-1774-8 10.1109/TASE.2014.2354314 10.3151/jact.19.216 10.1016/j.jclepro.2019.03.051 10.1016/j.procs.2019.06.096 10.1515/polyeng-2020-0036 10.1109/ICIEA.2008.4582845 10.1007/s12633-019-00203-8 10.1109/TPAMI.1986.4767851 10.1177/1475921718768747 10.1088/1742-2132/10/3/034002 10.1016/S0963-8695(00)00032-3 10.1007/s13369-019-04269-9 10.1016/j.autcon.2017.01.019 10.1016/j.autcon.2018.11.028 10.1109/ICPR.2006.98 10.3390/s141019307 10.1016/j.jclepro.2019.118762 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.conbuildmat.2021.123785 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0526 |
| ExternalDocumentID | 10_1016_j_conbuildmat_2021_123785 S0950061821015452 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADHUB ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAAKF BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IAO IEA IGG IHE IHM IOF ISM J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N95 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PV9 Q38 ROL RPZ RZL SDF SDG SES SPC SPCBC SSM SST SSZ T5K UNMZH XI7 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AHDLI AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BAIFH BBTPI CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ ITC R2- RNS SET SEW SMS VH1 WUQ ZMT ~HD |
| ID | FETCH-LOGICAL-c321t-ff3cc7c9c6ee541e87efb0f4ebccf1428aee3367c35620a2016c5da9fe3924f33 |
| ISICitedReferencesCount | 61 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692631700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-0618 |
| IngestDate | Tue Nov 18 22:14:44 EST 2025 Sat Nov 29 07:08:35 EST 2025 Fri Feb 23 02:42:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Classifiers Geopolymer Confusion matrix Pre-processing Machine learning Python |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c321t-ff3cc7c9c6ee541e87efb0f4ebccf1428aee3367c35620a2016c5da9fe3924f33 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_conbuildmat_2021_123785 crossref_primary_10_1016_j_conbuildmat_2021_123785 elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2021_123785 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-08-23 |
| PublicationDateYYYYMMDD | 2021-08-23 |
| PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationTitle | Construction & building materials |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Hassan, Arif, Shariq (b0050) 2020 Nagajothi, Elavenil (b0145) 2021; 19 Liang, Jianchun, Xun (b0165) 2018; 6 Vu Dunga, DucAnh (b0110) 2019; 99 Nagajothi, Elavenil (b0140) 2020; 12 Kim, Ahn, Shin, Sim (b0160) 2019; 18 Yusuke Fujita, Yoshihiro Mitani, Yoshihiko Hamamoto, A Method for Crack Detection on a Concrete Structure, 18thInternational Conference on Pattern Recognition (ICPR'06) 0-7695-2521-0/06, 2006. Abdel-Qader, Pashaie-Rad, Abudayyeh, Yehia (b0095) 2006; 37 (b0055) 2020; 35 Nagajothi, Elavenil (b0135) 2020; 40 H. Nakamura, R. Sato. K. Kawamura, A. Miyamoto. Proposal of a crack pattern extraction method from digital images using an interactive genetic algorithm. Japan Society of Civil Engineers, 60 (742) 115–131, September 2003 (in Japanese). Nagajothi, Elavenil (b0120) 2018; 20180019 Amer Hassan, Mohammed Arif, M. Shariq, Use of geopolymer concrete for a cleaner and sustainable environment - A review of mechanical properties and microstructure, J. Clean. Prod. Elsevier, 223, (2019) 704-728. https://doi.org/10.1016/j.jclepro.2019.03.051. John Canny, A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8 (6) NOVEMBER 1986. Nagajothi, Elavenil (b0125) 2020; 27 W.T. Zhang, J.Y. Dai, H. Xu, B.C. Sun, Y.L. Du. Distributed fiber optic crack sensor for concrete structures.” Proc. of SPIE, Sandiego, USA, 6830 (2007) 68300F, DOI: 10.1117/12.757864. Amer Hassan, Mohammed Arif, M. Shariq, Mechanical behaviour and microstructural investigation of geopolymer concrete after exposure to elevated temperatures, Arabian J. Sci. Eng., Springer, 45, (2020), 3843–3861. https://doi.org/10.1007/s13369-019-04269-9. Shan, Zheng, Jinping (b0010) 2016; 20 Pavalan, Sivagamasundari (b0180) 2019; 5 Abdel-Qader, Abudayyeh, Kelly (b0070) 2003; 17 Xie, Li, Qin, Liu, Nobes (b0175) 2013; 10 Tomoyuki Yamaguchi, Shingo Nakamura, RyoSaegusa and Shuji Hashimoto, Image-Based Crack Detection for Real Concrete Surfaces, Transactions on Electrical and Electronic Engineering, IEEJ Trans 2008; 3: 128–135, Published online in Wiley Inter Science (www.interscience.wiley.com). DOI:10.1002/tee.20244. Hassan, Arif, Shariq (b0040) 2020; 245 T. Yamaguchi, K. Suzuki, P. Hartono, S. Hashimoto. An efficient crack detection method using percolation-based image processing, Proc. of ICIEA2008, 3 (1875-1880) (2008). Yun Wang, Ju Yong Zhang, Jing Xin Liu, Yin Zhang, Zhi Ping Chen, Chun Guang Li, Kai He, Rui Bin Yan, Research on Crack Detection Algorithm of the Concrete Bridge Based on Image Processing, 8thInternational Congress of Information and Communication Technology, ICICT 2019, Procedia Computer Science 154 (2019) 610–616. McCann, Forde (b0060) 2001; 34 Yamaguchi, Suzuki, Hartono, Hashimoto (b0020) 2005 T. Yamaguchi, S. Hashimoto, Automated Crack Detection for Concrete Surface Image Using Percolation Model and Edge Information, 1-4244-0136-4/06 (2006) IEEE. Wang Pand Huang (b0090) 2010 Prasanna, Dana, Gucunski, Basily, La, Salim Lim, Parvardeh (b0100) 2016; 13 Hassan, Arif, Shariq (b0045) 2020 Li, Zhao, Du, Ru, Zhang (b0155) 2017; 78 W. Zhang, Z. Zhang, D. Qi, Y. Liu. Automatic crack detection and classification method for subway tunnel safety monitoring. Sensors, 14(10) (2014) 19307-19328. Amer Hassan, Mohammed Arif and M. Shariq, Effect of Curing Condition on the Mechanical Properties of Fly Ash based Geopolymer Concrete, SN Applied Sciences, Springer Nature, 1:1694, 2019. https://doi.org/10.1007/s42452-019-1774-8. IS 10262, Indian Standard recommended guidelines for concrete mix design. Bureau of Indian Standards, New Delhi 2009. P. Prasanna, K.J. Dana, N. Gucunski, B.B. Basily, H.M. La, R.S. Lim, H. Parvardeh. Automated crack detection on concrete bridges, IEEE Trans. Automat. Sci. Eng. 13(2) (2014) 591-599. 10.1016/j.conbuildmat.2021.123785_b0005 Shan (10.1016/j.conbuildmat.2021.123785_b0010) 2016; 20 Nagajothi (10.1016/j.conbuildmat.2021.123785_b0145) 2021; 19 Liang (10.1016/j.conbuildmat.2021.123785_b0165) 2018; 6 Prasanna (10.1016/j.conbuildmat.2021.123785_b0100) 2016; 13 10.1016/j.conbuildmat.2021.123785_b0105 Wang Pand Huang (10.1016/j.conbuildmat.2021.123785_b0090) 2010 Hassan (10.1016/j.conbuildmat.2021.123785_b0050) 2020 Nagajothi (10.1016/j.conbuildmat.2021.123785_b0140) 2020; 12 Li (10.1016/j.conbuildmat.2021.123785_b0155) 2017; 78 Kim (10.1016/j.conbuildmat.2021.123785_b0160) 2019; 18 Nagajothi (10.1016/j.conbuildmat.2021.123785_b0125) 2020; 27 10.1016/j.conbuildmat.2021.123785_b0170 Abdel-Qader (10.1016/j.conbuildmat.2021.123785_b0095) 2006; 37 10.1016/j.conbuildmat.2021.123785_b0150 10.1016/j.conbuildmat.2021.123785_b0030 10.1016/j.conbuildmat.2021.123785_b0075 10.1016/j.conbuildmat.2021.123785_b0130 Abdel-Qader (10.1016/j.conbuildmat.2021.123785_b0070) 2003; 17 McCann (10.1016/j.conbuildmat.2021.123785_b0060) 2001; 34 Nagajothi (10.1016/j.conbuildmat.2021.123785_b0135) 2020; 40 10.1016/j.conbuildmat.2021.123785_b0035 10.1016/j.conbuildmat.2021.123785_b0015 10.1016/j.conbuildmat.2021.123785_b0115 Xie (10.1016/j.conbuildmat.2021.123785_b0175) 2013; 10 Yamaguchi (10.1016/j.conbuildmat.2021.123785_b0020) 2005 Nagajothi (10.1016/j.conbuildmat.2021.123785_b0120) 2018; 20180019 Vu Dunga (10.1016/j.conbuildmat.2021.123785_b0110) 2019; 99 10.1016/j.conbuildmat.2021.123785_b0080 (10.1016/j.conbuildmat.2021.123785_b0055) 2020; 35 10.1016/j.conbuildmat.2021.123785_b0085 Hassan (10.1016/j.conbuildmat.2021.123785_b0045) 2020 10.1016/j.conbuildmat.2021.123785_b0065 Pavalan (10.1016/j.conbuildmat.2021.123785_b0180) 2019; 5 10.1016/j.conbuildmat.2021.123785_b0025 Hassan (10.1016/j.conbuildmat.2021.123785_b0040) 2020; 245 |
| References_xml | – reference: Yun Wang, Ju Yong Zhang, Jing Xin Liu, Yin Zhang, Zhi Ping Chen, Chun Guang Li, Kai He, Rui Bin Yan, Research on Crack Detection Algorithm of the Concrete Bridge Based on Image Processing, 8thInternational Congress of Information and Communication Technology, ICICT 2019, Procedia Computer Science 154 (2019) 610–616. – reference: Amer Hassan, Mohammed Arif, M. Shariq, Mechanical behaviour and microstructural investigation of geopolymer concrete after exposure to elevated temperatures, Arabian J. Sci. Eng., Springer, 45, (2020), 3843–3861. https://doi.org/10.1007/s13369-019-04269-9. – reference: John Canny, A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8 (6) NOVEMBER 1986. – reference: T. Yamaguchi, S. Hashimoto, Automated Crack Detection for Concrete Surface Image Using Percolation Model and Edge Information, 1-4244-0136-4/06 (2006) IEEE. – volume: 40 start-page: 583 year: 2020 end-page: 590 ident: b0135 article-title: Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete publication-title: J. Polym. Eng. – start-page: 291 year: 2005 end-page: 296 ident: b0020 article-title: Percolation approach to image-based crack detection publication-title: Proceedings of the 7th international conference on Quality Control by Artificial Vision – year: 2010 ident: b0090 article-title: Comparison Analysis on Present Image-based Crack Detection Methods in Concrete Structures publication-title: 3 – reference: H. Nakamura, R. Sato. K. Kawamura, A. Miyamoto. Proposal of a crack pattern extraction method from digital images using an interactive genetic algorithm. Japan Society of Civil Engineers, 60 (742) 115–131, September 2003 (in Japanese). – volume: 13 start-page: 591 year: 2016 end-page: 599 ident: b0100 publication-title: IEEE Trans. Automat. Sci. Eng. – year: 2020 ident: b0050 article-title: Structural performance of ambient cured reinforced geopolymer concrete beams with steel fibres, structural concrete publication-title: J. Fib. – reference: Tomoyuki Yamaguchi, Shingo Nakamura, RyoSaegusa and Shuji Hashimoto, Image-Based Crack Detection for Real Concrete Surfaces, Transactions on Electrical and Electronic Engineering, IEEJ Trans 2008; 3: 128–135, Published online in Wiley Inter Science (www.interscience.wiley.com). DOI:10.1002/tee.20244. – reference: W. Zhang, Z. Zhang, D. Qi, Y. Liu. Automatic crack detection and classification method for subway tunnel safety monitoring. Sensors, 14(10) (2014) 19307-19328. – volume: 245 year: 2020 ident: b0040 article-title: A review of properties and behaviour of reinforced geopolymer concrete structural elements - A clean technology option for sustainable development publication-title: J. Clean. Prod. – volume: 19 start-page: 216 year: 2021 end-page: 225 ident: b0145 article-title: Shear Prediction of geopolymer concrete beams using Basalt/Glass FRP bars publication-title: J. Adv. Concr. Technol. – year: 2020 ident: b0045 article-title: Age-dependent compressive strength and elastic modulus of fly ash-based geopolymer concrete, structural concrete publication-title: J. Fib. – volume: 12 start-page: 1011 year: 2020 end-page: 1021 ident: b0140 article-title: Influence of aluminosilicate for the prediction of mechanical properties of geopolymer concrete – Artificial Neural Network publication-title: Silicon – reference: W.T. Zhang, J.Y. Dai, H. Xu, B.C. Sun, Y.L. Du. Distributed fiber optic crack sensor for concrete structures.” Proc. of SPIE, Sandiego, USA, 6830 (2007) 68300F, DOI: 10.1117/12.757864. – volume: 17 start-page: 255 year: 2003 end-page: 263 ident: b0070 article-title: Analysis of edge detection techniques for crack identification in bridges publication-title: J. Comput. Civ. Eng. Am. Soc. Civ. Eng. – reference: Amer Hassan, Mohammed Arif, M. Shariq, Use of geopolymer concrete for a cleaner and sustainable environment - A review of mechanical properties and microstructure, J. Clean. Prod. Elsevier, 223, (2019) 704-728. https://doi.org/10.1016/j.jclepro.2019.03.051. – reference: Yusuke Fujita, Yoshihiro Mitani, Yoshihiko Hamamoto, A Method for Crack Detection on a Concrete Structure, 18thInternational Conference on Pattern Recognition (ICPR'06) 0-7695-2521-0/06, 2006. – volume: 37 year: 2006 ident: b0095 article-title: PCA-Based algorithm for unsupervised bridge crack detection publication-title: Adv. Eng. Softw. – volume: 99 start-page: 52 year: 2019 end-page: 58 ident: b0110 article-title: Autonomous concrete crack detection using deep fully convolutional neural network publication-title: Automat. Constr. – volume: 6 start-page: 28993 year: 2018 end-page: 29002 ident: b0165 article-title: An algorithm for concrete crack extraction and identification based on machine vision publication-title: IEEE Access – volume: 34 start-page: 71 year: 2001 end-page: 84 ident: b0060 article-title: Review of NDT methods in the assessment of concrete and masonry structures publication-title: NDT & E Int. – volume: 18 start-page: 725 year: 2019 end-page: 738 ident: b0160 article-title: Crack and non-crack classification from concrete surface images using machine learning publication-title: Struct. Health Monit. – volume: 20180019 start-page: 1 year: 2018 end-page: 11 ident: b0120 article-title: Parametric studies on the workability and compressive strength properties of geopolymer concrete publication-title: J. Mech. Behav. Mater. – volume: 10 year: 2013 ident: b0175 article-title: GPR identification of voids inside concrete based on the support vector machine algorithm publication-title: J. Geophys. Eng. – reference: Amer Hassan, Mohammed Arif and M. Shariq, Effect of Curing Condition on the Mechanical Properties of Fly Ash based Geopolymer Concrete, SN Applied Sciences, Springer Nature, 1:1694, 2019. https://doi.org/10.1007/s42452-019-1774-8. – reference: P. Prasanna, K.J. Dana, N. Gucunski, B.B. Basily, H.M. La, R.S. Lim, H. Parvardeh. Automated crack detection on concrete bridges, IEEE Trans. Automat. Sci. Eng. 13(2) (2014) 591-599. – volume: 20 start-page: 803 year: 2016 end-page: 812 ident: b0010 article-title: A stereovision-based crack width detection approach for concrete surface assessment publication-title: KSCE J. Civ. Eng. – reference: T. Yamaguchi, K. Suzuki, P. Hartono, S. Hashimoto. An efficient crack detection method using percolation-based image processing, Proc. of ICIEA2008, 3 (1875-1880) (2008). – volume: 35 year: 2020 ident: b0055 publication-title: Influence of Microstructure of Geopolymer Concrete on its Mechanical Properties — A Review – reference: IS 10262, Indian Standard recommended guidelines for concrete mix design. Bureau of Indian Standards, New Delhi 2009. – volume: 5 start-page: 414 year: 2019 end-page: 418 ident: b0180 article-title: Thermal expansion coefficient of basalt fibre reinforced polymer bars publication-title: Int. J. Res. Eng. Appl. Manag. – volume: 78 start-page: 51 year: 2017 end-page: 61 ident: b0155 article-title: Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine publication-title: Automat. Constr. – volume: 27 start-page: 67 year: 2020 end-page: 76 ident: b0125 article-title: GGBFS & M-Sand impact on workability and strength properties of fly ash based geopolymer concrete publication-title: Indian J. Eng. Mater. Sci. – volume: 6 start-page: 28993 year: 2018 ident: 10.1016/j.conbuildmat.2021.123785_b0165 article-title: An algorithm for concrete crack extraction and identification based on machine vision publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2844100 – ident: 10.1016/j.conbuildmat.2021.123785_b0065 doi: 10.1117/12.757864 – volume: 35 year: 2020 ident: 10.1016/j.conbuildmat.2021.123785_b0055 publication-title: Influence of Microstructure of Geopolymer Concrete on its Mechanical Properties — A Review – volume: 17 start-page: 255 issue: 3 year: 2003 ident: 10.1016/j.conbuildmat.2021.123785_b0070 article-title: Analysis of edge detection techniques for crack identification in bridges publication-title: J. Comput. Civ. Eng. Am. Soc. Civ. Eng. doi: 10.1061/(ASCE)0887-3801(2003)17:4(255) – ident: 10.1016/j.conbuildmat.2021.123785_b0015 doi: 10.2208/jscej.2003.742_115 – volume: 20 start-page: 803 issue: 2 year: 2016 ident: 10.1016/j.conbuildmat.2021.123785_b0010 article-title: A stereovision-based crack width detection approach for concrete surface assessment publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-015-0461-6 – year: 2020 ident: 10.1016/j.conbuildmat.2021.123785_b0045 article-title: Age-dependent compressive strength and elastic modulus of fly ash-based geopolymer concrete, structural concrete publication-title: J. Fib. – volume: 37 year: 2006 ident: 10.1016/j.conbuildmat.2021.123785_b0095 article-title: PCA-Based algorithm for unsupervised bridge crack detection publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2006.06.002 – ident: 10.1016/j.conbuildmat.2021.123785_b0005 doi: 10.1002/tee.20244 – ident: 10.1016/j.conbuildmat.2021.123785_b0025 doi: 10.1007/s42452-019-1774-8 – ident: 10.1016/j.conbuildmat.2021.123785_b0150 doi: 10.1109/TASE.2014.2354314 – volume: 19 start-page: 216 year: 2021 ident: 10.1016/j.conbuildmat.2021.123785_b0145 article-title: Shear Prediction of geopolymer concrete beams using Basalt/Glass FRP bars publication-title: J. Adv. Concr. Technol. doi: 10.3151/jact.19.216 – ident: 10.1016/j.conbuildmat.2021.123785_b0030 doi: 10.1016/j.jclepro.2019.03.051 – ident: 10.1016/j.conbuildmat.2021.123785_b0105 doi: 10.1016/j.procs.2019.06.096 – volume: 27 start-page: 67 year: 2020 ident: 10.1016/j.conbuildmat.2021.123785_b0125 article-title: GGBFS & M-Sand impact on workability and strength properties of fly ash based geopolymer concrete publication-title: Indian J. Eng. Mater. Sci. – volume: 13 start-page: 591 issue: 2 year: 2016 ident: 10.1016/j.conbuildmat.2021.123785_b0100 publication-title: IEEE Trans. Automat. Sci. Eng. doi: 10.1109/TASE.2014.2354314 – start-page: 291 year: 2005 ident: 10.1016/j.conbuildmat.2021.123785_b0020 article-title: Percolation approach to image-based crack detection – volume: 40 start-page: 583 issue: 7 year: 2020 ident: 10.1016/j.conbuildmat.2021.123785_b0135 article-title: Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete publication-title: J. Polym. Eng. doi: 10.1515/polyeng-2020-0036 – ident: 10.1016/j.conbuildmat.2021.123785_b0080 doi: 10.1109/ICIEA.2008.4582845 – volume: 12 start-page: 1011 year: 2020 ident: 10.1016/j.conbuildmat.2021.123785_b0140 article-title: Influence of aluminosilicate for the prediction of mechanical properties of geopolymer concrete – Artificial Neural Network publication-title: Silicon doi: 10.1007/s12633-019-00203-8 – ident: 10.1016/j.conbuildmat.2021.123785_b0085 doi: 10.1109/TPAMI.1986.4767851 – volume: 20180019 start-page: 1 year: 2018 ident: 10.1016/j.conbuildmat.2021.123785_b0120 article-title: Parametric studies on the workability and compressive strength properties of geopolymer concrete publication-title: J. Mech. Behav. Mater. – volume: 18 start-page: 725 issue: 3 year: 2019 ident: 10.1016/j.conbuildmat.2021.123785_b0160 article-title: Crack and non-crack classification from concrete surface images using machine learning publication-title: Struct. Health Monit. doi: 10.1177/1475921718768747 – volume: 10 issue: 3 year: 2013 ident: 10.1016/j.conbuildmat.2021.123785_b0175 article-title: GPR identification of voids inside concrete based on the support vector machine algorithm publication-title: J. Geophys. Eng. doi: 10.1088/1742-2132/10/3/034002 – volume: 34 start-page: 71 issue: 2 year: 2001 ident: 10.1016/j.conbuildmat.2021.123785_b0060 article-title: Review of NDT methods in the assessment of concrete and masonry structures publication-title: NDT & E Int. doi: 10.1016/S0963-8695(00)00032-3 – volume: 5 start-page: 414 issue: 1 year: 2019 ident: 10.1016/j.conbuildmat.2021.123785_b0180 article-title: Thermal expansion coefficient of basalt fibre reinforced polymer bars publication-title: Int. J. Res. Eng. Appl. Manag. – ident: 10.1016/j.conbuildmat.2021.123785_b0130 – ident: 10.1016/j.conbuildmat.2021.123785_b0075 – ident: 10.1016/j.conbuildmat.2021.123785_b0035 doi: 10.1007/s13369-019-04269-9 – year: 2020 ident: 10.1016/j.conbuildmat.2021.123785_b0050 article-title: Structural performance of ambient cured reinforced geopolymer concrete beams with steel fibres, structural concrete publication-title: J. Fib. – year: 2010 ident: 10.1016/j.conbuildmat.2021.123785_b0090 article-title: Comparison Analysis on Present Image-based Crack Detection Methods in Concrete Structures – volume: 78 start-page: 51 year: 2017 ident: 10.1016/j.conbuildmat.2021.123785_b0155 article-title: Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine publication-title: Automat. Constr. doi: 10.1016/j.autcon.2017.01.019 – volume: 99 start-page: 52 year: 2019 ident: 10.1016/j.conbuildmat.2021.123785_b0110 article-title: Autonomous concrete crack detection using deep fully convolutional neural network publication-title: Automat. Constr. doi: 10.1016/j.autcon.2018.11.028 – ident: 10.1016/j.conbuildmat.2021.123785_b0115 doi: 10.1109/ICPR.2006.98 – ident: 10.1016/j.conbuildmat.2021.123785_b0170 doi: 10.3390/s141019307 – volume: 245 year: 2020 ident: 10.1016/j.conbuildmat.2021.123785_b0040 article-title: A review of properties and behaviour of reinforced geopolymer concrete structural elements - A clean technology option for sustainable development publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2019.118762 |
| SSID | ssj0006262 |
| Score | 2.586718 |
| Snippet | •Crack acquisition of experimented geopolymer concrete beams with BFRP & GFRP bars.•Well-equipped image pre-processing python packages used to collect crack... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 123785 |
| SubjectTerms | Classifiers Confusion matrix Geopolymer Machine learning Pre-processing Python |
| Title | Machine learning model for predicting the crack detection and pattern recognition of geopolymer concrete beams |
| URI | https://dx.doi.org/10.1016/j.conbuildmat.2021.123785 |
| Volume | 297 |
| WOSCitedRecordID | wos000692631700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006262 issn: 0950-0618 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBVZOsb6MPbJ2m5Dg70FF0uyYxv6UkbGNlgYrIO8GVu-CkkzJ6QmtH9gv3tXX7a7D9oN9mKCsWQ591g-vr46h5A3WVWFyAp4wDNWBlEkxkHJZBxUqeKsLNMKDzBmE8l0ms5m2efB4LtfC7NbJXWdXl5mm_8aatyHwdZLZ_8i3G2nuAN_Y9Bxi2HH7a0C_8mUR4L3g5hbsxtTTrjZ6s8yjV8hJbeFPB9V0IDzC9eaAUZvU69xcYVFlk_OQZspXH2Dra5TR6bZwKiEwkmde6WDdSdHayBVOs_tEdJie-kdvordwua0229B02JeLBE4i2sZ2clKG97bTPWXfo6Cm6SrXUbcJhu1vY2bad28y21hrps58QmaWPOeXyZ1m19YYkxqM24c87E-y3HX5rqQ9k8PuLbs0Fe0LfNeV7nuKrdd3SF7PImzdEj2Tj9MZh_bZzq-9nGr2miv4x553VUK_mFcv2c6PfZy9pA8cK8d9NTC5REZQP2Y7PfEKJ-Q2gGHeuBQAxyKwKEdcCgChxrg0BY4FIFDHXBoDzh0rWgHHOqBQw1wnpKv7yZnb98Hzo0jkIKzJlBKSJnITI4B4ohBmoAqQxVBKaXSun0FgBDjRAqk1GGBxHIs46rIFCAFj5QQz8iwXtfwnNBCFw4wJlmoswMhpCyMVMKUFBCnFecHJPX_XC6dVL12TFnlN0bwgPC26cbqtdym0YkPT-6IpyWUOULw5uaH_3LOI3K_u1NekCHenvCS3JW7ZnGxfeXw9wNDc7CO |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+model+for+predicting+the+crack+detection+and+pattern+recognition+of+geopolymer+concrete+beams&rft.jtitle=Construction+%26+building+materials&rft.au=Aravind%2C+N&rft.au=Nagajothi%2C+S&rft.au=Elavenil%2C+S&rft.date=2021-08-23&rft.issn=0950-0618&rft.volume=297&rft.spage=123785&rft_id=info:doi/10.1016%2Fj.conbuildmat.2021.123785&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conbuildmat_2021_123785 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon |