Machine learning model for predicting the crack detection and pattern recognition of geopolymer concrete beams

•Crack acquisition of experimented geopolymer concrete beams with BFRP & GFRP bars.•Well-equipped image pre-processing python packages used to collect crack patterns.•Automated quality check using machine learning python packages.•Support Vector Machine (SVM) is used to classify the failure patt...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Construction & building materials Jg. 297; S. 123785
Hauptverfasser: Aravind, N, Nagajothi, S, Elavenil, S
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 23.08.2021
Schlagworte:
ISSN:0950-0618, 1879-0526
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Crack acquisition of experimented geopolymer concrete beams with BFRP & GFRP bars.•Well-equipped image pre-processing python packages used to collect crack patterns.•Automated quality check using machine learning python packages.•Support Vector Machine (SVM) is used to classify the failure patterns.•SVM compared with other five machine learning classifiers using confusion matrix. One of the major challenges in the construction industry is the detection of cracks in concrete structures and identification of failure types of these structures that lead to their degradation. Manual quality checks are prone to human error, and require longer response time and specialist experience and knowledge. Therefore, visualizing the cracks and identifying failures in concrete structures using computer techniques is now a preferred option. The present work focuses on identifying the cracks using image processing and failure pattern recognition technique by employing suitable machine learning algorithms, and validating the techniques using Python programming. For this purpose, M30 grade geopolymer and conventional concrete beams were cast using Basalt Fibre Reinforced Polymer/Glass Fibre Reinforced Polymer and Steel bars. The beams were subjected to four point static bending test by varying the shear span to the effective depth ratio. The experimental images were used for image processing and failure pattern recognition in Python language. Employing six machine learning classifiers, the failures in the structures were classified into three classes namely, flexure, shear, and compression. The machine learning classifiers were also adopted to determine the confusion matrix, accuracy, precision, and recall scores. It was found that among the six classifiers used, the support vector classifier gave the best performance with 100% accuracy in identifying the failure patterns.
AbstractList •Crack acquisition of experimented geopolymer concrete beams with BFRP & GFRP bars.•Well-equipped image pre-processing python packages used to collect crack patterns.•Automated quality check using machine learning python packages.•Support Vector Machine (SVM) is used to classify the failure patterns.•SVM compared with other five machine learning classifiers using confusion matrix. One of the major challenges in the construction industry is the detection of cracks in concrete structures and identification of failure types of these structures that lead to their degradation. Manual quality checks are prone to human error, and require longer response time and specialist experience and knowledge. Therefore, visualizing the cracks and identifying failures in concrete structures using computer techniques is now a preferred option. The present work focuses on identifying the cracks using image processing and failure pattern recognition technique by employing suitable machine learning algorithms, and validating the techniques using Python programming. For this purpose, M30 grade geopolymer and conventional concrete beams were cast using Basalt Fibre Reinforced Polymer/Glass Fibre Reinforced Polymer and Steel bars. The beams were subjected to four point static bending test by varying the shear span to the effective depth ratio. The experimental images were used for image processing and failure pattern recognition in Python language. Employing six machine learning classifiers, the failures in the structures were classified into three classes namely, flexure, shear, and compression. The machine learning classifiers were also adopted to determine the confusion matrix, accuracy, precision, and recall scores. It was found that among the six classifiers used, the support vector classifier gave the best performance with 100% accuracy in identifying the failure patterns.
ArticleNumber 123785
Author Aravind, N
Nagajothi, S
Elavenil, S
Author_xml – sequence: 1
  givenname: N
  surname: Aravind
  fullname: Aravind, N
  email: aravind@nu.edu.om
  organization: Department of Civil and Environmental Environment, National University of Science and Technology, Oman
– sequence: 2
  givenname: S
  surname: Nagajothi
  fullname: Nagajothi, S
  email: naga.jothis2014phd1138@vit.ac.in
  organization: School of Civil Engineering, Vellore Institute of Technology, Chennai Campus, Chennai 127, India
– sequence: 3
  givenname: S
  surname: Elavenil
  fullname: Elavenil, S
  email: elavenil.s@vit.ac.in
  organization: School of Civil Engineering, Vellore Institute of Technology, Chennai Campus, Chennai 127, India
BookMark eNqNkMtKAzEUhoNUsK2-Q3yAGXOZ60qkeIOKG12HzJmTNnUmKZko9O2dsS7EVVcHfvg__vMtyMx5h4Rcc5ZyxoubXQreNZ-2a3sdU8EET7mQZZWfkTmvyjphuShmZM7qnCWs4NUFWQzDjjFWiELMiXvRsLUOaYc6OOs2tPctdtT4QPcBWwtxCuMWKQQNH7TFiGPmHdWupXsdIwZHA4LfOPuTe0M36Pe-O_QY6DgPwtihDep-uCTnRncDXv3eJXl_uH9bPSXr18fn1d06ASl4TIyRACXUUCDmGceqRNMwk2EDYHgmKo0oZVGCzAvBtBhNQN7q2qCsRWakXJLbIxeCH4aARoGNepoXg7ad4kxN-tRO_dGnJn3qqG8k1P8I-2B7HQ4ndVfHLo4vflkMagCLDkado6ioWm9PoHwD1VSYDw
CitedBy_id crossref_primary_10_1007_s40996_024_01469_8
crossref_primary_10_3390_buildings14061711
crossref_primary_10_1007_s11709_025_1192_5
crossref_primary_10_3390_fractalfract5040142
crossref_primary_10_1016_j_conbuildmat_2023_131900
crossref_primary_10_1061_JSENDH_STENG_13396
crossref_primary_10_1002_suco_202201145
crossref_primary_10_1088_2053_1591_adf8c4
crossref_primary_10_1007_s42107_022_00526_9
crossref_primary_10_1038_s41598_023_45276_z
crossref_primary_10_1007_s13349_022_00577_1
crossref_primary_10_3390_buildings14113402
crossref_primary_10_1016_j_cemconcomp_2025_106142
crossref_primary_10_1016_j_cscm_2025_e04900
crossref_primary_10_1016_j_ijdrr_2025_105358
crossref_primary_10_3390_app15136951
crossref_primary_10_1007_s42107_025_01361_4
crossref_primary_10_1016_j_conbuildmat_2023_134129
crossref_primary_10_1016_j_conbuildmat_2022_129054
crossref_primary_10_1016_j_mtcomm_2021_103117
crossref_primary_10_1038_s41524_022_00810_x
crossref_primary_10_1038_s41598_024_51164_x
crossref_primary_10_1007_s44416_025_00011_x
crossref_primary_10_1016_j_conbuildmat_2024_136452
crossref_primary_10_1038_s40494_025_01690_2
crossref_primary_10_1016_j_cscm_2023_e01928
crossref_primary_10_1080_10589759_2024_2334434
crossref_primary_10_1007_s42107_025_01396_7
crossref_primary_10_1016_j_conbuildmat_2022_128158
crossref_primary_10_1371_journal_pone_0301865
crossref_primary_10_1111_mice_12932
crossref_primary_10_1109_ACCESS_2023_3305670
crossref_primary_10_1016_j_autcon_2022_104427
crossref_primary_10_1016_j_measurement_2022_110729
crossref_primary_10_1007_s40997_025_00855_5
crossref_primary_10_3390_ma16031090
crossref_primary_10_1007_s42107_022_00502_3
crossref_primary_10_1007_s13243_024_00147_2
crossref_primary_10_1007_s11668_024_02049_8
crossref_primary_10_1016_j_mtcomm_2024_111047
crossref_primary_10_1016_j_cscm_2025_e05034
crossref_primary_10_1002_suco_202400886
crossref_primary_10_1002_eng2_12676
crossref_primary_10_1016_j_matlet_2021_130867
crossref_primary_10_1007_s41062_024_01583_6
crossref_primary_10_1016_j_engfailanal_2024_108769
crossref_primary_10_1007_s42452_025_07152_5
crossref_primary_10_1007_s12145_024_01511_3
crossref_primary_10_1007_s41024_023_00371_6
crossref_primary_10_3390_su16010011
crossref_primary_10_1002_suco_202200344
crossref_primary_10_1016_j_engappai_2025_110210
crossref_primary_10_1016_j_istruc_2022_02_003
crossref_primary_10_3390_buildings13081934
crossref_primary_10_1016_j_aei_2024_102584
crossref_primary_10_1016_j_conbuildmat_2023_131165
crossref_primary_10_3390_app12157403
crossref_primary_10_1080_23744731_2025_2538381
crossref_primary_10_1007_s12145_024_01574_2
crossref_primary_10_1016_j_mtcomm_2024_111005
crossref_primary_10_1016_j_mtsust_2025_101095
Cites_doi 10.1109/ACCESS.2018.2844100
10.1117/12.757864
10.1061/(ASCE)0887-3801(2003)17:4(255)
10.2208/jscej.2003.742_115
10.1007/s12205-015-0461-6
10.1016/j.advengsoft.2006.06.002
10.1002/tee.20244
10.1007/s42452-019-1774-8
10.1109/TASE.2014.2354314
10.3151/jact.19.216
10.1016/j.jclepro.2019.03.051
10.1016/j.procs.2019.06.096
10.1515/polyeng-2020-0036
10.1109/ICIEA.2008.4582845
10.1007/s12633-019-00203-8
10.1109/TPAMI.1986.4767851
10.1177/1475921718768747
10.1088/1742-2132/10/3/034002
10.1016/S0963-8695(00)00032-3
10.1007/s13369-019-04269-9
10.1016/j.autcon.2017.01.019
10.1016/j.autcon.2018.11.028
10.1109/ICPR.2006.98
10.3390/s141019307
10.1016/j.jclepro.2019.118762
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conbuildmat.2021.123785
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0526
ExternalDocumentID 10_1016_j_conbuildmat_2021_123785
S0950061821015452
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAAKF
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IAO
IEA
IGG
IHE
IHM
IOF
ISM
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N95
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PV9
Q38
ROL
RPZ
RZL
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
XI7
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AHDLI
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BAIFH
BBTPI
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
ITC
R2-
RNS
SET
SEW
SMS
VH1
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c321t-ff3cc7c9c6ee541e87efb0f4ebccf1428aee3367c35620a2016c5da9fe3924f33
ISICitedReferencesCount 61
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000692631700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-0618
IngestDate Tue Nov 18 22:14:44 EST 2025
Sat Nov 29 07:08:35 EST 2025
Fri Feb 23 02:42:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Classifiers
Geopolymer
Confusion matrix
Pre-processing
Machine learning
Python
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-ff3cc7c9c6ee541e87efb0f4ebccf1428aee3367c35620a2016c5da9fe3924f33
ParticipantIDs crossref_citationtrail_10_1016_j_conbuildmat_2021_123785
crossref_primary_10_1016_j_conbuildmat_2021_123785
elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2021_123785
PublicationCentury 2000
PublicationDate 2021-08-23
PublicationDateYYYYMMDD 2021-08-23
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-23
  day: 23
PublicationDecade 2020
PublicationTitle Construction & building materials
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Hassan, Arif, Shariq (b0050) 2020
Nagajothi, Elavenil (b0145) 2021; 19
Liang, Jianchun, Xun (b0165) 2018; 6
Vu Dunga, DucAnh (b0110) 2019; 99
Nagajothi, Elavenil (b0140) 2020; 12
Kim, Ahn, Shin, Sim (b0160) 2019; 18
Yusuke Fujita, Yoshihiro Mitani, Yoshihiko Hamamoto, A Method for Crack Detection on a Concrete Structure, 18thInternational Conference on Pattern Recognition (ICPR'06) 0-7695-2521-0/06, 2006.
Abdel-Qader, Pashaie-Rad, Abudayyeh, Yehia (b0095) 2006; 37
(b0055) 2020; 35
Nagajothi, Elavenil (b0135) 2020; 40
H. Nakamura, R. Sato. K. Kawamura, A. Miyamoto. Proposal of a crack pattern extraction method from digital images using an interactive genetic algorithm. Japan Society of Civil Engineers, 60 (742) 115–131, September 2003 (in Japanese).
Nagajothi, Elavenil (b0120) 2018; 20180019
Amer Hassan, Mohammed Arif, M. Shariq, Use of geopolymer concrete for a cleaner and sustainable environment - A review of mechanical properties and microstructure, J. Clean. Prod. Elsevier, 223, (2019) 704-728. https://doi.org/10.1016/j.jclepro.2019.03.051.
John Canny, A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8 (6) NOVEMBER 1986.
Nagajothi, Elavenil (b0125) 2020; 27
W.T. Zhang, J.Y. Dai, H. Xu, B.C. Sun, Y.L. Du. Distributed fiber optic crack sensor for concrete structures.” Proc. of SPIE, Sandiego, USA, 6830 (2007) 68300F, DOI: 10.1117/12.757864.
Amer Hassan, Mohammed Arif, M. Shariq, Mechanical behaviour and microstructural investigation of geopolymer concrete after exposure to elevated temperatures, Arabian J. Sci. Eng., Springer, 45, (2020), 3843–3861. https://doi.org/10.1007/s13369-019-04269-9.
Shan, Zheng, Jinping (b0010) 2016; 20
Pavalan, Sivagamasundari (b0180) 2019; 5
Abdel-Qader, Abudayyeh, Kelly (b0070) 2003; 17
Xie, Li, Qin, Liu, Nobes (b0175) 2013; 10
Tomoyuki Yamaguchi, Shingo Nakamura, RyoSaegusa and Shuji Hashimoto, Image-Based Crack Detection for Real Concrete Surfaces, Transactions on Electrical and Electronic Engineering, IEEJ Trans 2008; 3: 128–135, Published online in Wiley Inter Science (www.interscience.wiley.com). DOI:10.1002/tee.20244.
Hassan, Arif, Shariq (b0040) 2020; 245
T. Yamaguchi, K. Suzuki, P. Hartono, S. Hashimoto. An efficient crack detection method using percolation-based image processing, Proc. of ICIEA2008, 3 (1875-1880) (2008).
Yun Wang, Ju Yong Zhang, Jing Xin Liu, Yin Zhang, Zhi Ping Chen, Chun Guang Li, Kai He, Rui Bin Yan, Research on Crack Detection Algorithm of the Concrete Bridge Based on Image Processing, 8thInternational Congress of Information and Communication Technology, ICICT 2019, Procedia Computer Science 154 (2019) 610–616.
McCann, Forde (b0060) 2001; 34
Yamaguchi, Suzuki, Hartono, Hashimoto (b0020) 2005
T. Yamaguchi, S. Hashimoto, Automated Crack Detection for Concrete Surface Image Using Percolation Model and Edge Information, 1-4244-0136-4/06 (2006) IEEE.
Wang Pand Huang (b0090) 2010
Prasanna, Dana, Gucunski, Basily, La, Salim Lim, Parvardeh (b0100) 2016; 13
Hassan, Arif, Shariq (b0045) 2020
Li, Zhao, Du, Ru, Zhang (b0155) 2017; 78
W. Zhang, Z. Zhang, D. Qi, Y. Liu. Automatic crack detection and classification method for subway tunnel safety monitoring. Sensors, 14(10) (2014) 19307-19328.
Amer Hassan, Mohammed Arif and M. Shariq, Effect of Curing Condition on the Mechanical Properties of Fly Ash based Geopolymer Concrete, SN Applied Sciences, Springer Nature, 1:1694, 2019. https://doi.org/10.1007/s42452-019-1774-8.
IS 10262, Indian Standard recommended guidelines for concrete mix design. Bureau of Indian Standards, New Delhi 2009.
P. Prasanna, K.J. Dana, N. Gucunski, B.B. Basily, H.M. La, R.S. Lim, H. Parvardeh. Automated crack detection on concrete bridges, IEEE Trans. Automat. Sci. Eng. 13(2) (2014) 591-599.
10.1016/j.conbuildmat.2021.123785_b0005
Shan (10.1016/j.conbuildmat.2021.123785_b0010) 2016; 20
Nagajothi (10.1016/j.conbuildmat.2021.123785_b0145) 2021; 19
Liang (10.1016/j.conbuildmat.2021.123785_b0165) 2018; 6
Prasanna (10.1016/j.conbuildmat.2021.123785_b0100) 2016; 13
10.1016/j.conbuildmat.2021.123785_b0105
Wang Pand Huang (10.1016/j.conbuildmat.2021.123785_b0090) 2010
Hassan (10.1016/j.conbuildmat.2021.123785_b0050) 2020
Nagajothi (10.1016/j.conbuildmat.2021.123785_b0140) 2020; 12
Li (10.1016/j.conbuildmat.2021.123785_b0155) 2017; 78
Kim (10.1016/j.conbuildmat.2021.123785_b0160) 2019; 18
Nagajothi (10.1016/j.conbuildmat.2021.123785_b0125) 2020; 27
10.1016/j.conbuildmat.2021.123785_b0170
Abdel-Qader (10.1016/j.conbuildmat.2021.123785_b0095) 2006; 37
10.1016/j.conbuildmat.2021.123785_b0150
10.1016/j.conbuildmat.2021.123785_b0030
10.1016/j.conbuildmat.2021.123785_b0075
10.1016/j.conbuildmat.2021.123785_b0130
Abdel-Qader (10.1016/j.conbuildmat.2021.123785_b0070) 2003; 17
McCann (10.1016/j.conbuildmat.2021.123785_b0060) 2001; 34
Nagajothi (10.1016/j.conbuildmat.2021.123785_b0135) 2020; 40
10.1016/j.conbuildmat.2021.123785_b0035
10.1016/j.conbuildmat.2021.123785_b0015
10.1016/j.conbuildmat.2021.123785_b0115
Xie (10.1016/j.conbuildmat.2021.123785_b0175) 2013; 10
Yamaguchi (10.1016/j.conbuildmat.2021.123785_b0020) 2005
Nagajothi (10.1016/j.conbuildmat.2021.123785_b0120) 2018; 20180019
Vu Dunga (10.1016/j.conbuildmat.2021.123785_b0110) 2019; 99
10.1016/j.conbuildmat.2021.123785_b0080
(10.1016/j.conbuildmat.2021.123785_b0055) 2020; 35
10.1016/j.conbuildmat.2021.123785_b0085
Hassan (10.1016/j.conbuildmat.2021.123785_b0045) 2020
10.1016/j.conbuildmat.2021.123785_b0065
Pavalan (10.1016/j.conbuildmat.2021.123785_b0180) 2019; 5
10.1016/j.conbuildmat.2021.123785_b0025
Hassan (10.1016/j.conbuildmat.2021.123785_b0040) 2020; 245
References_xml – reference: Yun Wang, Ju Yong Zhang, Jing Xin Liu, Yin Zhang, Zhi Ping Chen, Chun Guang Li, Kai He, Rui Bin Yan, Research on Crack Detection Algorithm of the Concrete Bridge Based on Image Processing, 8thInternational Congress of Information and Communication Technology, ICICT 2019, Procedia Computer Science 154 (2019) 610–616.
– reference: Amer Hassan, Mohammed Arif, M. Shariq, Mechanical behaviour and microstructural investigation of geopolymer concrete after exposure to elevated temperatures, Arabian J. Sci. Eng., Springer, 45, (2020), 3843–3861. https://doi.org/10.1007/s13369-019-04269-9.
– reference: John Canny, A Computational Approach to Edge Detection, IEEE Transactions on Pattern Analysis and Machine Intelligence, PAMI-8 (6) NOVEMBER 1986.
– reference: T. Yamaguchi, S. Hashimoto, Automated Crack Detection for Concrete Surface Image Using Percolation Model and Edge Information, 1-4244-0136-4/06 (2006) IEEE.
– volume: 40
  start-page: 583
  year: 2020
  end-page: 590
  ident: b0135
  article-title: Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete
  publication-title: J. Polym. Eng.
– start-page: 291
  year: 2005
  end-page: 296
  ident: b0020
  article-title: Percolation approach to image-based crack detection
  publication-title: Proceedings of the 7th international conference on Quality Control by Artificial Vision
– year: 2010
  ident: b0090
  article-title: Comparison Analysis on Present Image-based Crack Detection Methods in Concrete Structures
  publication-title: 3
– reference: H. Nakamura, R. Sato. K. Kawamura, A. Miyamoto. Proposal of a crack pattern extraction method from digital images using an interactive genetic algorithm. Japan Society of Civil Engineers, 60 (742) 115–131, September 2003 (in Japanese).
– volume: 13
  start-page: 591
  year: 2016
  end-page: 599
  ident: b0100
  publication-title: IEEE Trans. Automat. Sci. Eng.
– year: 2020
  ident: b0050
  article-title: Structural performance of ambient cured reinforced geopolymer concrete beams with steel fibres, structural concrete
  publication-title: J. Fib.
– reference: Tomoyuki Yamaguchi, Shingo Nakamura, RyoSaegusa and Shuji Hashimoto, Image-Based Crack Detection for Real Concrete Surfaces, Transactions on Electrical and Electronic Engineering, IEEJ Trans 2008; 3: 128–135, Published online in Wiley Inter Science (www.interscience.wiley.com). DOI:10.1002/tee.20244.
– reference: W. Zhang, Z. Zhang, D. Qi, Y. Liu. Automatic crack detection and classification method for subway tunnel safety monitoring. Sensors, 14(10) (2014) 19307-19328.
– volume: 245
  year: 2020
  ident: b0040
  article-title: A review of properties and behaviour of reinforced geopolymer concrete structural elements - A clean technology option for sustainable development
  publication-title: J. Clean. Prod.
– volume: 19
  start-page: 216
  year: 2021
  end-page: 225
  ident: b0145
  article-title: Shear Prediction of geopolymer concrete beams using Basalt/Glass FRP bars
  publication-title: J. Adv. Concr. Technol.
– year: 2020
  ident: b0045
  article-title: Age-dependent compressive strength and elastic modulus of fly ash-based geopolymer concrete, structural concrete
  publication-title: J. Fib.
– volume: 12
  start-page: 1011
  year: 2020
  end-page: 1021
  ident: b0140
  article-title: Influence of aluminosilicate for the prediction of mechanical properties of geopolymer concrete – Artificial Neural Network
  publication-title: Silicon
– reference: W.T. Zhang, J.Y. Dai, H. Xu, B.C. Sun, Y.L. Du. Distributed fiber optic crack sensor for concrete structures.” Proc. of SPIE, Sandiego, USA, 6830 (2007) 68300F, DOI: 10.1117/12.757864.
– volume: 17
  start-page: 255
  year: 2003
  end-page: 263
  ident: b0070
  article-title: Analysis of edge detection techniques for crack identification in bridges
  publication-title: J. Comput. Civ. Eng. Am. Soc. Civ. Eng.
– reference: Amer Hassan, Mohammed Arif, M. Shariq, Use of geopolymer concrete for a cleaner and sustainable environment - A review of mechanical properties and microstructure, J. Clean. Prod. Elsevier, 223, (2019) 704-728. https://doi.org/10.1016/j.jclepro.2019.03.051.
– reference: Yusuke Fujita, Yoshihiro Mitani, Yoshihiko Hamamoto, A Method for Crack Detection on a Concrete Structure, 18thInternational Conference on Pattern Recognition (ICPR'06) 0-7695-2521-0/06, 2006.
– volume: 37
  year: 2006
  ident: b0095
  article-title: PCA-Based algorithm for unsupervised bridge crack detection
  publication-title: Adv. Eng. Softw.
– volume: 99
  start-page: 52
  year: 2019
  end-page: 58
  ident: b0110
  article-title: Autonomous concrete crack detection using deep fully convolutional neural network
  publication-title: Automat. Constr.
– volume: 6
  start-page: 28993
  year: 2018
  end-page: 29002
  ident: b0165
  article-title: An algorithm for concrete crack extraction and identification based on machine vision
  publication-title: IEEE Access
– volume: 34
  start-page: 71
  year: 2001
  end-page: 84
  ident: b0060
  article-title: Review of NDT methods in the assessment of concrete and masonry structures
  publication-title: NDT & E Int.
– volume: 18
  start-page: 725
  year: 2019
  end-page: 738
  ident: b0160
  article-title: Crack and non-crack classification from concrete surface images using machine learning
  publication-title: Struct. Health Monit.
– volume: 20180019
  start-page: 1
  year: 2018
  end-page: 11
  ident: b0120
  article-title: Parametric studies on the workability and compressive strength properties of geopolymer concrete
  publication-title: J. Mech. Behav. Mater.
– volume: 10
  year: 2013
  ident: b0175
  article-title: GPR identification of voids inside concrete based on the support vector machine algorithm
  publication-title: J. Geophys. Eng.
– reference: Amer Hassan, Mohammed Arif and M. Shariq, Effect of Curing Condition on the Mechanical Properties of Fly Ash based Geopolymer Concrete, SN Applied Sciences, Springer Nature, 1:1694, 2019. https://doi.org/10.1007/s42452-019-1774-8.
– reference: P. Prasanna, K.J. Dana, N. Gucunski, B.B. Basily, H.M. La, R.S. Lim, H. Parvardeh. Automated crack detection on concrete bridges, IEEE Trans. Automat. Sci. Eng. 13(2) (2014) 591-599.
– volume: 20
  start-page: 803
  year: 2016
  end-page: 812
  ident: b0010
  article-title: A stereovision-based crack width detection approach for concrete surface assessment
  publication-title: KSCE J. Civ. Eng.
– reference: T. Yamaguchi, K. Suzuki, P. Hartono, S. Hashimoto. An efficient crack detection method using percolation-based image processing, Proc. of ICIEA2008, 3 (1875-1880) (2008).
– volume: 35
  year: 2020
  ident: b0055
  publication-title: Influence of Microstructure of Geopolymer Concrete on its Mechanical Properties — A Review
– reference: IS 10262, Indian Standard recommended guidelines for concrete mix design. Bureau of Indian Standards, New Delhi 2009.
– volume: 5
  start-page: 414
  year: 2019
  end-page: 418
  ident: b0180
  article-title: Thermal expansion coefficient of basalt fibre reinforced polymer bars
  publication-title: Int. J. Res. Eng. Appl. Manag.
– volume: 78
  start-page: 51
  year: 2017
  end-page: 61
  ident: b0155
  article-title: Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine
  publication-title: Automat. Constr.
– volume: 27
  start-page: 67
  year: 2020
  end-page: 76
  ident: b0125
  article-title: GGBFS & M-Sand impact on workability and strength properties of fly ash based geopolymer concrete
  publication-title: Indian J. Eng. Mater. Sci.
– volume: 6
  start-page: 28993
  year: 2018
  ident: 10.1016/j.conbuildmat.2021.123785_b0165
  article-title: An algorithm for concrete crack extraction and identification based on machine vision
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2844100
– ident: 10.1016/j.conbuildmat.2021.123785_b0065
  doi: 10.1117/12.757864
– volume: 35
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.123785_b0055
  publication-title: Influence of Microstructure of Geopolymer Concrete on its Mechanical Properties — A Review
– volume: 17
  start-page: 255
  issue: 3
  year: 2003
  ident: 10.1016/j.conbuildmat.2021.123785_b0070
  article-title: Analysis of edge detection techniques for crack identification in bridges
  publication-title: J. Comput. Civ. Eng. Am. Soc. Civ. Eng.
  doi: 10.1061/(ASCE)0887-3801(2003)17:4(255)
– ident: 10.1016/j.conbuildmat.2021.123785_b0015
  doi: 10.2208/jscej.2003.742_115
– volume: 20
  start-page: 803
  issue: 2
  year: 2016
  ident: 10.1016/j.conbuildmat.2021.123785_b0010
  article-title: A stereovision-based crack width detection approach for concrete surface assessment
  publication-title: KSCE J. Civ. Eng.
  doi: 10.1007/s12205-015-0461-6
– year: 2020
  ident: 10.1016/j.conbuildmat.2021.123785_b0045
  article-title: Age-dependent compressive strength and elastic modulus of fly ash-based geopolymer concrete, structural concrete
  publication-title: J. Fib.
– volume: 37
  year: 2006
  ident: 10.1016/j.conbuildmat.2021.123785_b0095
  article-title: PCA-Based algorithm for unsupervised bridge crack detection
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2006.06.002
– ident: 10.1016/j.conbuildmat.2021.123785_b0005
  doi: 10.1002/tee.20244
– ident: 10.1016/j.conbuildmat.2021.123785_b0025
  doi: 10.1007/s42452-019-1774-8
– ident: 10.1016/j.conbuildmat.2021.123785_b0150
  doi: 10.1109/TASE.2014.2354314
– volume: 19
  start-page: 216
  year: 2021
  ident: 10.1016/j.conbuildmat.2021.123785_b0145
  article-title: Shear Prediction of geopolymer concrete beams using Basalt/Glass FRP bars
  publication-title: J. Adv. Concr. Technol.
  doi: 10.3151/jact.19.216
– ident: 10.1016/j.conbuildmat.2021.123785_b0030
  doi: 10.1016/j.jclepro.2019.03.051
– ident: 10.1016/j.conbuildmat.2021.123785_b0105
  doi: 10.1016/j.procs.2019.06.096
– volume: 27
  start-page: 67
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.123785_b0125
  article-title: GGBFS & M-Sand impact on workability and strength properties of fly ash based geopolymer concrete
  publication-title: Indian J. Eng. Mater. Sci.
– volume: 13
  start-page: 591
  issue: 2
  year: 2016
  ident: 10.1016/j.conbuildmat.2021.123785_b0100
  publication-title: IEEE Trans. Automat. Sci. Eng.
  doi: 10.1109/TASE.2014.2354314
– start-page: 291
  year: 2005
  ident: 10.1016/j.conbuildmat.2021.123785_b0020
  article-title: Percolation approach to image-based crack detection
– volume: 40
  start-page: 583
  issue: 7
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.123785_b0135
  article-title: Experimental investigations on compressive, impact and prediction of stress-strain of fly ash-geopolymer and portland cement concrete
  publication-title: J. Polym. Eng.
  doi: 10.1515/polyeng-2020-0036
– ident: 10.1016/j.conbuildmat.2021.123785_b0080
  doi: 10.1109/ICIEA.2008.4582845
– volume: 12
  start-page: 1011
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.123785_b0140
  article-title: Influence of aluminosilicate for the prediction of mechanical properties of geopolymer concrete – Artificial Neural Network
  publication-title: Silicon
  doi: 10.1007/s12633-019-00203-8
– ident: 10.1016/j.conbuildmat.2021.123785_b0085
  doi: 10.1109/TPAMI.1986.4767851
– volume: 20180019
  start-page: 1
  year: 2018
  ident: 10.1016/j.conbuildmat.2021.123785_b0120
  article-title: Parametric studies on the workability and compressive strength properties of geopolymer concrete
  publication-title: J. Mech. Behav. Mater.
– volume: 18
  start-page: 725
  issue: 3
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.123785_b0160
  article-title: Crack and non-crack classification from concrete surface images using machine learning
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921718768747
– volume: 10
  issue: 3
  year: 2013
  ident: 10.1016/j.conbuildmat.2021.123785_b0175
  article-title: GPR identification of voids inside concrete based on the support vector machine algorithm
  publication-title: J. Geophys. Eng.
  doi: 10.1088/1742-2132/10/3/034002
– volume: 34
  start-page: 71
  issue: 2
  year: 2001
  ident: 10.1016/j.conbuildmat.2021.123785_b0060
  article-title: Review of NDT methods in the assessment of concrete and masonry structures
  publication-title: NDT & E Int.
  doi: 10.1016/S0963-8695(00)00032-3
– volume: 5
  start-page: 414
  issue: 1
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.123785_b0180
  article-title: Thermal expansion coefficient of basalt fibre reinforced polymer bars
  publication-title: Int. J. Res. Eng. Appl. Manag.
– ident: 10.1016/j.conbuildmat.2021.123785_b0130
– ident: 10.1016/j.conbuildmat.2021.123785_b0075
– ident: 10.1016/j.conbuildmat.2021.123785_b0035
  doi: 10.1007/s13369-019-04269-9
– year: 2020
  ident: 10.1016/j.conbuildmat.2021.123785_b0050
  article-title: Structural performance of ambient cured reinforced geopolymer concrete beams with steel fibres, structural concrete
  publication-title: J. Fib.
– year: 2010
  ident: 10.1016/j.conbuildmat.2021.123785_b0090
  article-title: Comparison Analysis on Present Image-based Crack Detection Methods in Concrete Structures
– volume: 78
  start-page: 51
  year: 2017
  ident: 10.1016/j.conbuildmat.2021.123785_b0155
  article-title: Recognition and evaluation of bridge cracks with modified active contour model and greedy search-based support vector machine
  publication-title: Automat. Constr.
  doi: 10.1016/j.autcon.2017.01.019
– volume: 99
  start-page: 52
  year: 2019
  ident: 10.1016/j.conbuildmat.2021.123785_b0110
  article-title: Autonomous concrete crack detection using deep fully convolutional neural network
  publication-title: Automat. Constr.
  doi: 10.1016/j.autcon.2018.11.028
– ident: 10.1016/j.conbuildmat.2021.123785_b0115
  doi: 10.1109/ICPR.2006.98
– ident: 10.1016/j.conbuildmat.2021.123785_b0170
  doi: 10.3390/s141019307
– volume: 245
  year: 2020
  ident: 10.1016/j.conbuildmat.2021.123785_b0040
  article-title: A review of properties and behaviour of reinforced geopolymer concrete structural elements - A clean technology option for sustainable development
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2019.118762
SSID ssj0006262
Score 2.586718
Snippet •Crack acquisition of experimented geopolymer concrete beams with BFRP & GFRP bars.•Well-equipped image pre-processing python packages used to collect crack...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 123785
SubjectTerms Classifiers
Confusion matrix
Geopolymer
Machine learning
Pre-processing
Python
Title Machine learning model for predicting the crack detection and pattern recognition of geopolymer concrete beams
URI https://dx.doi.org/10.1016/j.conbuildmat.2021.123785
Volume 297
WOSCitedRecordID wos000692631700013&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006262
  issn: 0950-0618
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1da9swFBVZOsb6MPbJ2m5Dg70FF0uyYxv6UkbGNlgYrIO8GVu-CkkzJ6QmtH9gv3tXX7a7D9oN9mKCsWQ591g-vr46h5A3WVWFyAp4wDNWBlEkxkHJZBxUqeKsLNMKDzBmE8l0ms5m2efB4LtfC7NbJXWdXl5mm_8aatyHwdZLZ_8i3G2nuAN_Y9Bxi2HH7a0C_8mUR4L3g5hbsxtTTrjZ6s8yjV8hJbeFPB9V0IDzC9eaAUZvU69xcYVFlk_OQZspXH2Dra5TR6bZwKiEwkmde6WDdSdHayBVOs_tEdJie-kdvordwua0229B02JeLBE4i2sZ2clKG97bTPWXfo6Cm6SrXUbcJhu1vY2bad28y21hrps58QmaWPOeXyZ1m19YYkxqM24c87E-y3HX5rqQ9k8PuLbs0Fe0LfNeV7nuKrdd3SF7PImzdEj2Tj9MZh_bZzq-9nGr2miv4x553VUK_mFcv2c6PfZy9pA8cK8d9NTC5REZQP2Y7PfEKJ-Q2gGHeuBQAxyKwKEdcCgChxrg0BY4FIFDHXBoDzh0rWgHHOqBQw1wnpKv7yZnb98Hzo0jkIKzJlBKSJnITI4B4ohBmoAqQxVBKaXSun0FgBDjRAqk1GGBxHIs46rIFCAFj5QQz8iwXtfwnNBCFw4wJlmoswMhpCyMVMKUFBCnFecHJPX_XC6dVL12TFnlN0bwgPC26cbqtdym0YkPT-6IpyWUOULw5uaH_3LOI3K_u1NekCHenvCS3JW7ZnGxfeXw9wNDc7CO
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+model+for+predicting+the+crack+detection+and+pattern+recognition+of+geopolymer+concrete+beams&rft.jtitle=Construction+%26+building+materials&rft.au=Aravind%2C+N&rft.au=Nagajothi%2C+S&rft.au=Elavenil%2C+S&rft.date=2021-08-23&rft.issn=0950-0618&rft.volume=297&rft.spage=123785&rft_id=info:doi/10.1016%2Fj.conbuildmat.2021.123785&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conbuildmat_2021_123785
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon