Multi-parametric and priority driven particle swarm (MPPPSO) optimized task scheduling approach for improving performance of fog computing system

Fog computing architecture provides real-time support for service distribution in a smart and IoT-based network. Various industries, hospitals, hostels, and smart environments use the same architecture over cloud computing to optimize the performance and reliability of service distribution. Fog comp...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Progress in artificial intelligence Ročník 14; číslo 3; s. 301 - 318
Hlavní autoři: Monika, Sehrawat, Harkesh
Médium: Journal Article
Jazyk:angličtina
Vydáno: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2025
Springer Nature B.V
Témata:
ISSN:2192-6352, 2192-6360
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Fog computing architecture provides real-time support for service distribution in a smart and IoT-based network. Various industries, hospitals, hostels, and smart environments use the same architecture over cloud computing to optimize the performance and reliability of service distribution. Fog computing ensures the handling of geographic distribution, heterogeneous systems, and high-performing computing to achieve the same. But as the load increases over the network, the architecture faces various issues including high processing time, wait time, and task failure in the real environment. In this paper, a load-sensitive and multi-parameter adaptive priority driven swarm model is presented to optimize the performance and reliability of fog computing. The proposed algorithm is implied within the middle layer to optimize the resource allocation at the earlier stage. A dynamic and featured evaluation of fog devices and a parametric mapping of generated tasks are performed to reduce the failure rate and delay in the fog computing environment. Task priority, load, and deadline are the key parameters considered to optimize resource allocation and task scheduling in the real environment. The proposed model is compared against conventional and recent task scheduling methods. These methods include FCFS, SJF, Greedy, Priority-based, Jamil et al., Max–Min, and Aladwani et al. approaches. The experiments are conducted in multiple scenarios with different load and fog devices. The proposed MPPPSO model claimed a significant reduction of 13.38% against FCFS, 15.25% against SJF, 12.88% against Greedy, 9.47% Priority based methods, 8.95% against Jamil et al., 12.81% against Max–Min and 2.31% against Aladwani et al. methods. The results demonstrate that the PSO displays the least effective performance, with a maximum failure rate of 13.18%. The documented failure rates are 12.57% for ACO, 9.46% for ABC, 8.63% for GWO, and 5.67% for WOA algorithms. The proposed MPPPSO algorithm exhibits superior reliability, with a failure rate of 4.23%. The overall results identified a significant improvement in performance and reliability against state-of-art methods.
AbstractList Fog computing architecture provides real-time support for service distribution in a smart and IoT-based network. Various industries, hospitals, hostels, and smart environments use the same architecture over cloud computing to optimize the performance and reliability of service distribution. Fog computing ensures the handling of geographic distribution, heterogeneous systems, and high-performing computing to achieve the same. But as the load increases over the network, the architecture faces various issues including high processing time, wait time, and task failure in the real environment. In this paper, a load-sensitive and multi-parameter adaptive priority driven swarm model is presented to optimize the performance and reliability of fog computing. The proposed algorithm is implied within the middle layer to optimize the resource allocation at the earlier stage. A dynamic and featured evaluation of fog devices and a parametric mapping of generated tasks are performed to reduce the failure rate and delay in the fog computing environment. Task priority, load, and deadline are the key parameters considered to optimize resource allocation and task scheduling in the real environment. The proposed model is compared against conventional and recent task scheduling methods. These methods include FCFS, SJF, Greedy, Priority-based, Jamil et al., Max–Min, and Aladwani et al. approaches. The experiments are conducted in multiple scenarios with different load and fog devices. The proposed MPPPSO model claimed a significant reduction of 13.38% against FCFS, 15.25% against SJF, 12.88% against Greedy, 9.47% Priority based methods, 8.95% against Jamil et al., 12.81% against Max–Min and 2.31% against Aladwani et al. methods. The results demonstrate that the PSO displays the least effective performance, with a maximum failure rate of 13.18%. The documented failure rates are 12.57% for ACO, 9.46% for ABC, 8.63% for GWO, and 5.67% for WOA algorithms. The proposed MPPPSO algorithm exhibits superior reliability, with a failure rate of 4.23%. The overall results identified a significant improvement in performance and reliability against state-of-art methods.
Author Sehrawat, Harkesh
Monika
Author_xml – sequence: 1
  surname: Monika
  fullname: Monika
  email: monikacse1920@gmail.com
  organization: Department of Computer Science & Engineering, UIET, Maharshi Dayanand University
– sequence: 2
  givenname: Harkesh
  surname: Sehrawat
  fullname: Sehrawat, Harkesh
  organization: Department of Computer Science & Engineering, UIET, Maharshi Dayanand University
BookMark eNp9kc1O3DAUha2KSqWUF-jKEpt2Eeq__C0rVFokECO1XVs3zs1gmtip7YBm3oI3xsMgKnXByvY957u-9nlPDpx3SMhHzk45Y_WXyGWtmoKJsmBMVlWxfUMOBW9FUcmKHbzsS_GOHMd4yxgTXDEu1SF5uFrGZIsZAkyYgjUUXE_nYH2waUP7YO_Q0Swna0ak8R7CRD9drVarn9efqZ-TnewWe5og_qHR3GC_jNatKcxz8GBu6OADtVM-3O3KM4ZcmMAZpH7I4poaP81L2olxExNOH8jbAcaIx8_rEfl9_u3X2Y_i8vr7xdnXy8JIwVMxNGVthGryqwCUqqFGZZjs-05VqmN12dZDiyAYF2boQHVt2TUNsr5DVLzv5BE52ffNs_1dMCZ965fg8pVairKtaslZlV3N3mWCjzHgoI1NkKx3KYAdNWd6l4HeZ6BzBvopA73NqPgPzd86Qdi8Dsk9FLPZrTH8m-oV6hFouZ-4
CitedBy_id crossref_primary_10_1007_s10462_025_11351_2
Cites_doi 10.1109/TII.2018.2818932
10.1109/ACCESS.2020.2973758
10.1016/j.simpat.2019.101982
10.3390/s19051023
10.1145/3287921.3287984
10.1002/ett.3770
10.1155/2018/2102348
10.1016/j.future.2021.05.026
10.1109/TSC.2020.3028575
10.1109/TII.2018.2851241
10.1109/ICABCD.2019.8851038
10.1007/s00607-021-00935-9
10.3390/s22041555
10.1016/j.procs.2019.12.138
10.1002/ett.3792
10.1142/S021969131941025X
10.1145/3190645.3190699
10.2991/ijndc.k.210111.001
10.1002/cpe.5581
10.3390/app9091730
10.1109/TSC.2021.3079110
10.1016/j.simpat.2021.102336
10.1109/MCC.2017.27
10.1109/TII.2020.3001067
10.1007/s12083-021-01125-2
10.1007/978-3-319-98557-2_19
10.1007/s11227-021-03885-3
10.1177/1550147717742073
10.3390/s22020465
10.1002/dac.4583
10.1145/3513002
10.1016/j.jpdc.2020.04.008
10.3390/math10071100
10.1002/cpe.6432
10.1016/j.future.2018.12.063
ContentType Journal Article
Copyright Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
Springer-Verlag GmbH Germany, part of Springer Nature 2025.
Copyright_xml – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: Springer-Verlag GmbH Germany, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s13748-025-00366-z
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Architecture
EISSN 2192-6360
EndPage 318
ExternalDocumentID 10_1007_s13748_025_00366_z
GroupedDBID 0R~
0VY
203
30V
4.4
406
408
409
96X
AAAVM
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACIWK
ACKNC
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ASPBG
ATHPR
AUKKA
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
BGNMA
BSONS
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
HF~
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I0C
IKXTQ
IWAJR
IXD
J-C
JBSCW
JCJTX
JZLTJ
KOV
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9-
O93
O9J
PT4
RLLFE
ROL
RSV
SCO
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
TSG
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
ZMTXR
AAYXX
CITATION
JQ2
ID FETCH-LOGICAL-c321t-f857c248352aa447a7e4c03ddb464b07597f9ea2012cfba4b95b88e0dbee41db3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001439841900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2192-6352
IngestDate Sat Oct 11 06:56:36 EDT 2025
Tue Nov 18 21:21:25 EST 2025
Sat Nov 29 07:32:13 EST 2025
Thu Aug 28 04:21:15 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Fog computing
Scheduling
Particle swarm optimization
Resource allocation
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-f857c248352aa447a7e4c03ddb464b07597f9ea2012cfba4b95b88e0dbee41db3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3259673106
PQPubID 2044106
PageCount 18
ParticipantIDs proquest_journals_3259673106
crossref_citationtrail_10_1007_s13748_025_00366_z
crossref_primary_10_1007_s13748_025_00366_z
springer_journals_10_1007_s13748_025_00366_z
PublicationCentury 2000
PublicationDate 20250900
2025-09-00
20250901
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle Progress in artificial intelligence
PublicationTitleAbbrev Prog Artif Intell
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References M Abdel-Basset (366_CR36) 2020; 17
MR Alizadeh (366_CR2) 2020; 33
P Hosseinioun (366_CR9) 2022; 33
N Kaur (366_CR18) 2021; 33
L Liu (366_CR25) 2018; 2018
366_CR16
R Madhura (366_CR21) 2021; 103
MLM Peixoto (366_CR23) 2021; 15
H Wadhwa (366_CR12) 2022; 78
BM Nguyen (366_CR1) 2019; 9
S Agarwal (366_CR13) 2016; 8
P Hosseinioun (366_CR32) 2020; 143
B Jamil (366_CR20) 2020; 32
L Yin (366_CR7) 2018; 14
D Tychalas (366_CR19) 2020; 98
S Ghanavati (366_CR15) 2020; 15
P Krivic (366_CR24) 2022; 22
J Wan (366_CR3) 2018; 14
F Alqahtani (366_CR11) 2021; 14
MR Hossain (366_CR30) 2021; 111
R Vijayalakshmi (366_CR22) 2020; 18
M Ghobaei-Arani (366_CR35) 2020; 31
Z Yin (366_CR4) 2022; 22
X-Q Pham (366_CR29) 2017; 13
S Wang (366_CR31) 2020; 8
366_CR28
K Matrouk (366_CR5) 2021; 9
B Jamil (366_CR14) 2022; 54
I Attiya (366_CR33) 2022; 10
366_CR37
T Aladwani (366_CR6) 2019; 163
366_CR10
LF Bittencourt (366_CR17) 2017; 4
M Verma (366_CR27) 2016; 8
MA Elaziz (366_CR34) 2021; 124
J Wang (366_CR8) 2019; 19
J Luo (366_CR26) 2019; 97
References_xml – volume: 14
  start-page: 4548
  issue: 10
  year: 2018
  ident: 366_CR3
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2018.2818932
– volume: 8
  start-page: 32385
  year: 2020
  ident: 366_CR31
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2973758
– volume: 8
  start-page: 48
  issue: 1
  year: 2016
  ident: 366_CR13
  publication-title: Int. J. Inf. Eng. Electron. Bus.
– volume: 98
  year: 2020
  ident: 366_CR19
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2019.101982
– volume: 19
  start-page: 1023
  issue: 5
  year: 2019
  ident: 366_CR8
  publication-title: Sensors
  doi: 10.3390/s19051023
– ident: 366_CR37
  doi: 10.1145/3287921.3287984
– volume: 31
  issue: 2
  year: 2020
  ident: 366_CR35
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.3770
– volume: 2018
  start-page: 2102348
  issue: 1
  year: 2018
  ident: 366_CR25
  publication-title: Wirel. Commun. Mob. Comput.
  doi: 10.1155/2018/2102348
– volume: 124
  start-page: 142
  year: 2021
  ident: 366_CR34
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2021.05.026
– volume: 15
  start-page: 2007
  issue: 4
  year: 2020
  ident: 366_CR15
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2020.3028575
– volume: 14
  start-page: 4712
  issue: 10
  year: 2018
  ident: 366_CR7
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2018.2851241
– ident: 366_CR10
  doi: 10.1109/ICABCD.2019.8851038
– volume: 103
  start-page: 1353
  year: 2021
  ident: 366_CR21
  publication-title: Computing
  doi: 10.1007/s00607-021-00935-9
– volume: 22
  start-page: 1555
  issue: 4
  year: 2022
  ident: 366_CR4
  publication-title: Sensors
  doi: 10.3390/s22041555
– volume: 163
  start-page: 560
  year: 2019
  ident: 366_CR6
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2019.12.138
– volume: 33
  issue: 3
  year: 2022
  ident: 366_CR9
  publication-title: Trans. Emerg. Telecommun. Technol.
  doi: 10.1002/ett.3792
– volume: 18
  start-page: 1941025
  issue: 1
  year: 2020
  ident: 366_CR22
  publication-title: Int. J. Wavelets Multiresolut. Inf. Process.
  doi: 10.1142/S021969131941025X
– ident: 366_CR28
  doi: 10.1145/3190645.3190699
– volume: 9
  start-page: 59
  issue: 1
  year: 2021
  ident: 366_CR5
  publication-title: Int. J. Netw. Distrib. Comput.
  doi: 10.2991/ijndc.k.210111.001
– volume: 32
  issue: 7
  year: 2020
  ident: 366_CR20
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.5581
– volume: 9
  start-page: 1730
  issue: 9
  year: 2019
  ident: 366_CR1
  publication-title: Appl. Sci.
  doi: 10.3390/app9091730
– volume: 15
  start-page: 2824
  issue: 5
  year: 2021
  ident: 366_CR23
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2021.3079110
– volume: 111
  year: 2021
  ident: 366_CR30
  publication-title: Simul. Model. Pract. Theory
  doi: 10.1016/j.simpat.2021.102336
– volume: 4
  start-page: 26
  issue: 2
  year: 2017
  ident: 366_CR17
  publication-title: IEEE Cloud Comput.
  doi: 10.1109/MCC.2017.27
– volume: 17
  start-page: 5068
  issue: 7
  year: 2020
  ident: 366_CR36
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2020.3001067
– volume: 14
  start-page: 1905
  year: 2021
  ident: 366_CR11
  publication-title: Peer-to-Peer Netw. Appl.
  doi: 10.1007/s12083-021-01125-2
– ident: 366_CR16
  doi: 10.1007/978-3-319-98557-2_19
– volume: 78
  start-page: 667
  issue: 1
  year: 2022
  ident: 366_CR12
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-021-03885-3
– volume: 13
  start-page: 155014771774207
  issue: 11
  year: 2017
  ident: 366_CR29
  publication-title: Int. J. Distrib. Sens. Netw.
  doi: 10.1177/1550147717742073
– volume: 22
  start-page: 465
  issue: 2
  year: 2022
  ident: 366_CR24
  publication-title: Sensors
  doi: 10.3390/s22020465
– volume: 33
  issue: 16
  year: 2020
  ident: 366_CR2
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.4583
– volume: 54
  start-page: 1
  issue: 11s
  year: 2022
  ident: 366_CR14
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3513002
– volume: 143
  start-page: 88
  year: 2020
  ident: 366_CR32
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2020.04.008
– volume: 8
  start-page: 1
  issue: 4
  year: 2016
  ident: 366_CR27
  publication-title: Int. J. Inf. Technol. Comput. Sci.
– volume: 10
  start-page: 1100
  issue: 7
  year: 2022
  ident: 366_CR33
  publication-title: Mathematics
  doi: 10.3390/math10071100
– volume: 33
  issue: 21
  year: 2021
  ident: 366_CR18
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.6432
– volume: 97
  start-page: 50
  year: 2019
  ident: 366_CR26
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2018.12.063
SSID ssj0002140134
Score 2.309097
Snippet Fog computing architecture provides real-time support for service distribution in a smart and IoT-based network. Various industries, hospitals, hostels, and...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 301
SubjectTerms Algorithms
Architecture
Artificial Intelligence
Cloud computing
Computational Intelligence
Computer architecture
Computer Imaging
Computer Science
Control
Data Mining and Knowledge Discovery
Deadlines
Edge computing
Failure
Failure rates
Geographical distribution
Hostels
Mechatronics
Methods
Natural Language Processing (NLP)
Parameter sensitivity
Particle swarm optimization
Pattern Recognition and Graphics
Real time
Regular Paper
Reliability
Resource allocation
Robotics
Scheduling
Smart houses
Task scheduling
Vision
Title Multi-parametric and priority driven particle swarm (MPPPSO) optimized task scheduling approach for improving performance of fog computing system
URI https://link.springer.com/article/10.1007/s13748-025-00366-z
https://www.proquest.com/docview/3259673106
Volume 14
WOSCitedRecordID wos001439841900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLink
  customDbUrl:
  eissn: 2192-6360
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002140134
  issn: 2192-6352
  databaseCode: RSV
  dateStart: 20120401
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcODCjiib5sABBJYax62TI0JUXICKTb1F3oIq6KImgNS_4I8ZuwkRCJDgbMex7LHn2eN5j5D9oCFDkbImDZT1YcaAKsMZNQjutWIikkJ7sQlxeRl1u3GnSArLytfuZUjS79RVsptjSqFOftWRqLToZJbMobuLnGDD9c39x80K82cGF07G1cgoelRWZMt838xnj1TBzC-RUe9w2kv_6-oyWSwAJpxMLWKFzNjBKlkqxRugWMtr5M2n3lJH_d13qloa5MAA_mfo5OzAjN02CKPCsiB7leM-HFx0Op2bq0MY4k7T702sgVxmj4BHZHRZLrMdSpJyQDQMvfLKAkZVggIMUyx8AO375AqndNLr5K59dnt6Tgt9BqpDFuQ0jZpCM-4wnJScCyks143QGMVbXCEWiUUaW4kQg-lUSa7ipooi2zDKWh4YFW6Q2mA4sJsEBOI0a4IYS0LOLIIIRGKxIwJKZYgQrk6Cco4SXZCXOw2Np6SiXXZjnuCYJ37Mk0mdHH18M5pSd_xae6ec-qRYxlkS4uGwJRABt-rkuJzqqvjn1rb-Vn2bLDBvLe7t2g6p5eNnu0vm9Uvey8Z73rzfAUbs9x4
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xkuBSyktsC2UOHFoVSxvHu06OCIGogGVVaMUt8itoBfvQZluk_Rf84469CVGrggTncRzLM_Z89ni-AdiPmiqWOW-xSLsQZoyYtoIzS-DeaC4TJU0oNiE7neTmJu2WSWFF9dq9CkmGnbpOdvNMKcyXX_UkKm02nYdFQR7LM-Z_v_r5dLPCw5nBh5NpNXJGHpWX2TL_7-Zvj1TDzH8io8HhnKy-bajv4V0JMPFwZhFrMOcG67BaFW_Aci1vwGNIvWWe-rvvq2oZVAOL9J-hL2eHduy3QRyVloXFgxr38fNFt9u9uvyCQ9pp-r2pszhRxR3SEZlcls9sx4qkHAkNY6-6ssBRnaCAw5yEt2jCmLxwRie9CT9Ojq-PTllZn4GZmEcTlictabjwGE4pIaSSTphmbK0WbaEJi6QyT50iiMFNrpXQaUsniWta7ZyIrI63YGEwHLhtQEk4zdkoJUksuCMQQUgs9URAuYoJwjUgqnSUmZK83NfQuM9q2mU_5xnNeRbmPJs24OvTN6MZdceLrXcq1WflMi6ymA6HbUkIuN2Ag0rVtfj53j68rvkeLJ9eX5xn5986Zx9hhQfL8e_YdmBhMv7ldmHJ_J70ivGnYOp_AONQ-gI
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BghAXlteKwgJz4AACaxvHrZPjapcKBJRIC2hvkV9BFTSt2gBS_wX_eGfcZAMIkBDncRzLHnu-8Xi-AXiUDE2qKzkSiQ0xzJgI65UUnsC9s1JnRrtYbEJPp9npaV78kMUfX7t3IcltTgOzNNXNwdJXB33iG7OmCC7FyoQqY7G5CJcUP6Rnf_3kw_kti4z-A4eWaWdKQdZVtpkzv-_mZ-vUQ85foqTR-Ex2_3_Y1-FaCzzxcKspN-BCqG_CblfUAds9fgu-x5RcwZTgc6625dDUHumfCy5zh37FxyMuW43D9TezmuPjN0VRnLx9ggs6geazTfDYmPUnJNeZTBlnvGNHXo6EknHWXWXgsk9cwEVFwo_o4phYuKWZvg3vJ8_fHb0Qbd0G4VKZNKLKRtpJxdjOGKW00UG5Yeq9VWNlCaPkusqDIeghXWWNsvnIZlkYehuCSrxN92CnXtThDqAm_BZ8kpMkVTIQuCCEljNBUGVSgnYDSLr1Kl1Las61NT6XPR0zz3lJc17GOS83A3h6_s1yS-nx19b7nRqU7fZelyk5jWNNyHg8gGfdsvfiP_d299-aP4QrxfGkfP1y-uoeXJVRcfh52z7sNKsv4T5cdl-b2Xr1IGr9GaOUAvU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-parametric+and+priority+driven+particle+swarm+%28MPPPSO%29+optimized+task+scheduling+approach+for+improving+performance+of+fog+computing+system&rft.jtitle=Progress+in+artificial+intelligence&rft.au=Monika&rft.au=Sehrawat%2C+Harkesh&rft.date=2025-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2192-6352&rft.eissn=2192-6360&rft.volume=14&rft.issue=3&rft.spage=301&rft.epage=318&rft_id=info:doi/10.1007%2Fs13748-025-00366-z&rft.externalDocID=10_1007_s13748_025_00366_z
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-6352&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-6352&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-6352&client=summon