Multi-parametric and priority driven particle swarm (MPPPSO) optimized task scheduling approach for improving performance of fog computing system
Fog computing architecture provides real-time support for service distribution in a smart and IoT-based network. Various industries, hospitals, hostels, and smart environments use the same architecture over cloud computing to optimize the performance and reliability of service distribution. Fog comp...
Uloženo v:
| Vydáno v: | Progress in artificial intelligence Ročník 14; číslo 3; s. 301 - 318 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 2192-6352, 2192-6360 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Fog computing architecture provides real-time support for service distribution in a smart and IoT-based network. Various industries, hospitals, hostels, and smart environments use the same architecture over cloud computing to optimize the performance and reliability of service distribution. Fog computing ensures the handling of geographic distribution, heterogeneous systems, and high-performing computing to achieve the same. But as the load increases over the network, the architecture faces various issues including high processing time, wait time, and task failure in the real environment. In this paper, a load-sensitive and multi-parameter adaptive priority driven swarm model is presented to optimize the performance and reliability of fog computing. The proposed algorithm is implied within the middle layer to optimize the resource allocation at the earlier stage. A dynamic and featured evaluation of fog devices and a parametric mapping of generated tasks are performed to reduce the failure rate and delay in the fog computing environment. Task priority, load, and deadline are the key parameters considered to optimize resource allocation and task scheduling in the real environment. The proposed model is compared against conventional and recent task scheduling methods. These methods include FCFS, SJF, Greedy, Priority-based, Jamil et al., Max–Min, and Aladwani et al. approaches. The experiments are conducted in multiple scenarios with different load and fog devices. The proposed MPPPSO model claimed a significant reduction of 13.38% against FCFS, 15.25% against SJF, 12.88% against Greedy, 9.47% Priority based methods, 8.95% against Jamil et al., 12.81% against Max–Min and 2.31% against Aladwani et al. methods. The results demonstrate that the PSO displays the least effective performance, with a maximum failure rate of 13.18%. The documented failure rates are 12.57% for ACO, 9.46% for ABC, 8.63% for GWO, and 5.67% for WOA algorithms. The proposed MPPPSO algorithm exhibits superior reliability, with a failure rate of 4.23%. The overall results identified a significant improvement in performance and reliability against state-of-art methods. |
|---|---|
| AbstractList | Fog computing architecture provides real-time support for service distribution in a smart and IoT-based network. Various industries, hospitals, hostels, and smart environments use the same architecture over cloud computing to optimize the performance and reliability of service distribution. Fog computing ensures the handling of geographic distribution, heterogeneous systems, and high-performing computing to achieve the same. But as the load increases over the network, the architecture faces various issues including high processing time, wait time, and task failure in the real environment. In this paper, a load-sensitive and multi-parameter adaptive priority driven swarm model is presented to optimize the performance and reliability of fog computing. The proposed algorithm is implied within the middle layer to optimize the resource allocation at the earlier stage. A dynamic and featured evaluation of fog devices and a parametric mapping of generated tasks are performed to reduce the failure rate and delay in the fog computing environment. Task priority, load, and deadline are the key parameters considered to optimize resource allocation and task scheduling in the real environment. The proposed model is compared against conventional and recent task scheduling methods. These methods include FCFS, SJF, Greedy, Priority-based, Jamil et al., Max–Min, and Aladwani et al. approaches. The experiments are conducted in multiple scenarios with different load and fog devices. The proposed MPPPSO model claimed a significant reduction of 13.38% against FCFS, 15.25% against SJF, 12.88% against Greedy, 9.47% Priority based methods, 8.95% against Jamil et al., 12.81% against Max–Min and 2.31% against Aladwani et al. methods. The results demonstrate that the PSO displays the least effective performance, with a maximum failure rate of 13.18%. The documented failure rates are 12.57% for ACO, 9.46% for ABC, 8.63% for GWO, and 5.67% for WOA algorithms. The proposed MPPPSO algorithm exhibits superior reliability, with a failure rate of 4.23%. The overall results identified a significant improvement in performance and reliability against state-of-art methods. |
| Author | Sehrawat, Harkesh Monika |
| Author_xml | – sequence: 1 surname: Monika fullname: Monika email: monikacse1920@gmail.com organization: Department of Computer Science & Engineering, UIET, Maharshi Dayanand University – sequence: 2 givenname: Harkesh surname: Sehrawat fullname: Sehrawat, Harkesh organization: Department of Computer Science & Engineering, UIET, Maharshi Dayanand University |
| BookMark | eNp9kc1O3DAUha2KSqWUF-jKEpt2Eeq__C0rVFokECO1XVs3zs1gmtip7YBm3oI3xsMgKnXByvY957u-9nlPDpx3SMhHzk45Y_WXyGWtmoKJsmBMVlWxfUMOBW9FUcmKHbzsS_GOHMd4yxgTXDEu1SF5uFrGZIsZAkyYgjUUXE_nYH2waUP7YO_Q0Swna0ak8R7CRD9drVarn9efqZ-TnewWe5og_qHR3GC_jNatKcxz8GBu6OADtVM-3O3KM4ZcmMAZpH7I4poaP81L2olxExNOH8jbAcaIx8_rEfl9_u3X2Y_i8vr7xdnXy8JIwVMxNGVthGryqwCUqqFGZZjs-05VqmN12dZDiyAYF2boQHVt2TUNsr5DVLzv5BE52ffNs_1dMCZ965fg8pVairKtaslZlV3N3mWCjzHgoI1NkKx3KYAdNWd6l4HeZ6BzBvopA73NqPgPzd86Qdi8Dsk9FLPZrTH8m-oV6hFouZ-4 |
| CitedBy_id | crossref_primary_10_1007_s10462_025_11351_2 |
| Cites_doi | 10.1109/TII.2018.2818932 10.1109/ACCESS.2020.2973758 10.1016/j.simpat.2019.101982 10.3390/s19051023 10.1145/3287921.3287984 10.1002/ett.3770 10.1155/2018/2102348 10.1016/j.future.2021.05.026 10.1109/TSC.2020.3028575 10.1109/TII.2018.2851241 10.1109/ICABCD.2019.8851038 10.1007/s00607-021-00935-9 10.3390/s22041555 10.1016/j.procs.2019.12.138 10.1002/ett.3792 10.1142/S021969131941025X 10.1145/3190645.3190699 10.2991/ijndc.k.210111.001 10.1002/cpe.5581 10.3390/app9091730 10.1109/TSC.2021.3079110 10.1016/j.simpat.2021.102336 10.1109/MCC.2017.27 10.1109/TII.2020.3001067 10.1007/s12083-021-01125-2 10.1007/978-3-319-98557-2_19 10.1007/s11227-021-03885-3 10.1177/1550147717742073 10.3390/s22020465 10.1002/dac.4583 10.1145/3513002 10.1016/j.jpdc.2020.04.008 10.3390/math10071100 10.1002/cpe.6432 10.1016/j.future.2018.12.063 |
| ContentType | Journal Article |
| Copyright | Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| Copyright_xml | – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s13748-025-00366-z |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Architecture |
| EISSN | 2192-6360 |
| EndPage | 318 |
| ExternalDocumentID | 10_1007_s13748_025_00366_z |
| GroupedDBID | 0R~ 0VY 203 30V 4.4 406 408 409 96X AAAVM AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABTEG ABTHY ABTKH ABTMW ABULA ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACIWK ACKNC ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ASPBG ATHPR AUKKA AVWKF AXYYD AYFIA AYJHY AZFZN BGNMA BSONS CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD HF~ HMJXF HQYDN HRMNR HVGLF HZ~ I0C IKXTQ IWAJR IXD J-C JBSCW JCJTX JZLTJ KOV LLZTM M4Y NPVJJ NQJWS NU0 O9- O93 O9J PT4 RLLFE ROL RSV SCO SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE TSG UG4 UOJIU UTJUX UZXMN VFIZW W48 ZMTXR AAYXX CITATION JQ2 |
| ID | FETCH-LOGICAL-c321t-f857c248352aa447a7e4c03ddb464b07597f9ea2012cfba4b95b88e0dbee41db3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001439841900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2192-6352 |
| IngestDate | Sat Oct 11 06:56:36 EDT 2025 Tue Nov 18 21:21:25 EST 2025 Sat Nov 29 07:32:13 EST 2025 Thu Aug 28 04:21:15 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Fog computing Scheduling Particle swarm optimization Resource allocation |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c321t-f857c248352aa447a7e4c03ddb464b07597f9ea2012cfba4b95b88e0dbee41db3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3259673106 |
| PQPubID | 2044106 |
| PageCount | 18 |
| ParticipantIDs | proquest_journals_3259673106 crossref_citationtrail_10_1007_s13748_025_00366_z crossref_primary_10_1007_s13748_025_00366_z springer_journals_10_1007_s13748_025_00366_z |
| PublicationCentury | 2000 |
| PublicationDate | 20250900 2025-09-00 20250901 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 9 year: 2025 text: 20250900 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | Progress in artificial intelligence |
| PublicationTitleAbbrev | Prog Artif Intell |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | M Abdel-Basset (366_CR36) 2020; 17 MR Alizadeh (366_CR2) 2020; 33 P Hosseinioun (366_CR9) 2022; 33 N Kaur (366_CR18) 2021; 33 L Liu (366_CR25) 2018; 2018 366_CR16 R Madhura (366_CR21) 2021; 103 MLM Peixoto (366_CR23) 2021; 15 H Wadhwa (366_CR12) 2022; 78 BM Nguyen (366_CR1) 2019; 9 S Agarwal (366_CR13) 2016; 8 P Hosseinioun (366_CR32) 2020; 143 B Jamil (366_CR20) 2020; 32 L Yin (366_CR7) 2018; 14 D Tychalas (366_CR19) 2020; 98 S Ghanavati (366_CR15) 2020; 15 P Krivic (366_CR24) 2022; 22 J Wan (366_CR3) 2018; 14 F Alqahtani (366_CR11) 2021; 14 MR Hossain (366_CR30) 2021; 111 R Vijayalakshmi (366_CR22) 2020; 18 M Ghobaei-Arani (366_CR35) 2020; 31 Z Yin (366_CR4) 2022; 22 X-Q Pham (366_CR29) 2017; 13 S Wang (366_CR31) 2020; 8 366_CR28 K Matrouk (366_CR5) 2021; 9 B Jamil (366_CR14) 2022; 54 I Attiya (366_CR33) 2022; 10 366_CR37 T Aladwani (366_CR6) 2019; 163 366_CR10 LF Bittencourt (366_CR17) 2017; 4 M Verma (366_CR27) 2016; 8 MA Elaziz (366_CR34) 2021; 124 J Wang (366_CR8) 2019; 19 J Luo (366_CR26) 2019; 97 |
| References_xml | – volume: 14 start-page: 4548 issue: 10 year: 2018 ident: 366_CR3 publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2018.2818932 – volume: 8 start-page: 32385 year: 2020 ident: 366_CR31 publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2973758 – volume: 8 start-page: 48 issue: 1 year: 2016 ident: 366_CR13 publication-title: Int. J. Inf. Eng. Electron. Bus. – volume: 98 year: 2020 ident: 366_CR19 publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2019.101982 – volume: 19 start-page: 1023 issue: 5 year: 2019 ident: 366_CR8 publication-title: Sensors doi: 10.3390/s19051023 – ident: 366_CR37 doi: 10.1145/3287921.3287984 – volume: 31 issue: 2 year: 2020 ident: 366_CR35 publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.3770 – volume: 2018 start-page: 2102348 issue: 1 year: 2018 ident: 366_CR25 publication-title: Wirel. Commun. Mob. Comput. doi: 10.1155/2018/2102348 – volume: 124 start-page: 142 year: 2021 ident: 366_CR34 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2021.05.026 – volume: 15 start-page: 2007 issue: 4 year: 2020 ident: 366_CR15 publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2020.3028575 – volume: 14 start-page: 4712 issue: 10 year: 2018 ident: 366_CR7 publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2018.2851241 – ident: 366_CR10 doi: 10.1109/ICABCD.2019.8851038 – volume: 103 start-page: 1353 year: 2021 ident: 366_CR21 publication-title: Computing doi: 10.1007/s00607-021-00935-9 – volume: 22 start-page: 1555 issue: 4 year: 2022 ident: 366_CR4 publication-title: Sensors doi: 10.3390/s22041555 – volume: 163 start-page: 560 year: 2019 ident: 366_CR6 publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2019.12.138 – volume: 33 issue: 3 year: 2022 ident: 366_CR9 publication-title: Trans. Emerg. Telecommun. Technol. doi: 10.1002/ett.3792 – volume: 18 start-page: 1941025 issue: 1 year: 2020 ident: 366_CR22 publication-title: Int. J. Wavelets Multiresolut. Inf. Process. doi: 10.1142/S021969131941025X – ident: 366_CR28 doi: 10.1145/3190645.3190699 – volume: 9 start-page: 59 issue: 1 year: 2021 ident: 366_CR5 publication-title: Int. J. Netw. Distrib. Comput. doi: 10.2991/ijndc.k.210111.001 – volume: 32 issue: 7 year: 2020 ident: 366_CR20 publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.5581 – volume: 9 start-page: 1730 issue: 9 year: 2019 ident: 366_CR1 publication-title: Appl. Sci. doi: 10.3390/app9091730 – volume: 15 start-page: 2824 issue: 5 year: 2021 ident: 366_CR23 publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2021.3079110 – volume: 111 year: 2021 ident: 366_CR30 publication-title: Simul. Model. Pract. Theory doi: 10.1016/j.simpat.2021.102336 – volume: 4 start-page: 26 issue: 2 year: 2017 ident: 366_CR17 publication-title: IEEE Cloud Comput. doi: 10.1109/MCC.2017.27 – volume: 17 start-page: 5068 issue: 7 year: 2020 ident: 366_CR36 publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2020.3001067 – volume: 14 start-page: 1905 year: 2021 ident: 366_CR11 publication-title: Peer-to-Peer Netw. Appl. doi: 10.1007/s12083-021-01125-2 – ident: 366_CR16 doi: 10.1007/978-3-319-98557-2_19 – volume: 78 start-page: 667 issue: 1 year: 2022 ident: 366_CR12 publication-title: J. Supercomput. doi: 10.1007/s11227-021-03885-3 – volume: 13 start-page: 155014771774207 issue: 11 year: 2017 ident: 366_CR29 publication-title: Int. J. Distrib. Sens. Netw. doi: 10.1177/1550147717742073 – volume: 22 start-page: 465 issue: 2 year: 2022 ident: 366_CR24 publication-title: Sensors doi: 10.3390/s22020465 – volume: 33 issue: 16 year: 2020 ident: 366_CR2 publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.4583 – volume: 54 start-page: 1 issue: 11s year: 2022 ident: 366_CR14 publication-title: ACM Comput. Surv. doi: 10.1145/3513002 – volume: 143 start-page: 88 year: 2020 ident: 366_CR32 publication-title: J. Parallel Distrib. Comput. doi: 10.1016/j.jpdc.2020.04.008 – volume: 8 start-page: 1 issue: 4 year: 2016 ident: 366_CR27 publication-title: Int. J. Inf. Technol. Comput. Sci. – volume: 10 start-page: 1100 issue: 7 year: 2022 ident: 366_CR33 publication-title: Mathematics doi: 10.3390/math10071100 – volume: 33 issue: 21 year: 2021 ident: 366_CR18 publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.6432 – volume: 97 start-page: 50 year: 2019 ident: 366_CR26 publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2018.12.063 |
| SSID | ssj0002140134 |
| Score | 2.309097 |
| Snippet | Fog computing architecture provides real-time support for service distribution in a smart and IoT-based network. Various industries, hospitals, hostels, and... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 301 |
| SubjectTerms | Algorithms Architecture Artificial Intelligence Cloud computing Computational Intelligence Computer architecture Computer Imaging Computer Science Control Data Mining and Knowledge Discovery Deadlines Edge computing Failure Failure rates Geographical distribution Hostels Mechatronics Methods Natural Language Processing (NLP) Parameter sensitivity Particle swarm optimization Pattern Recognition and Graphics Real time Regular Paper Reliability Resource allocation Robotics Scheduling Smart houses Task scheduling Vision |
| Title | Multi-parametric and priority driven particle swarm (MPPPSO) optimized task scheduling approach for improving performance of fog computing system |
| URI | https://link.springer.com/article/10.1007/s13748-025-00366-z https://www.proquest.com/docview/3259673106 |
| Volume | 14 |
| WOSCitedRecordID | wos001439841900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLink customDbUrl: eissn: 2192-6360 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002140134 issn: 2192-6352 databaseCode: RSV dateStart: 20120401 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3JTsMwELWgcODCjiib5sABBJYax62TI0JUXICKTb1F3oIq6KImgNS_4I8ZuwkRCJDgbMex7LHn2eN5j5D9oCFDkbImDZT1YcaAKsMZNQjutWIikkJ7sQlxeRl1u3GnSArLytfuZUjS79RVsptjSqFOftWRqLToZJbMobuLnGDD9c39x80K82cGF07G1cgoelRWZMt838xnj1TBzC-RUe9w2kv_6-oyWSwAJpxMLWKFzNjBKlkqxRugWMtr5M2n3lJH_d13qloa5MAA_mfo5OzAjN02CKPCsiB7leM-HFx0Op2bq0MY4k7T702sgVxmj4BHZHRZLrMdSpJyQDQMvfLKAkZVggIMUyx8AO375AqndNLr5K59dnt6Tgt9BqpDFuQ0jZpCM-4wnJScCyks143QGMVbXCEWiUUaW4kQg-lUSa7ipooi2zDKWh4YFW6Q2mA4sJsEBOI0a4IYS0LOLIIIRGKxIwJKZYgQrk6Cco4SXZCXOw2Np6SiXXZjnuCYJ37Mk0mdHH18M5pSd_xae6ec-qRYxlkS4uGwJRABt-rkuJzqqvjn1rb-Vn2bLDBvLe7t2g6p5eNnu0vm9Uvey8Z73rzfAUbs9x4 |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xkuBSyktsC2UOHFoVSxvHu06OCIGogGVVaMUt8itoBfvQZluk_Rf84469CVGrggTncRzLM_Z89ni-AdiPmiqWOW-xSLsQZoyYtoIzS-DeaC4TJU0oNiE7neTmJu2WSWFF9dq9CkmGnbpOdvNMKcyXX_UkKm02nYdFQR7LM-Z_v_r5dLPCw5nBh5NpNXJGHpWX2TL_7-Zvj1TDzH8io8HhnKy-bajv4V0JMPFwZhFrMOcG67BaFW_Aci1vwGNIvWWe-rvvq2oZVAOL9J-hL2eHduy3QRyVloXFgxr38fNFt9u9uvyCQ9pp-r2pszhRxR3SEZlcls9sx4qkHAkNY6-6ssBRnaCAw5yEt2jCmLxwRie9CT9Ojq-PTllZn4GZmEcTlictabjwGE4pIaSSTphmbK0WbaEJi6QyT50iiMFNrpXQaUsniWta7ZyIrI63YGEwHLhtQEk4zdkoJUksuCMQQUgs9URAuYoJwjUgqnSUmZK83NfQuM9q2mU_5xnNeRbmPJs24OvTN6MZdceLrXcq1WflMi6ymA6HbUkIuN2Ag0rVtfj53j68rvkeLJ9eX5xn5986Zx9hhQfL8e_YdmBhMv7ldmHJ_J70ivGnYOp_AONQ-gI |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lj9MwEB7BghAXlteKwgJz4AACaxvHrZPjapcKBJRIC2hvkV9BFTSt2gBS_wX_eGfcZAMIkBDncRzLHnu-8Xi-AXiUDE2qKzkSiQ0xzJgI65UUnsC9s1JnRrtYbEJPp9npaV78kMUfX7t3IcltTgOzNNXNwdJXB33iG7OmCC7FyoQqY7G5CJcUP6Rnf_3kw_kti4z-A4eWaWdKQdZVtpkzv-_mZ-vUQ85foqTR-Ex2_3_Y1-FaCzzxcKspN-BCqG_CblfUAds9fgu-x5RcwZTgc6625dDUHumfCy5zh37FxyMuW43D9TezmuPjN0VRnLx9ggs6geazTfDYmPUnJNeZTBlnvGNHXo6EknHWXWXgsk9cwEVFwo_o4phYuKWZvg3vJ8_fHb0Qbd0G4VKZNKLKRtpJxdjOGKW00UG5Yeq9VWNlCaPkusqDIeghXWWNsvnIZlkYehuCSrxN92CnXtThDqAm_BZ8kpMkVTIQuCCEljNBUGVSgnYDSLr1Kl1Las61NT6XPR0zz3lJc17GOS83A3h6_s1yS-nx19b7nRqU7fZelyk5jWNNyHg8gGfdsvfiP_d299-aP4QrxfGkfP1y-uoeXJVRcfh52z7sNKsv4T5cdl-b2Xr1IGr9GaOUAvU |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi-parametric+and+priority+driven+particle+swarm+%28MPPPSO%29+optimized+task+scheduling+approach+for+improving+performance+of+fog+computing+system&rft.jtitle=Progress+in+artificial+intelligence&rft.au=Monika&rft.au=Sehrawat%2C+Harkesh&rft.date=2025-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=2192-6352&rft.eissn=2192-6360&rft.volume=14&rft.issue=3&rft.spage=301&rft.epage=318&rft_id=info:doi/10.1007%2Fs13748-025-00366-z&rft.externalDocID=10_1007_s13748_025_00366_z |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2192-6352&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2192-6352&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2192-6352&client=summon |