Hybrid model generation for superstructure optimization with Generalized Disjunctive Programming

•Novel iterative procedure to generate hybrid models within an optimization framework to solve design problems.•Hybrid models based on first principle and surrogate models (SMs) and represent potential plant process units embedded within a superstructure representation•Iterative procedure: generatio...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computers & chemical engineering Ročník 154; s. 107473
Hlavní autori: Pedrozo, H.A., Rodriguez Reartes, S.B., Bernal, D.E., Vecchietti, A.R., Diaz, M.S., Grossmann, I.E.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.11.2021
Predmet:
ISSN:0098-1354, 1873-4375
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •Novel iterative procedure to generate hybrid models within an optimization framework to solve design problems.•Hybrid models based on first principle and surrogate models (SMs) and represent potential plant process units embedded within a superstructure representation•Iterative procedure: generation of initial SMs with simple algebraic regression models and refinement with adding Gaussian Radial Basis Functions•Three-step refinement: initial SM refinement, domain exploration, and, after solution of the optimal design problem, further exploitation of the domain region•The superstructure optimization problem modeled as a Generalized Disjunctive Programming problem and solved with the Logic-based Outer Approximation algorithm.•Two case studies: methanol synthesis and propylene production plant design via olefin metathesis.•Compared to the optimal design determined with rigorous models, the proposed hybrid models give the same optimal configuration and objective functions with relative differences less than 1.1 %. We propose a novel iterative procedure to generate hybrid models (HMs) within an optimization framework to solve design problems. HMs are based on first principle and surrogate models (SMs) and they may represent potential plant units embedded within a superstructure. We generate initial SMs with simple algebraic regression models and refine them by adding Gaussian Radial Basis Functions in three steps: initial SM refinement, domain exploration, and, after solving the optimal design problem, further domain exploitation, until the convergence criterion is fulfilled. The superstructure optimization problem is formulated with Generalized Disjunctive Programming and solved with the Logic-based Outer Approximation algorithm. We addressed methanol synthesis and propylene plant design problems. Compared to rigorous model-based optimal design, the proposed HMs gave the same configuration, objective function and decision variables with maximum relative differences of 1 and 7 %, respectively. A sensitivity analysis shows that the proposed strategy reduced CPU time by 33 %.
AbstractList •Novel iterative procedure to generate hybrid models within an optimization framework to solve design problems.•Hybrid models based on first principle and surrogate models (SMs) and represent potential plant process units embedded within a superstructure representation•Iterative procedure: generation of initial SMs with simple algebraic regression models and refinement with adding Gaussian Radial Basis Functions•Three-step refinement: initial SM refinement, domain exploration, and, after solution of the optimal design problem, further exploitation of the domain region•The superstructure optimization problem modeled as a Generalized Disjunctive Programming problem and solved with the Logic-based Outer Approximation algorithm.•Two case studies: methanol synthesis and propylene production plant design via olefin metathesis.•Compared to the optimal design determined with rigorous models, the proposed hybrid models give the same optimal configuration and objective functions with relative differences less than 1.1 %. We propose a novel iterative procedure to generate hybrid models (HMs) within an optimization framework to solve design problems. HMs are based on first principle and surrogate models (SMs) and they may represent potential plant units embedded within a superstructure. We generate initial SMs with simple algebraic regression models and refine them by adding Gaussian Radial Basis Functions in three steps: initial SM refinement, domain exploration, and, after solving the optimal design problem, further domain exploitation, until the convergence criterion is fulfilled. The superstructure optimization problem is formulated with Generalized Disjunctive Programming and solved with the Logic-based Outer Approximation algorithm. We addressed methanol synthesis and propylene plant design problems. Compared to rigorous model-based optimal design, the proposed HMs gave the same configuration, objective function and decision variables with maximum relative differences of 1 and 7 %, respectively. A sensitivity analysis shows that the proposed strategy reduced CPU time by 33 %.
ArticleNumber 107473
Author Rodriguez Reartes, S.B.
Grossmann, I.E.
Vecchietti, A.R.
Pedrozo, H.A.
Diaz, M.S.
Bernal, D.E.
Author_xml – sequence: 1
  givenname: H.A.
  surname: Pedrozo
  fullname: Pedrozo, H.A.
  organization: Planta Piloto de Ingeniería Química (PLAPIQUI CONICET-UNS), Camino La Carrindanga km. 7, Bahía Blanca, Argentina
– sequence: 2
  givenname: S.B.
  surname: Rodriguez Reartes
  fullname: Rodriguez Reartes, S.B.
  organization: Planta Piloto de Ingeniería Química (PLAPIQUI CONICET-UNS), Camino La Carrindanga km. 7, Bahía Blanca, Argentina
– sequence: 3
  givenname: D.E.
  surname: Bernal
  fullname: Bernal, D.E.
  organization: Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
– sequence: 4
  givenname: A.R.
  surname: Vecchietti
  fullname: Vecchietti, A.R.
  organization: INGAR – Instituto de Desarrollo y Diseño (CONICET-UTN), Avellaneda 3657, Santa Fe, Argentina
– sequence: 5
  givenname: M.S.
  surname: Diaz
  fullname: Diaz, M.S.
  email: sdiaz@plapiqui.edu.ar
  organization: Planta Piloto de Ingeniería Química (PLAPIQUI CONICET-UNS), Camino La Carrindanga km. 7, Bahía Blanca, Argentina
– sequence: 6
  givenname: I.E.
  surname: Grossmann
  fullname: Grossmann, I.E.
  organization: Department of Chemical Engineering, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213, USA
BookMark eNqNkMtOwzAQRS1UJNrCP4QPSPEjiZMVQgVapEqwgLVx7UnqKIkj2y1qv562YYFYsRppZu6R7pmgUWc7QOiW4BnBJLurZ8q2vdpAC101o5iS454nnF2gMck5ixPG0xEaY1zkMWFpcoUm3tcYY5rk-Rh9LvdrZ3TUWg1NVEEHTgZju6i0LvLbHpwPbqvC1kFk-2BacxjuXyZsosX5vzEH0NGj8fW2U8HsIHpztnKybU1XXaPLUjYebn7mFH08P73Pl_HqdfEyf1jFilESYtBqXRLFWVloTbnKslxrmTBMJVcJkeuSQirLXFNMOEl1yhQvFJFJhksmpWRTVAxc5az3DkrRO9NKtxcEi5MqUYtfqsRJlRhUHbP3f7LKhHPN4KRp_kWYDwQ4VtwZcMIrA50CbRyoILQ1_6B8A-pPk8s
CitedBy_id crossref_primary_10_1016_j_compchemeng_2023_108252
crossref_primary_10_1515_revce_2024_0064
crossref_primary_10_1016_j_compchemeng_2023_108540
crossref_primary_10_1016_j_compchemeng_2024_108709
crossref_primary_10_1016_j_ejor_2025_07_016
crossref_primary_10_1016_j_fuel_2022_126651
Cites_doi 10.1007/s11081-019-09438-1
10.1002/aic.14418
10.1016/0098-1354(95)00219-7
10.1002/aic.12341
10.1016/j.compchemeng.2020.107015
10.1007/s00158-016-1569-0
10.1016/j.compchemeng.2021.107295
10.1016/j.compchemeng.2016.02.013
10.1016/j.compchemeng.2017.02.010
10.1016/j.rser.2016.02.021
10.1016/j.compchemeng.2017.09.017
10.1016/S0098-1354(98)00293-2
10.1016/S1570-7946(10)28189-0
10.1007/s11590-016-1028-2
10.1016/j.compchemeng.2020.106808
10.1016/j.compstruc.2005.02.025
10.3390/pr7110839
10.1016/j.apm.2006.08.008
10.1016/j.compchemeng.2017.12.011
10.1016/S0098-1354(99)00279-3
10.1002/aic.11579
10.1007/s10898-012-9951-y
10.1016/j.compchemeng.2020.106847
10.1016/S0098-1354(00)00582-2
10.1021/ie00023a069
10.1016/j.compchemeng.2014.05.013
10.1007/978-3-642-39572-7_2
ContentType Journal Article
Copyright 2021
Copyright_xml – notice: 2021
DBID AAYXX
CITATION
DOI 10.1016/j.compchemeng.2021.107473
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
ExternalDocumentID 10_1016_j_compchemeng_2021_107473
S0098135421002519
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c321t-edcbf1c73f9dd27c668dda4302a7c41abf2e5af8d201715d53c79c1a460f3aaa3
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000696924300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-1354
IngestDate Tue Nov 18 22:23:51 EST 2025
Sat Nov 29 07:23:04 EST 2025
Fri Feb 23 02:34:39 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords GDP
Superstructure optimization
propylene production
Hybrid models
Logic-based Outer Approximation algorithm
State equipment network
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-edcbf1c73f9dd27c668dda4302a7c41abf2e5af8d201715d53c79c1a460f3aaa3
ParticipantIDs crossref_primary_10_1016_j_compchemeng_2021_107473
crossref_citationtrail_10_1016_j_compchemeng_2021_107473
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2021_107473
PublicationCentury 2000
PublicationDate November 2021
2021-11-00
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: November 2021
PublicationDecade 2020
PublicationTitle Computers & chemical engineering
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Pedrozo, Rodriguez Reartes, Chen, Diaz, Grossmann (bib0023) 2020; 141
Boulamanti, Moya (bib0006) 2017; 68
Fang, Rais-Rohani, Liu, Horstemeyer (bib0013) 2005; 83
Wilson, Sahinidis (bib0033) 2017; 106
Biegler, Grossmann, Westerberg (bib0004) 1997
Boukouvala, Floudas (bib0005) 2017; 11
Henao, Maravelias (bib0016) 2011; 57
Green, D.W., Perry, R.H., 2007. Perry's Chemical, Perrys’ chemical engineers’ handbook. https://doi.org/10.1036/0071511245
Pedrozo, Rodriguez Reartes, Diaz, Vecchietti, Grossmann (bib0024) 2020
Ulrich, Vasudevan (bib0028) 2006; 113
Caballero, Grossmann (bib0007) 2008; 54
Vecchietti, Grossmann (bib0030) 2000; 24
Vecchietti, Grossmann (bib0031) 1999; 23
Bajaj, Iyer, Faruque Hasan (bib0002) 2018; 116
Bhosekar, Ierapetritou (bib0003) 2018
Pedrozo, Reartes, Vecchietti, Diaz, Grossmann (bib0022) 2021; 149
McDonald, Grantham, Tabor, Murphy (bib0020) 2007; 31
Rios, Sahinidis (bib0025) 2013; 56
Henao, Maravelias (bib0017) 2010
Cozad, Sahinidis, Miller (bib0011) 2014; 60
Dowling, Biegler (bib0012) 2015; 72
Ferris, M.C., Jain, R., Dirkse, S., 2011. Gdxmrw: Interfacing gams and matlab. Online http//www.gams.com/dd/docs/tools/gdxmrw.pdf.
Chen, Fu, Chen (bib0010) 2014
Kong, Sen, Henao, Dumesic, Maravelias (bib0019) 2016; 91
Mencarelli, Chen, Pagot, Grossmann (bib0021) 2020; 136
Sahinidis (bib0026) 2019; 20
Yeomans, Grossmann (bib0034) 1999; 23
Kim, Boukouvala (bib0018) 2020
Amouzgar, Strömberg (bib0001) 2017; 55
Türkay, Grossmann (bib0027) 1996; 20
Chen, Johnson, Bernal, Valentin, Kale, Bates, Siirola, Grossmann (bib0008) 2021
Viswanathan, Grossmann (bib0032) 1993; 32
Chen, Grossmann (bib0009) 2019; 7
Cozad (10.1016/j.compchemeng.2021.107473_bib0011) 2014; 60
Wilson (10.1016/j.compchemeng.2021.107473_bib0033) 2017; 106
Sahinidis (10.1016/j.compchemeng.2021.107473_bib0026) 2019; 20
Dowling (10.1016/j.compchemeng.2021.107473_bib0012) 2015; 72
Kim (10.1016/j.compchemeng.2021.107473_bib0018) 2020
Vecchietti (10.1016/j.compchemeng.2021.107473_bib0031) 1999; 23
Bajaj (10.1016/j.compchemeng.2021.107473_bib0002) 2018; 116
Chen (10.1016/j.compchemeng.2021.107473_bib0008) 2021
Biegler (10.1016/j.compchemeng.2021.107473_bib0004) 1997
Pedrozo (10.1016/j.compchemeng.2021.107473_bib0022) 2021; 149
McDonald (10.1016/j.compchemeng.2021.107473_bib0020) 2007; 31
Boukouvala (10.1016/j.compchemeng.2021.107473_bib0005) 2017; 11
Caballero (10.1016/j.compchemeng.2021.107473_bib0007) 2008; 54
Yeomans (10.1016/j.compchemeng.2021.107473_bib0034) 1999; 23
Pedrozo (10.1016/j.compchemeng.2021.107473_bib0023) 2020; 141
Ulrich (10.1016/j.compchemeng.2021.107473_bib0028) 2006; 113
Rios (10.1016/j.compchemeng.2021.107473_bib0025) 2013; 56
Chen (10.1016/j.compchemeng.2021.107473_bib0009) 2019; 7
Chen (10.1016/j.compchemeng.2021.107473_bib0010) 2014
Fang (10.1016/j.compchemeng.2021.107473_bib0013) 2005; 83
Henao (10.1016/j.compchemeng.2021.107473_bib0016) 2011; 57
Kong (10.1016/j.compchemeng.2021.107473_bib0019) 2016; 91
Bhosekar (10.1016/j.compchemeng.2021.107473_bib0003) 2018
Henao (10.1016/j.compchemeng.2021.107473_bib0017) 2010
Vecchietti (10.1016/j.compchemeng.2021.107473_bib0030) 2000; 24
10.1016/j.compchemeng.2021.107473_bib0015
10.1016/j.compchemeng.2021.107473_bib0014
Mencarelli (10.1016/j.compchemeng.2021.107473_bib0021) 2020; 136
Boulamanti (10.1016/j.compchemeng.2021.107473_bib0006) 2017; 68
Türkay (10.1016/j.compchemeng.2021.107473_bib0027) 1996; 20
Viswanathan (10.1016/j.compchemeng.2021.107473_bib0032) 1993; 32
Amouzgar (10.1016/j.compchemeng.2021.107473_bib0001) 2017; 55
Pedrozo (10.1016/j.compchemeng.2021.107473_bib0024) 2020
References_xml – volume: 20
  start-page: 301
  year: 2019
  end-page: 306
  ident: bib0026
  article-title: Mixed-integer nonlinear programming 2018
  publication-title: Optim. Eng.
– volume: 106
  start-page: 785
  year: 2017
  end-page: 795
  ident: bib0033
  article-title: The ALAMO approach to machine learning
  publication-title: Comput. Chem. Eng.
– volume: 72
  start-page: 3
  year: 2015
  end-page: 20
  ident: bib0012
  article-title: A framework for efficient large scale equation-oriented flowsheet optimization
  publication-title: Comput. Chem. Eng.
– year: 2021
  ident: bib0008
  article-title: Pyomo.GDP: an ecosystem for logic based modeling and optimization development
  publication-title: Optim Eng
– reference: Ferris, M.C., Jain, R., Dirkse, S., 2011. Gdxmrw: Interfacing gams and matlab. Online http//www.gams.com/dd/docs/tools/gdxmrw.pdf.
– volume: 91
  start-page: 68
  year: 2016
  end-page: 84
  ident: bib0019
  article-title: A superstructure-based framework for simultaneous process synthesis, heat integration, and utility plant design
  publication-title: Comput. Chem. Eng.
– volume: 31
  start-page: 2095
  year: 2007
  end-page: 2110
  ident: bib0020
  article-title: Global and local optimization using radial basis function response surface models
  publication-title: Appl. Math. Model.
– volume: 60
  start-page: 2211
  year: 2014
  end-page: 2227
  ident: bib0011
  article-title: Learning surrogate models for simulation-based optimization
  publication-title: AIChE J
– volume: 116
  start-page: 306
  year: 2018
  end-page: 321
  ident: bib0002
  article-title: A trust region-based two phase algorithm for constrained black-box and grey-box optimization with infeasible initial point
  publication-title: Comput. Chem. Eng.
– volume: 136
  year: 2020
  ident: bib0021
  article-title: A review on superstructure optimization approaches in process system engineering
  publication-title: Comput. Chem. Eng.
– volume: 149
  year: 2021
  ident: bib0022
  article-title: Optimal Design Of Ethylene And Propylene Coproduction Plants With Generalized Disjunctive Programming And State Equipment Network Models
  publication-title: Comput. Chem. Eng.
– volume: 113
  start-page: 66
  year: 2006
  end-page: 69
  ident: bib0028
  article-title: How to estimate utility costs
  publication-title: Chem. Eng
– year: 2014
  ident: bib0010
  article-title: Recent advances in radial basis function collocation methods
  publication-title: SpringerBriefs in Applied Sciences and Technology
– volume: 54
  start-page: 2633
  year: 2008
  end-page: 2650
  ident: bib0007
  article-title: An algorithm for the use of surrogate models in modular flowsheet optimization
  publication-title: AIChE J
– start-page: 907
  year: 2020
  end-page: 912
  ident: bib0024
  article-title: Coproduction of Ethylene and Propylene based on Ethane and Propane Feedstocks
  publication-title: Computer Aided Chemical Engineering
– volume: 24
  start-page: 2143
  year: 2000
  end-page: 2155
  ident: bib0030
  article-title: Modeling issues and implementation of language for disjunctive programming
  publication-title: Comput. Chem. Eng.
– reference: Green, D.W., Perry, R.H., 2007. Perry's Chemical, Perrys’ chemical engineers’ handbook. https://doi.org/10.1036/0071511245
– volume: 11
  start-page: 895
  year: 2017
  end-page: 913
  ident: bib0005
  article-title: ARGONAUT: AlgoRithms for Global Optimization of coNstrAined grey-box compUTational problems
  publication-title: Optim. Lett.
– volume: 57
  start-page: 1216
  year: 2011
  end-page: 1232
  ident: bib0016
  article-title: Surrogate-based superstructure optimization framework
  publication-title: AIChE J
– volume: 141
  year: 2020
  ident: bib0023
  article-title: Surrogate-model based MILP for the optimal design of ethylene production from shale gas
  publication-title: Comput. Chem. Eng.
– year: 2020
  ident: bib0018
  article-title: Surrogate-Based Optimization for Mixed-Integer Nonlinear Problems
  publication-title: Comput. Chem. Eng.
– volume: 56
  start-page: 1247
  year: 2013
  end-page: 1293
  ident: bib0025
  article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations
  publication-title: J. Glob. Optim.
– volume: 32
  start-page: 2942
  year: 1993
  end-page: 2949
  ident: bib0032
  article-title: Optimal feed locations and number of trays for distillation columns with multiple feeds
  publication-title: Ind. Eng. Chem. Res.
– volume: 7
  start-page: 839
  year: 2019
  ident: bib0009
  article-title: Modern Modeling Paradigms Using Generalized Disjunctive Programming
  publication-title: Processes
– volume: 83
  start-page: 2121
  year: 2005
  end-page: 2136
  ident: bib0013
  article-title: A comparative study of metamodeling methods for multiobjective crashworthiness optimization
  publication-title: Comput. Struct.
– volume: 55
  start-page: 1453
  year: 2017
  end-page: 1469
  ident: bib0001
  article-title: Radial basis functions as surrogate models with a priori bias in comparison with a posteriori bias
  publication-title: Struct. Multidiscip. Optim.
– volume: 20
  start-page: 959
  year: 1996
  end-page: 978
  ident: bib0027
  article-title: Logic-based MINLP algorithms for the optimal synthesis of process networks
  publication-title: Comput. Chem. Eng.
– volume: 23
  start-page: 1135
  year: 1999
  end-page: 1151
  ident: bib0034
  article-title: Nonlinear disjunctive programming models for the synthesis of heat integrated distillation sequences
  publication-title: Comput. Chem. Eng.
– year: 1997
  ident: bib0004
  article-title: Systematic Methods of Chemical Process Design
– start-page: 1129
  year: 2010
  end-page: 1134
  ident: bib0017
  article-title: Surrogate-based process synthesis
  publication-title: Computer Aided Chemical Engineering
– start-page: 250
  year: 2018
  end-page: 267
  ident: bib0003
  article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: A review
  publication-title: Comput. Chem. Eng.
– volume: 68
  start-page: 1205
  year: 2017
  end-page: 1212
  ident: bib0006
  article-title: Production costs of the chemical industry in the EU and other countries: Ammonia, methanol and light olefins
  publication-title: Renew. Sustain. Energy Rev.
– volume: 23
  start-page: 555
  year: 1999
  end-page: 565
  ident: bib0031
  article-title: LOGMIP: A disjunctive 0-1 non-linear optimizer for process system models
  publication-title: Computers and Chemical Engineering
– volume: 20
  start-page: 301
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107473_bib0026
  article-title: Mixed-integer nonlinear programming 2018
  publication-title: Optim. Eng.
  doi: 10.1007/s11081-019-09438-1
– volume: 60
  start-page: 2211
  year: 2014
  ident: 10.1016/j.compchemeng.2021.107473_bib0011
  article-title: Learning surrogate models for simulation-based optimization
  publication-title: AIChE J
  doi: 10.1002/aic.14418
– volume: 20
  start-page: 959
  year: 1996
  ident: 10.1016/j.compchemeng.2021.107473_bib0027
  article-title: Logic-based MINLP algorithms for the optimal synthesis of process networks
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/0098-1354(95)00219-7
– volume: 57
  start-page: 1216
  year: 2011
  ident: 10.1016/j.compchemeng.2021.107473_bib0016
  article-title: Surrogate-based superstructure optimization framework
  publication-title: AIChE J
  doi: 10.1002/aic.12341
– volume: 141
  year: 2020
  ident: 10.1016/j.compchemeng.2021.107473_bib0023
  article-title: Surrogate-model based MILP for the optimal design of ethylene production from shale gas
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.107015
– volume: 55
  start-page: 1453
  year: 2017
  ident: 10.1016/j.compchemeng.2021.107473_bib0001
  article-title: Radial basis functions as surrogate models with a priori bias in comparison with a posteriori bias
  publication-title: Struct. Multidiscip. Optim.
  doi: 10.1007/s00158-016-1569-0
– volume: 149
  year: 2021
  ident: 10.1016/j.compchemeng.2021.107473_bib0022
  article-title: Optimal Design Of Ethylene And Propylene Coproduction Plants With Generalized Disjunctive Programming And State Equipment Network Models
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107295
– ident: 10.1016/j.compchemeng.2021.107473_bib0014
– volume: 91
  start-page: 68
  year: 2016
  ident: 10.1016/j.compchemeng.2021.107473_bib0019
  article-title: A superstructure-based framework for simultaneous process synthesis, heat integration, and utility plant design
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2016.02.013
– volume: 106
  start-page: 785
  year: 2017
  ident: 10.1016/j.compchemeng.2021.107473_bib0033
  article-title: The ALAMO approach to machine learning
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.02.010
– volume: 68
  start-page: 1205
  year: 2017
  ident: 10.1016/j.compchemeng.2021.107473_bib0006
  article-title: Production costs of the chemical industry in the EU and other countries: Ammonia, methanol and light olefins
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2016.02.021
– start-page: 907
  year: 2020
  ident: 10.1016/j.compchemeng.2021.107473_bib0024
  article-title: Coproduction of Ethylene and Propylene based on Ethane and Propane Feedstocks
– start-page: 250
  year: 2018
  ident: 10.1016/j.compchemeng.2021.107473_bib0003
  article-title: Advances in surrogate based modeling, feasibility analysis, and optimization: A review
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.09.017
– year: 1997
  ident: 10.1016/j.compchemeng.2021.107473_bib0004
– volume: 23
  start-page: 555
  issue: 4–5
  year: 1999
  ident: 10.1016/j.compchemeng.2021.107473_bib0031
  article-title: LOGMIP: A disjunctive 0-1 non-linear optimizer for process system models
  publication-title: Computers and Chemical Engineering
  doi: 10.1016/S0098-1354(98)00293-2
– start-page: 1129
  year: 2010
  ident: 10.1016/j.compchemeng.2021.107473_bib0017
  article-title: Surrogate-based process synthesis
  doi: 10.1016/S1570-7946(10)28189-0
– volume: 11
  start-page: 895
  year: 2017
  ident: 10.1016/j.compchemeng.2021.107473_bib0005
  article-title: ARGONAUT: AlgoRithms for Global Optimization of coNstrAined grey-box compUTational problems
  publication-title: Optim. Lett.
  doi: 10.1007/s11590-016-1028-2
– volume: 136
  year: 2020
  ident: 10.1016/j.compchemeng.2021.107473_bib0021
  article-title: A review on superstructure optimization approaches in process system engineering
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106808
– volume: 83
  start-page: 2121
  year: 2005
  ident: 10.1016/j.compchemeng.2021.107473_bib0013
  article-title: A comparative study of metamodeling methods for multiobjective crashworthiness optimization
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2005.02.025
– volume: 7
  start-page: 839
  year: 2019
  ident: 10.1016/j.compchemeng.2021.107473_bib0009
  article-title: Modern Modeling Paradigms Using Generalized Disjunctive Programming
  publication-title: Processes
  doi: 10.3390/pr7110839
– year: 2021
  ident: 10.1016/j.compchemeng.2021.107473_bib0008
  article-title: Pyomo.GDP: an ecosystem for logic based modeling and optimization development
  publication-title: Optim Eng
– ident: 10.1016/j.compchemeng.2021.107473_bib0015
– volume: 31
  start-page: 2095
  issue: 10
  year: 2007
  ident: 10.1016/j.compchemeng.2021.107473_bib0020
  article-title: Global and local optimization using radial basis function response surface models
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2006.08.008
– volume: 113
  start-page: 66
  year: 2006
  ident: 10.1016/j.compchemeng.2021.107473_bib0028
  article-title: How to estimate utility costs
  publication-title: Chem. Eng
– volume: 116
  start-page: 306
  year: 2018
  ident: 10.1016/j.compchemeng.2021.107473_bib0002
  article-title: A trust region-based two phase algorithm for constrained black-box and grey-box optimization with infeasible initial point
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2017.12.011
– volume: 23
  start-page: 1135
  year: 1999
  ident: 10.1016/j.compchemeng.2021.107473_bib0034
  article-title: Nonlinear disjunctive programming models for the synthesis of heat integrated distillation sequences
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(99)00279-3
– volume: 54
  start-page: 2633
  year: 2008
  ident: 10.1016/j.compchemeng.2021.107473_bib0007
  article-title: An algorithm for the use of surrogate models in modular flowsheet optimization
  publication-title: AIChE J
  doi: 10.1002/aic.11579
– volume: 56
  start-page: 1247
  year: 2013
  ident: 10.1016/j.compchemeng.2021.107473_bib0025
  article-title: Derivative-free optimization: a review of algorithms and comparison of software implementations
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9951-y
– year: 2020
  ident: 10.1016/j.compchemeng.2021.107473_bib0018
  article-title: Surrogate-Based Optimization for Mixed-Integer Nonlinear Problems
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2020.106847
– volume: 24
  start-page: 2143
  year: 2000
  ident: 10.1016/j.compchemeng.2021.107473_bib0030
  article-title: Modeling issues and implementation of language for disjunctive programming
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/S0098-1354(00)00582-2
– volume: 32
  start-page: 2942
  year: 1993
  ident: 10.1016/j.compchemeng.2021.107473_bib0032
  article-title: Optimal feed locations and number of trays for distillation columns with multiple feeds
  publication-title: Ind. Eng. Chem. Res.
  doi: 10.1021/ie00023a069
– volume: 72
  start-page: 3
  year: 2015
  ident: 10.1016/j.compchemeng.2021.107473_bib0012
  article-title: A framework for efficient large scale equation-oriented flowsheet optimization
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2014.05.013
– year: 2014
  ident: 10.1016/j.compchemeng.2021.107473_bib0010
  article-title: Recent advances in radial basis function collocation methods
  publication-title: SpringerBriefs in Applied Sciences and Technology
  doi: 10.1007/978-3-642-39572-7_2
SSID ssj0002488
Score 2.4033663
Snippet •Novel iterative procedure to generate hybrid models within an optimization framework to solve design problems.•Hybrid models based on first principle and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 107473
SubjectTerms GDP
Hybrid models
Logic-based Outer Approximation algorithm
propylene production
State equipment network
Superstructure optimization
Title Hybrid model generation for superstructure optimization with Generalized Disjunctive Programming
URI https://dx.doi.org/10.1016/j.compchemeng.2021.107473
Volume 154
WOSCitedRecordID wos000696924300011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AIEXJ
  dateStart: 19950611
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfKhhA8ID7FxoeMxGuixnZqW9pLB0UFoWliA_UtOLYzUm1plXbT6H_Bf8w5zhdfYgjxEkVWXCu-X-_Ol7vfIfTC0KGwcSYCrSQLmFRZACjRgeaMpYZyLUxFmf-OHxyI2UweDgZfm1qYi1NeFOLyUi7_q6hhDITtSmf_Qtztj8IA3IPQ4Qpih-uVBD_94oqwfIsb1yDZll0-4ep86dw9RxnrPhwsQF-c1YWYPiJbs1DnG_BDX-WrOVi9Krfo0KdxnTWGruE2qHtCrCoE6YZ8wHYkh53qNeViU8Vlp-E47L7zmDI_Obcbl81frr3OOgr32wf2K47qSjOGk3b0I0Dic27XPhdhHL4P-9ELEtVlfG1IrSmr6XKYKjUt4WhLPbt0aL1mFpwGjPo2K63q9o_8ZAZ8RGLupLh07w6vHbrVQ5d-6lun_MCyfeTWdEuSqDp2yWtom_BYgurcHr-ZzN625p0wIRoiVjfhBnreJQ3-ZsFfOz09R-b4Drpdn0Dw2CPnLhrY4h661eOlvI8-eQzhCkO4wxAGDOHvMYT7GMIOQ7iHIdzDEO5h6AH68Hpy_HIa1K04Ak1JtA6s0WkWaU4zaQzhejQSxihGh0RxzSKVZsTGKhOGOP6l2MRUc6kjxUbDjCql6EO0VSwK-whhS0c8U8OYpEYyk6UqHVVmJI61VGDydpBo9irRNU-9a5dymjQJifOkt82J2-bEb_MOIu3UpSdrucqkvUYgSe11em8yATT9efruv01_jG52f4snaAukZ5-i6_pina_KZzX2vgEG8LMF
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hybrid+model+generation+for+superstructure+optimization+with+Generalized+Disjunctive+Programming&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Pedrozo%2C+H.A.&rft.au=Rodriguez+Reartes%2C+S.B.&rft.au=Bernal%2C+D.E.&rft.au=Vecchietti%2C+A.R.&rft.date=2021-11-01&rft.pub=Elsevier+Ltd&rft.issn=0098-1354&rft.eissn=1873-4375&rft.volume=154&rft_id=info:doi/10.1016%2Fj.compchemeng.2021.107473&rft.externalDocID=S0098135421002519
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon