Bio-cementation of sand using enzyme-induced calcite precipitation: Mechanical behavior and microstructural analysis
The enzyme-induced calcite precipitation (EICP) has recently gained popularity as a ground improvement technique. Bio-cementation via EICP increases the strength, stiffness, and soil liquefaction resistance by clogging the voids and binding the soil particles with calcium carbonate. The objectives o...
Uloženo v:
| Vydáno v: | Construction & building materials Ročník 417; s. 135360 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
23.02.2024
|
| Témata: | |
| ISSN: | 0950-0618, 1879-0526 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The enzyme-induced calcite precipitation (EICP) has recently gained popularity as a ground improvement technique. Bio-cementation via EICP increases the strength, stiffness, and soil liquefaction resistance by clogging the voids and binding the soil particles with calcium carbonate. The objectives of the study involve assessing the mechanical behavior of the EICP-treated sand by performing monotonic consolidated drained triaxial and undrained cyclic triaxial tests. This study adopted a one-phase EICP cementation solution consisting of 1 M Urea, 0.67 M Calcium chloride dihydrate, and 3 g/l urease enzyme. The monotonic triaxial tests on pure sand and EICP-treated sand with 3,7, and 14 curing days were carried out at 50, 100, and 200 kPa confining pressures, respectively. A noticeable effective cohesion was observed for EICP-treated sand for all curing durations. Undrained cyclic triaxial tests on the EICP-treated specimens with 7 days of curing were performed at an effective confining pressure of 100 kPa. As expected, the number of cycles to liquefaction was higher in the EICP-treated specimen compared to pure sand due to the cementation effect. Finally, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) mapping confirmed the enhanced liquefaction resistance in EICP-treated sand due to calcium carbonate precipitation, leading to particle-to-particle interlocking. Additionally, X-ray Diffraction (XRD) analysis revealed the presence of calcite crystals resulting from the EICP treatment.
•A one-phase EICP treatment for sandy specimen preparation was developed.•A noticeable effective cohesion was observed for EICP-treated sand.•SEM and EDS confirmed the liquefaction resistance enhancement. |
|---|---|
| AbstractList | The enzyme-induced calcite precipitation (EICP) has recently gained popularity as a ground improvement technique. Bio-cementation via EICP increases the strength, stiffness, and soil liquefaction resistance by clogging the voids and binding the soil particles with calcium carbonate. The objectives of the study involve assessing the mechanical behavior of the EICP-treated sand by performing monotonic consolidated drained triaxial and undrained cyclic triaxial tests. This study adopted a one-phase EICP cementation solution consisting of 1 M Urea, 0.67 M Calcium chloride dihydrate, and 3 g/l urease enzyme. The monotonic triaxial tests on pure sand and EICP-treated sand with 3,7, and 14 curing days were carried out at 50, 100, and 200 kPa confining pressures, respectively. A noticeable effective cohesion was observed for EICP-treated sand for all curing durations. Undrained cyclic triaxial tests on the EICP-treated specimens with 7 days of curing were performed at an effective confining pressure of 100 kPa. As expected, the number of cycles to liquefaction was higher in the EICP-treated specimen compared to pure sand due to the cementation effect. Finally, scanning electron microscopy (SEM) and energy dispersive spectroscopy (EDS) mapping confirmed the enhanced liquefaction resistance in EICP-treated sand due to calcium carbonate precipitation, leading to particle-to-particle interlocking. Additionally, X-ray Diffraction (XRD) analysis revealed the presence of calcite crystals resulting from the EICP treatment.
•A one-phase EICP treatment for sandy specimen preparation was developed.•A noticeable effective cohesion was observed for EICP-treated sand.•SEM and EDS confirmed the liquefaction resistance enhancement. |
| ArticleNumber | 135360 |
| Author | Yeh, Fu-Hsuan Gitanjali, Amali Jhuo, Yu-Syuan Ge, Louis |
| Author_xml | – sequence: 1 givenname: Amali surname: Gitanjali fullname: Gitanjali, Amali organization: Department of Civil Engineering, National Taiwan University, Taiwan – sequence: 2 givenname: Yu-Syuan orcidid: 0000-0002-7907-4314 surname: Jhuo fullname: Jhuo, Yu-Syuan organization: Department of Civil Engineering, National Taiwan University, Taiwan – sequence: 3 givenname: Fu-Hsuan surname: Yeh fullname: Yeh, Fu-Hsuan organization: Department of Civil and Construction Engineering, National Taiwan University of Science and Technology, Taiwan – sequence: 4 givenname: Louis orcidid: 0000-0002-1150-3733 surname: Ge fullname: Ge, Louis email: louisge@ntu.edu.tw organization: Department of Civil Engineering, National Taiwan University, Taiwan |
| BookMark | eNqNkMtOwzAQRS0EEm3hH8wHpPiROgkbBBUvqYgNrC3XntCpEqeynUrl60nVLhCrrmZx5x7NnDE5950HQm44m3LG1e16aju_7LFxrUlTwUQ-5XImFTsjI14WVcZmQp2TEatmLGOKl5dkHOOaMaaEEiOSHrHLLLTgk0nYedrVNBrvaB_Rf1PwP7sWMvSut-CoNY3FBHQTwOIGD5U7-g52ZTwOKV3CymyxC3TPaNGGLqbQ29SHITTeNLuI8Ypc1KaJcH2cE_L1_PQ5f80WHy9v84dFZqXgKYMq50bUkJe1lJVyAqqiKOrSQaFYlSsphw1hClHmspw5qLkrl7m0qnRLXlkuJ-T-wN2fEQPU2h5vTsFgoznTe4l6rf9I1HuJ-iBxIFT_CJuArQm7k7rzQxeGF7cIQUeL4AePOOhL2nV4AuUXLYqZZA |
| CitedBy_id | crossref_primary_10_1007_s11274_025_04393_9 crossref_primary_10_1177_02636174241298784 crossref_primary_10_1093_lambio_ovaf022 crossref_primary_10_3390_buildings14040909 crossref_primary_10_1007_s10668_024_05313_x crossref_primary_10_1007_s10706_025_03409_3 crossref_primary_10_1016_j_jece_2024_114824 crossref_primary_10_1016_j_still_2025_106744 crossref_primary_10_1016_j_enggeo_2025_108316 crossref_primary_10_1016_j_conbuildmat_2025_142948 crossref_primary_10_1016_j_envres_2025_121471 crossref_primary_10_1007_s11274_024_04038_3 crossref_primary_10_1016_j_conbuildmat_2024_139659 crossref_primary_10_1016_j_pes_2025_100110 crossref_primary_10_1016_j_conbuildmat_2025_142315 crossref_primary_10_1007_s10706_024_03052_4 |
| Cites_doi | 10.1520/D5311-11 10.1061/(ASCE)GM.1943-5622.0001923 10.1680/grim.13.00052 10.1007/s11440-021-01334-2 10.1061/(ASCE)GT.1943-5606.0001559 10.1061/(ASCE)GT.1943-5606.0002201 10.1061/(ASCE)GT.1943-5606.0002565 10.1680/geot.SIP13.P.022 10.1016/j.sandf.2012.05.011 10.1061/(ASCE)GT.1943-5606.0000959 10.1061/(ASCE)GT.1943-5606.0001973 10.1088/1757-899X/615/1/012042 10.1061/(ASCE)GT.1943-5606.0001379 10.1016/j.conbuildmat.2021.125000 10.1007/s11440-017-0574-9 10.1007/s11440-018-0729-3 10.1016/j.soildyn.2018.01.008 10.1016/j.enggeo.2021.106374 10.1061/(ASCE)1090-0241(2005)131:10(1222) 10.1016/j.ecoleng.2008.12.029 10.1007/s11440-021-01361-z 10.1016/j.sandf.2017.04.003 10.1007/s11803-016-0357-6 10.1016/j.sandf.2019.03.014 10.1007/s12205-021-0300-x 10.1016/j.soildyn.2020.106369 10.1016/j.jrmge.2014.07.006 10.3390/infrastructures5080066 10.1520/D7181-20 10.1061/(ASCE)GT.1943-5606.0002111 10.1038/s41598-018-38361-1 10.1111/j.1365-2672.2011.05065.x 10.1007/s41062-021-00538-5 10.1139/cgj-2018-0191 10.1016/j.sandf.2022.101246 10.1061/(ASCE)1090-0241(2006)132:2(194) 10.1061/(ASCE)GT.1943-5606.0002165 10.1016/j.ijggc.2016.11.018 10.1139/cgj-2018-0007 10.3390/cryst11040370 10.1680/geot.SIP13.P.017 10.1680/geot.SIP13.P.019 10.3390/app10217678 10.1007/s12205-022-1585-0 10.9744/ced.20.2.91-95 10.3390/app9061214 10.1016/j.sandf.2016.04.014 10.1520/D2487-17 10.3390/suschem2010007 10.1007/s11440-020-01043-2 10.1061/(ASCE)GT.1943-5606.0000666 10.1016/j.enggeo.2019.105389 10.1080/01490451.2018.1455766 10.1088/1755-1315/589/1/012017 10.1061/(ASCE)0733-9410(1989)115:10(1373) 10.1016/j.proeng.2016.06.144 10.1061/(ASCE)GT.1943-5606.0001302 10.1061/(ASCE)GT.1943-5606.0002638 10.1016/j.ecoleng.2009.03.026 10.1061/(ASCE)GT.1943-5606.0002480 10.3390/ma15134613 10.1016/j.conbuildmat.2020.121529 10.1007/s11802-022-4821-9 10.1016/j.soildyn.2018.09.027 10.1139/cgj-2018-0573 10.3389/fbioe.2022.900881 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.conbuildmat.2024.135360 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0526 |
| ExternalDocumentID | 10_1016_j_conbuildmat_2024_135360 S0950061824005014 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFRF ABJNI ABMAC ABXRA ABYKQ ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADHUB ADTZH AEBSH AECPX AEFWE AEKER AENEX AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BAAKF BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IAO IEA IGG IHE IHM IOF ISM J1W JJJVA KOM MAGPM MO0 N95 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PV9 Q38 ROL RPZ RZL SDF SDG SES SEW SPC SPCBC SSM SST SSZ T5K UNMZH XI7 ~G- 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AHDLI AI. AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BAIFH BBTPI CITATION EFKBS EJD FEDTE FGOYB G-2 HVGLF HZ~ ITC LY7 M24 M41 R2- RNS SET SMS VH1 WUQ ZMT ~HD |
| ID | FETCH-LOGICAL-c321t-e941a2fe48f3396d2e9777f8de76094633e942a7284385def1d8b43c68db19c13 |
| ISICitedReferencesCount | 21 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001186372200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-0618 |
| IngestDate | Sat Nov 29 07:07:33 EST 2025 Tue Nov 18 22:32:59 EST 2025 Sat Feb 24 15:48:41 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Enzyme-induced calcite precipitation (EICP) Cyclic triaxial test Bio-cementation Liquefaction Calcium carbonate (CaCO3)/Calcite Consolidated drained triaxial test |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c321t-e941a2fe48f3396d2e9777f8de76094633e942a7284385def1d8b43c68db19c13 |
| ORCID | 0000-0002-1150-3733 0000-0002-7907-4314 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_conbuildmat_2024_135360 crossref_primary_10_1016_j_conbuildmat_2024_135360 elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2024_135360 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-02-23 |
| PublicationDateYYYYMMDD | 2024-02-23 |
| PublicationDate_xml | – month: 02 year: 2024 text: 2024-02-23 day: 23 |
| PublicationDecade | 2020 |
| PublicationTitle | Construction & building materials |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wani, Mir, Sheikh (bib2) 2021; 6 He, Fang, Mao, Qi, Zhou, Kou, Xiao (bib27) 2022; 21 Almajed, Khodadadi Tirkolaei, Kavazanjian (bib15) 2018; 144 Putra, Yasuhara, Sutoyo, Fauzan (bib20) 2020; 5 Simatupang, Okamura (bib51) 2017; 57 Xiao, Liu, Xiao, Stuedlein, Evans (bib24) 2018; 107 Zhang, Yin, Shi, Bian, Shi (bib61) 2022; 10 ASTM_D5311–11, Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil, (2012) Gao, Hang, He, Chu (bib21) 2019; 14 Simatupang, Sukri, Sulha, Putri (bib31) 2019 Meng, Shu, Gao, He, Wan (bib28) 2021; 16 Luo, Yang, Li (bib79) 2022; 15 Sun, Miao, Wang, Wu, Zhang (bib33) 2021; 33 Mortensen (bib35) 2011; 111 Choi, Hoang, Park (bib62) 2019; 9 Yasuhara, Neupane, Hayashi, Okamura (bib29) 2012; 52 Ahenkorah, Rahman, Karim, Beecham, Saint (bib78) 2021; 2 Wu, Miao, Kawasaki, Wang (bib32) 2022; 26 Wu, Li, Chu (bib68) 2021; 21 Shu, Yan, Meng, Bian (bib47) 2022; 62 Sun, Miao, Chen, Wang, Wu, Xia (bib10) 2021; 147 Yanli, Yong (bib77) 2009; 37 Ghionna, Porcino (bib75) 2006; 132 Yasuhara, Kinoshita, Lee, Choi, Kishida (bib11) 2017; 56 Van Paassen, Daza, Staal, Sorokin, van der Zon, van Loosdrecht (bib7) 2010; 36 Xiao, Liu, Stuedlein, Evans, Xiao (bib16) 2019; 56 Nafisi, Safavizadeh, Montoya (bib73) 2019; 145 Mitchell, Santamarina (bib4) 2005; 131 Singh, Paramkusam, Maiti (bib54) 2021; 140 Iamchaturapatr, Piriyakul, Petcherdchoo (bib65) 2022; 16 Han, Li, Rao, Wang (bib74) 2020; 2020 . Cui, Zheng, Zhang, Lai, Zhang (bib60) 2017; 12 Yuan, Ren, Liu, Zheng, Zhao (bib25) 2020; 10 DeJong, Mortensen, Martinez, Nelson (bib8) 2010; 36 Krishnan, Khodadadi Tirkolaei, Martin, Hamdan, van Paassen, Kavazanjian (bib43) 2021; 147 M. Simatupang, Liquefaction Resistance of Sand Improved with Enzymatically Induced Calcite Precipitation based on Laboratory Investigation, IOP Conference Series: Earth and Environmental Science, IOP Publishing (2020), 012017. Cui, Lai, Hoang, Chu (bib44) 2021 Qabany, Soga (bib6) 2013; 63 Feng, Montoya (bib30) 2016; 142 Montoya, Dejong, Boulanger (bib49) 2013; 63 Simatupang, Okamura, Hayashi, Yasuhara (bib52) 2018; 115 Gomez, Martinez, DeJong, Hunt, deVlaming, Major, Dworatzek (bib14) 2015; 168 Sasaki, Kuwano (bib23) 2016; 56 T.P. Hoang, Sand and silty-sand soil stabilization using bacterial enzyme induced carbonate precipitation (BEICP). Doctoral Thesis, Iowa State University,Iowa, USA, 2018. Lade, Overton (bib70) 1989; 115 Tirkolaei, Javadi, Krishnan, Hamdan, Kavazanjian (bib36) 2020; 32 Lin, O’Donnell, Suleiman, Kavazanjian, Brown (bib46) 2021; 147 Ahenkorah, Rahman, Karim, Beecham (bib5) 2021; 308 Kavazanjian (bib22) 2015 Almajed, Lateef, Moghal, Lemboye (bib34) 2021; 11 Donnell, Kavazanjian (bib38) 2015; 141 Pakbaz, Kolahi, Ghezelbash (bib3) 2021; 26 Rui, Xiao-hua, Chao-sheng, Chao, Dian-long, Zhi-hao, Bin (bib50) 2022; 43 Triantafyllidis (bib71) 2015; 11 ASTM_D2487−17 , Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), (2018), http://doi.org/10.1520/d2487–17. Al Qabany, Soga, Santamarina (bib59) 2012; 138 Almajed, Tirkolaei, Kavazanjian, Jr, Hamdan (bib42) 2019; 9 Meng, Shu, Gao, Yan, He (bib19) 2021; 294 Song, Ha, Jang, Yun (bib67) 2020; 36 Gao, He, Tang, Chu (bib41) 2019; 59 Montoya, DeJong (bib64) 2015; 141 Liu, Liu, Stuedlein, Evans, Xiao (bib69) 2019; 56 Carmona, Oliveira, Lemos (bib39) 2016; 143 Putra, Yasuhara, Kinoshita, Sudibyo (bib66) 2018; 20 Tsuchida (bib56) 1970 Han, Cheng, Ma (bib48) 2016; Vib. 15 Xiao, Stuedlein, Ran, Evans, Cheng, Liu, Paassen, Chu (bib17) 2019; 145 Amini, Hamidi (bib63) 2014; 6 Jiang, Soga, Kuo (bib12) 2017; 143 Liu, Zhu, Tang, Xie, Yin, Cheng, Shi (bib26) 2020; 264 ASTM_D7181–20, Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils, (2020) Han-Long, Peng, Yang, Jian-Ping, Yu-Min, Jian (bib76) 2018; 40 Pakbaz, Behzadipour, Ghezelbash (bib9) 2018; 35 Neupane, Yasuhara, Kinoshita, Unno (bib37) 2013; 139 Dejong, Soga, Kavazanjian, Burns, Van Paassen, Al Qabany, Aydilek, Bang, Burbank, Caslake, Chen, Cheng, Chu, Ciurli, Esnault-Filet, Fauriel, Hamdan, Hata, Inagaki, Jefferis, Kuo, Laloui, Larrahondo, Manning, Martinez, Montoya, Nelson, Palomino, Renforth, Santamarina, Seagren, Tanyu, Tsesarsky, Weaver (bib1) 2013; 63 Martin, Tirkolaei, Kavazanjian (bib45) 2021; 271 He, Yang, Qi, Fang, Yan, Zhang, Hang, Gao (bib72) 2022; 17 Alarifi, Mustafa, Omarov, Baig, Tariq, Mahmoud (bib13) 2022; 10 Nafisi, Montoya, Evans (bib18) 2020; 146 Yuan (10.1016/j.conbuildmat.2024.135360_bib25) 2020; 10 Singh (10.1016/j.conbuildmat.2024.135360_bib54) 2021; 140 Tirkolaei (10.1016/j.conbuildmat.2024.135360_bib36) 2020; 32 Ahenkorah (10.1016/j.conbuildmat.2024.135360_bib78) 2021; 2 Simatupang (10.1016/j.conbuildmat.2024.135360_bib52) 2018; 115 Almajed (10.1016/j.conbuildmat.2024.135360_bib42) 2019; 9 Simatupang (10.1016/j.conbuildmat.2024.135360_bib51) 2017; 57 Meng (10.1016/j.conbuildmat.2024.135360_bib19) 2021; 294 Van Paassen (10.1016/j.conbuildmat.2024.135360_bib7) 2010; 36 Krishnan (10.1016/j.conbuildmat.2024.135360_bib43) 2021; 147 Gomez (10.1016/j.conbuildmat.2024.135360_bib14) 2015; 168 Yanli (10.1016/j.conbuildmat.2024.135360_bib77) 2009; 37 Zhang (10.1016/j.conbuildmat.2024.135360_bib61) 2022; 10 Song (10.1016/j.conbuildmat.2024.135360_bib67) 2020; 36 DeJong (10.1016/j.conbuildmat.2024.135360_bib8) 2010; 36 Martin (10.1016/j.conbuildmat.2024.135360_bib45) 2021; 271 Mitchell (10.1016/j.conbuildmat.2024.135360_bib4) 2005; 131 Qabany (10.1016/j.conbuildmat.2024.135360_bib6) 2013; 63 Han-Long (10.1016/j.conbuildmat.2024.135360_bib76) 2018; 40 Meng (10.1016/j.conbuildmat.2024.135360_bib28) 2021; 16 Wu (10.1016/j.conbuildmat.2024.135360_bib68) 2021; 21 Neupane (10.1016/j.conbuildmat.2024.135360_bib37) 2013; 139 Lin (10.1016/j.conbuildmat.2024.135360_bib46) 2021; 147 Choi (10.1016/j.conbuildmat.2024.135360_bib62) 2019; 9 Xiao (10.1016/j.conbuildmat.2024.135360_bib24) 2018; 107 Donnell (10.1016/j.conbuildmat.2024.135360_bib38) 2015; 141 Han (10.1016/j.conbuildmat.2024.135360_bib48) 2016; Vib. 15 Cui (10.1016/j.conbuildmat.2024.135360_bib44) 2021 Almajed (10.1016/j.conbuildmat.2024.135360_bib15) 2018; 144 Han (10.1016/j.conbuildmat.2024.135360_bib74) 2020; 2020 Pakbaz (10.1016/j.conbuildmat.2024.135360_bib9) 2018; 35 Mortensen (10.1016/j.conbuildmat.2024.135360_bib35) 2011; 111 Putra (10.1016/j.conbuildmat.2024.135360_bib20) 2020; 5 Yasuhara (10.1016/j.conbuildmat.2024.135360_bib11) 2017; 56 Jiang (10.1016/j.conbuildmat.2024.135360_bib12) 2017; 143 Cui (10.1016/j.conbuildmat.2024.135360_bib60) 2017; 12 Ahenkorah (10.1016/j.conbuildmat.2024.135360_bib5) 2021; 308 Xiao (10.1016/j.conbuildmat.2024.135360_bib16) 2019; 56 Sun (10.1016/j.conbuildmat.2024.135360_bib10) 2021; 147 Tsuchida (10.1016/j.conbuildmat.2024.135360_bib56) 1970 Alarifi (10.1016/j.conbuildmat.2024.135360_bib13) 2022; 10 Xiao (10.1016/j.conbuildmat.2024.135360_bib17) 2019; 145 Montoya (10.1016/j.conbuildmat.2024.135360_bib49) 2013; 63 Lade (10.1016/j.conbuildmat.2024.135360_bib70) 1989; 115 Iamchaturapatr (10.1016/j.conbuildmat.2024.135360_bib65) 2022; 16 Gao (10.1016/j.conbuildmat.2024.135360_bib21) 2019; 14 Sasaki (10.1016/j.conbuildmat.2024.135360_bib23) 2016; 56 10.1016/j.conbuildmat.2024.135360_bib53 Liu (10.1016/j.conbuildmat.2024.135360_bib69) 2019; 56 Yasuhara (10.1016/j.conbuildmat.2024.135360_bib29) 2012; 52 Wu (10.1016/j.conbuildmat.2024.135360_bib32) 2022; 26 Almajed (10.1016/j.conbuildmat.2024.135360_bib34) 2021; 11 10.1016/j.conbuildmat.2024.135360_bib55 10.1016/j.conbuildmat.2024.135360_bib57 Montoya (10.1016/j.conbuildmat.2024.135360_bib64) 2015; 141 Feng (10.1016/j.conbuildmat.2024.135360_bib30) 2016; 142 10.1016/j.conbuildmat.2024.135360_bib58 Nafisi (10.1016/j.conbuildmat.2024.135360_bib73) 2019; 145 Pakbaz (10.1016/j.conbuildmat.2024.135360_bib3) 2021; 26 Amini (10.1016/j.conbuildmat.2024.135360_bib63) 2014; 6 Nafisi (10.1016/j.conbuildmat.2024.135360_bib18) 2020; 146 Rui (10.1016/j.conbuildmat.2024.135360_bib50) 2022; 43 Sun (10.1016/j.conbuildmat.2024.135360_bib33) 2021; 33 Liu (10.1016/j.conbuildmat.2024.135360_bib26) 2020; 264 Luo (10.1016/j.conbuildmat.2024.135360_bib79) 2022; 15 Dejong (10.1016/j.conbuildmat.2024.135360_bib1) 2013; 63 Wani (10.1016/j.conbuildmat.2024.135360_bib2) 2021; 6 Carmona (10.1016/j.conbuildmat.2024.135360_bib39) 2016; 143 Ghionna (10.1016/j.conbuildmat.2024.135360_bib75) 2006; 132 Gao (10.1016/j.conbuildmat.2024.135360_bib41) 2019; 59 Shu (10.1016/j.conbuildmat.2024.135360_bib47) 2022; 62 Simatupang (10.1016/j.conbuildmat.2024.135360_bib31) 2019 Triantafyllidis (10.1016/j.conbuildmat.2024.135360_bib71) 2015; 11 Putra (10.1016/j.conbuildmat.2024.135360_bib66) 2018; 20 Kavazanjian (10.1016/j.conbuildmat.2024.135360_bib22) 2015 He (10.1016/j.conbuildmat.2024.135360_bib27) 2022; 21 10.1016/j.conbuildmat.2024.135360_bib40 Al Qabany (10.1016/j.conbuildmat.2024.135360_bib59) 2012; 138 He (10.1016/j.conbuildmat.2024.135360_bib72) 2022; 17 |
| References_xml | – volume: 264 year: 2020 ident: bib26 article-title: Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP) publication-title: Eng. Geol. – volume: 52 start-page: 539 year: 2012 end-page: 549 ident: bib29 article-title: Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation publication-title: Soils Found. – volume: 9 year: 2019 ident: bib62 article-title: Undrained behavior of microbially induced calcite precipitated sand with polyvinyl alcohol fiber publication-title: Appl. Sci. – volume: 26 start-page: 1051 year: 2021 end-page: 1065 ident: bib3 article-title: Assessment of microbial induced calcite precipitation (MICP) in fine sand using native microbes under both aerobic and anaerobic conditions publication-title: KSCE J. Civ. Eng. – volume: 111 year: 2011 ident: bib35 article-title: Effects of environmental factors on microbial induced calcium carbonate precipitation publication-title: J. Appl. Microbiol. – volume: 63 start-page: 302 year: 2013 end-page: 312 ident: bib49 article-title: Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation publication-title: Géotechnique – volume: 63 start-page: 331 year: 2013 end-page: 339 ident: bib6 article-title: Effect of chemical treatment used in MICP on engineering properties of cemented soils publication-title: Géotechnique – start-page: 31 year: 1970 end-page: 333 ident: bib56 article-title: Prediction and countermeasure against the liquefaction in sand deposits publication-title: Abstr. Semin. Port. Harb. Res. Inst. – volume: 107 start-page: 9 year: 2018 end-page: 19 ident: bib24 article-title: Liquefaction resistance of bio-cemented calcareous sand publication-title: Soil Dyn. Earthq. Eng. – volume: 11 year: 2021 ident: bib34 article-title: State-of-the-Art Review of the Applicability and Challenges of Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenvironmental Applications publication-title: Crystals – volume: 26 start-page: 2662 year: 2022 end-page: 2674 ident: bib32 article-title: Effects of reaction conditions on EICP-treated desert aeolian sand publication-title: KSCE J. Civ. Eng. – volume: 15 start-page: 4613 year: 2022 ident: bib79 article-title: Mechanical properties of single-crystal calcite and their temperature and strain-rate effects publication-title: Materials – volume: 12 start-page: 971 year: 2017 end-page: 986 ident: bib60 article-title: Influence of cementation level on the strength behavior of bio-cemented sand publication-title: Acta Geotech. – volume: 115 start-page: 710 year: 2018 end-page: 718 ident: bib52 article-title: Small-strain shear modulus and liquefaction resistance of sand with carbonate precipitation publication-title: Soil Dyn. Earthq. Eng. – volume: 6 year: 2021 ident: bib2 article-title: Biological processes in the stabilization of weak river sediments: an innovative approach publication-title: Innov. Infrastruct. Solut. – volume: 16 start-page: 4045 year: 2021 end-page: 4059 ident: bib28 article-title: Kitchen waste for Sporosarcina pasteurii cultivation and its application in wind erosion control of desert soil via microbially induced carbonate precipitation publication-title: Acta Geotech. – volume: 21 year: 2021 ident: bib68 article-title: Stress-dilatancy behavior of MICP-treated sand publication-title: Int. J. Geomech. – volume: 36 start-page: 197 year: 2010 end-page: 210 ident: bib8 article-title: Bio-mediated soil improvement publication-title: Ecol. Eng. – volume: 2020 year: 2020 ident: bib74 article-title: Study on hysteretic deformation characteristics and energy dissipation of granite under cyclic loading publication-title: China Rock. – volume: 6 start-page: 455 year: 2014 end-page: 465 ident: bib63 article-title: Triaxial shear behavior of a cement-treated sand–gravel mixture publication-title: J. Rock. Mech. Geotech. Eng. – volume: 35 start-page: 721 year: 2018 end-page: 726 ident: bib9 article-title: Evaluation of shear strength parameters of sandy soils upon microbial treatment publication-title: Geomicrobiol. J. – volume: 131 start-page: 1222 year: 2005 end-page: 1233 ident: bib4 article-title: Biological considerations in geotechnical engineering publication-title: J. Geotech. Geoenviron. Eng. – volume: 144 year: 2018 ident: bib15 article-title: Baseline investigation on enzyme-induced calcium carbonate precipitation publication-title: J. Geotech. Geoenviron. Eng. – volume: 10 year: 2022 ident: bib13 article-title: A review of enzyme-induced calcium carbonate precipitation applicability in the oil and gas industry publication-title: Front. Bioeng. Biotechnol. – volume: 56 start-page: 485 year: 2016 end-page: 495 ident: bib23 article-title: Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced CaCO3 publication-title: Soils Found. – volume: 147 year: 2021 ident: bib10 article-title: Liquefaction resistance of biocemented loess soil publication-title: J. Geotech. Geoenviron. Eng. – volume: 143 year: 2017 ident: bib12 article-title: Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand–clay mixtures publication-title: J. Geotech. Geoenviron. Eng. – volume: 14 start-page: 697 year: 2019 end-page: 707 ident: bib21 article-title: Mechanical behavior of biocemented sands at various treatment levels and relative densities publication-title: Acta Geotech. – reference: ASTM_D2487−17 , Standard Practice for Classification of Soils for Engineering Purposes (Unified Soil Classification System), (2018), http://doi.org/10.1520/d2487–17. – volume: 294 year: 2021 ident: bib19 article-title: Multiple-phase enzyme-induced carbonate precipitation (EICP) method for soil improvement publication-title: Eng. Geol. – reference: ASTM_D5311–11, Standard Test Method for Load Controlled Cyclic Triaxial Strength of Soil, (2012), – volume: 56 start-page: 1502 year: 2019 end-page: 1513 ident: bib69 article-title: Strength, stiffness, and microstructure characteristics of biocemented calcareous sand publication-title: Can. Geotech. J. – volume: 16 year: 2022 ident: bib65 article-title: Characteristics of sandy soil treated using EICP-based urease enzymatic acceleration method and natural hemp fibers publication-title: Case Stud. Constr. Mater. – volume: 17 start-page: 2895 year: 2022 end-page: 2905 ident: bib72 article-title: Improvement in silty sand with enzyme-induced carbonate precipitation: laboratory model experiment publication-title: Acta Geotech. – volume: 140 year: 2021 ident: bib54 article-title: Cyclic degradation and pore pressure dynamics of EICP treated hydrocarbon contaminated sands publication-title: Soil Dyn. Earthq. Eng. – year: 2021 ident: bib44 article-title: Modified one-phase-low-pH method for bacteria or enzyme-induced carbonate precipitation for soil improvement publication-title: Acta Geotech. – volume: 2 start-page: 92 year: 2021 end-page: 114 ident: bib78 article-title: A review of enzyme induced carbonate precipitation (EICP): the role of enzyme kinetics publication-title: Sustain. Chem. – volume: 57 start-page: 619 year: 2017 end-page: 631 ident: bib51 article-title: Liquefaction resistance of sand remediated with carbonate precipitation at different degrees of saturation during curing publication-title: Soils Found. – volume: 132 start-page: 194 year: 2006 end-page: 202 ident: bib75 article-title: Liquefaction resistance of undisturbed and reconstituted samples of a natural coarse sand from undrained cyclic triaxial tests publication-title: J. Geotech. Geoenviron. Eng. – volume: 11 start-page: 739 year: 2015 end-page: 761 ident: bib71 article-title: An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part I—tests with monotonic loading and stress cycles publication-title: Acta Geotech. – volume: 56 start-page: 155 year: 2017 end-page: 164 ident: bib11 article-title: Evolution of mechanical and hydraulic properties in sandstone induced by simulated mineral trapping of CO publication-title: Int. J. Greenh. Gas. Control – volume: 308 year: 2021 ident: bib5 article-title: Enzyme induced calcium carbonate precipitation and its engineering application: a systematic review and meta-analysis publication-title: Constr. Build. Mater. – volume: Vib. 15 start-page: 673 year: 2016 end-page: 679 ident: bib48 article-title: An experimental study on dynamic response for MICP strengthening liquefiable sands publication-title: Earthq. Eng. Eng. – volume: 43 start-page: 2643 year: 2022 end-page: 2654 ident: bib50 article-title: Dynamic behaviors of MICP and fiber-treated calcareous sand under dynamic triaxial testing publication-title: Rock. Soil Mech. – volume: 36 start-page: 17 year: 2020 end-page: 28 ident: bib67 article-title: Analysis of improved shear stiffness and strength for sandy soils treated by EICP publication-title: J. Korean Geotech. Soc. – volume: 115 start-page: 1373 year: 1989 end-page: 1387 ident: bib70 article-title: Cementation effects in frictional materials publication-title: J. Geotech. Eng. – volume: 36 start-page: 168 year: 2010 end-page: 175 ident: bib7 article-title: Potential soil reinforcement by biological denitrification publication-title: Ecol. Eng. – volume: 271 year: 2021 ident: bib45 article-title: Enhancing the strength of granular material with a modified enzyme-induced carbonate precipitation (EICP) treatment solution publication-title: Constr. Build. Mater. – volume: 141 year: 2015 ident: bib38 article-title: Stiffness and dilatancy improvements in uncemented sands treated through MICP publication-title: J. Geotech. Geoenviron. Eng. – volume: 62 year: 2022 ident: bib47 article-title: Comparative study of EICP treatment methods on the mechanical properties of sandy soil publication-title: Soils Found. – volume: 141 year: 2015 ident: bib64 article-title: Stress-strain behavior of sands cemented by microbially induced calcite precipitation publication-title: J. Geotech. Geoenviron. Eng. – volume: 145 year: 2019 ident: bib73 article-title: Influence of microbe and enzyme-induced treatments on cemented sand shear response publication-title: J. Geotech. Geoenviron. Eng. – volume: 139 start-page: 2201 year: 2013 end-page: 2211 ident: bib37 article-title: Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique publication-title: J. Geotech. Geoenviron. Eng. – volume: 145 year: 2019 ident: bib17 article-title: Effect of particle shape on strength and stiffness of biocemented glass beads publication-title: J. Geotech. Geoenviron. Eng. – volume: 147 year: 2021 ident: bib43 article-title: Variability in the Unconfined Compressive Strength of EICP-Treated “Standard” Sand publication-title: J. Geotech. Geoenviron. Eng. – start-page: 2252 year: 2015 end-page: 2261 ident: bib22 article-title: Enzyme induced carbonate precipitation (EICP) columns for ground improvement publication-title: Geo-Congr. – volume: 138 start-page: 992 year: 2012 end-page: 1001 ident: bib59 article-title: Factors affecting efficiency of microbially induced calcite precipitation publication-title: J. Geotech. Geoenviron. Eng. – year: 2019 ident: bib31 article-title: Effect of confining pressures on the shear modulus of sand treated with enzymatically induced calcite precipitation publication-title: IOP Conf. Ser.: Mater. Sci. Eng., IOP Publ. – volume: 168 start-page: 206 year: 2015 end-page: 216 ident: bib14 article-title: Field-scale bio-cementation tests to improve sands publication-title: Proc. Inst. Civ. Eng. -Ground Improv. – volume: 63 start-page: 287 year: 2013 end-page: 301 ident: bib1 article-title: Biogeochemical processes and geotechnical applications: progress, opportunities and challenges publication-title: Géotechnique – volume: 10 year: 2020 ident: bib25 article-title: Experimental study of EICP combined with organic materials for silt improvement in the Yellow River flood area publication-title: Appl. Sci. – reference: T.P. Hoang, Sand and silty-sand soil stabilization using bacterial enzyme induced carbonate precipitation (BEICP). Doctoral Thesis, Iowa State University,Iowa, USA, 2018. – reference: ASTM_D7181–20, Standard Test Method for Consolidated Drained Triaxial Compression Test for Soils, (2020), – volume: 56 start-page: 1849 year: 2019 end-page: 1862 ident: bib16 article-title: Effect of relative density and biocementation on cyclic response of calcareous sand publication-title: Can. Geotech. J. – volume: 37 year: 2009 ident: bib77 article-title: Experimental study on evolutionary characteristics of dynamic pore water pressure of saturated sands publication-title: J. Tongji Univ. – volume: 21 start-page: 306 year: 2022 end-page: 314 ident: bib27 article-title: Enzyme-induced carbonate precipitation for the protection of earthen dikes and embankments under surface runoff: laboratory investigations publication-title: J. Ocean Univ. China – volume: 33 year: 2021 ident: bib33 article-title: Enzymatic calcification to solidify desert sands for sandstorm control publication-title: Clim. Risk Manag. – volume: 32 year: 2020 ident: bib36 article-title: Crude urease extract for biocementation publication-title: J. Mater. Civ. Eng. – volume: 143 start-page: 1301 year: 2016 end-page: 1308 ident: bib39 article-title: Biostabilization of a sandy soil using enzymatic calcium carbonate precipitation publication-title: Procedia Eng. – volume: 40 start-page: 38 year: 2018 end-page: 45 ident: bib76 article-title: Dynamic behaviors of MICP-treated calcareous sand in cyclic tests publication-title: Chin. J. Geotech. Eng. – reference: M. Simatupang, Liquefaction Resistance of Sand Improved with Enzymatically Induced Calcite Precipitation based on Laboratory Investigation, IOP Conference Series: Earth and Environmental Science, IOP Publishing (2020), 012017. – volume: 5 year: 2020 ident: bib20 article-title: Review of enzyme-induced calcite precipitation as a ground-improvement technique publication-title: Infrastructures – reference: . – volume: 146 year: 2020 ident: bib18 article-title: Shear strength envelopes of biocemented sands with varying particle size and cementation level publication-title: J. Geotech. Geoenviron. Eng. – volume: 20 start-page: 91 year: 2018 end-page: 95 ident: bib66 article-title: Improving shear strength parameters of sandy soil using enzyme-mediated calcite precipitation technique publication-title: Civ. Eng. Dimens. – volume: 10 year: 2022 ident: bib61 article-title: Experimental investigation on mechanical behavior of sands treated by enzyme-induced calcium carbonate precipitation with assistance of sisal-fiber nucleation publication-title: Front. Earth Sci. – volume: 147 year: 2021 ident: bib46 article-title: Effects of Enzyme and Microbially Induced Carbonate Precipitation Treatments on the Response of Axially Loaded Pervious Concrete Piles publication-title: J. Geotech. Geoenviron. Eng. – volume: 142 year: 2016 ident: bib30 article-title: Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading publication-title: J. Geotech. Geoenviron. Eng. – volume: 9 start-page: 1135 year: 2019 ident: bib42 article-title: Enzyme Induced Biocementated Sand with High Strength at Low Carbonate Content publication-title: Sci. Rep. – volume: 59 start-page: 1631 year: 2019 end-page: 1637 ident: bib41 article-title: Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil publication-title: Soils Found. – ident: 10.1016/j.conbuildmat.2024.135360_bib58 doi: 10.1520/D5311-11 – volume: 21 issue: 3 year: 2021 ident: 10.1016/j.conbuildmat.2024.135360_bib68 article-title: Stress-dilatancy behavior of MICP-treated sand publication-title: Int. J. Geomech. doi: 10.1061/(ASCE)GM.1943-5622.0001923 – volume: 168 start-page: 206 issue: 3 year: 2015 ident: 10.1016/j.conbuildmat.2024.135360_bib14 article-title: Field-scale bio-cementation tests to improve sands publication-title: Proc. Inst. Civ. Eng. -Ground Improv. doi: 10.1680/grim.13.00052 – volume: 16 start-page: 4045 issue: 12 year: 2021 ident: 10.1016/j.conbuildmat.2024.135360_bib28 article-title: Kitchen waste for Sporosarcina pasteurii cultivation and its application in wind erosion control of desert soil via microbially induced carbonate precipitation publication-title: Acta Geotech. doi: 10.1007/s11440-021-01334-2 – volume: 143 issue: 3 year: 2017 ident: 10.1016/j.conbuildmat.2024.135360_bib12 article-title: Microbially induced carbonate precipitation for seepage-induced internal erosion control in sand–clay mixtures publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0001559 – volume: 146 issue: 3 year: 2020 ident: 10.1016/j.conbuildmat.2024.135360_bib18 article-title: Shear strength envelopes of biocemented sands with varying particle size and cementation level publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0002201 – volume: 32 issue: 12 year: 2020 ident: 10.1016/j.conbuildmat.2024.135360_bib36 article-title: Crude urease extract for biocementation publication-title: J. Mater. Civ. Eng. – volume: 147 issue: 8 year: 2021 ident: 10.1016/j.conbuildmat.2024.135360_bib46 article-title: Effects of Enzyme and Microbially Induced Carbonate Precipitation Treatments on the Response of Axially Loaded Pervious Concrete Piles publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0002565 – volume: 63 start-page: 331 issue: 4 year: 2013 ident: 10.1016/j.conbuildmat.2024.135360_bib6 article-title: Effect of chemical treatment used in MICP on engineering properties of cemented soils publication-title: Géotechnique doi: 10.1680/geot.SIP13.P.022 – volume: 52 start-page: 539 issue: 3 year: 2012 ident: 10.1016/j.conbuildmat.2024.135360_bib29 article-title: Experiments and predictions of physical properties of sand cemented by enzymatically-induced carbonate precipitation publication-title: Soils Found. doi: 10.1016/j.sandf.2012.05.011 – volume: 139 start-page: 2201 issue: 12 year: 2013 ident: 10.1016/j.conbuildmat.2024.135360_bib37 article-title: Applicability of enzymatic calcium carbonate precipitation as a soil-strengthening technique publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0000959 – volume: 144 issue: 11 year: 2018 ident: 10.1016/j.conbuildmat.2024.135360_bib15 article-title: Baseline investigation on enzyme-induced calcium carbonate precipitation publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0001973 – volume: 10 year: 2022 ident: 10.1016/j.conbuildmat.2024.135360_bib61 article-title: Experimental investigation on mechanical behavior of sands treated by enzyme-induced calcium carbonate precipitation with assistance of sisal-fiber nucleation publication-title: Front. Earth Sci. – year: 2019 ident: 10.1016/j.conbuildmat.2024.135360_bib31 article-title: Effect of confining pressures on the shear modulus of sand treated with enzymatically induced calcite precipitation publication-title: IOP Conf. Ser.: Mater. Sci. Eng., IOP Publ. doi: 10.1088/1757-899X/615/1/012042 – volume: 142 issue: 1 year: 2016 ident: 10.1016/j.conbuildmat.2024.135360_bib30 article-title: Influence of confinement and cementation level on the behavior of microbial-induced calcite precipitated sands under monotonic drained loading publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0001379 – volume: 308 year: 2021 ident: 10.1016/j.conbuildmat.2024.135360_bib5 article-title: Enzyme induced calcium carbonate precipitation and its engineering application: a systematic review and meta-analysis publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125000 – volume: 12 start-page: 971 issue: 5 year: 2017 ident: 10.1016/j.conbuildmat.2024.135360_bib60 article-title: Influence of cementation level on the strength behavior of bio-cemented sand, publication-title: Acta Geotech. doi: 10.1007/s11440-017-0574-9 – start-page: 2252 year: 2015 ident: 10.1016/j.conbuildmat.2024.135360_bib22 article-title: Enzyme induced carbonate precipitation (EICP) columns for ground improvement publication-title: Geo-Congr. – volume: 14 start-page: 697 issue: 3 year: 2019 ident: 10.1016/j.conbuildmat.2024.135360_bib21 article-title: Mechanical behavior of biocemented sands at various treatment levels and relative densities, publication-title: Acta Geotech. doi: 10.1007/s11440-018-0729-3 – volume: 107 start-page: 9 year: 2018 ident: 10.1016/j.conbuildmat.2024.135360_bib24 article-title: Liquefaction resistance of bio-cemented calcareous sand publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2018.01.008 – volume: 294 year: 2021 ident: 10.1016/j.conbuildmat.2024.135360_bib19 article-title: Multiple-phase enzyme-induced carbonate precipitation (EICP) method for soil improvement publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2021.106374 – volume: 131 start-page: 1222 issue: 10 year: 2005 ident: 10.1016/j.conbuildmat.2024.135360_bib4 article-title: Biological considerations in geotechnical engineering publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)1090-0241(2005)131:10(1222) – volume: 36 start-page: 197 issue: 2 year: 2010 ident: 10.1016/j.conbuildmat.2024.135360_bib8 article-title: Bio-mediated soil improvement publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2008.12.029 – volume: 17 start-page: 2895 issue: 7 year: 2022 ident: 10.1016/j.conbuildmat.2024.135360_bib72 article-title: Improvement in silty sand with enzyme-induced carbonate precipitation: laboratory model experiment publication-title: Acta Geotech. doi: 10.1007/s11440-021-01361-z – volume: 57 start-page: 619 issue: 4 year: 2017 ident: 10.1016/j.conbuildmat.2024.135360_bib51 article-title: Liquefaction resistance of sand remediated with carbonate precipitation at different degrees of saturation during curing publication-title: Soils Found. doi: 10.1016/j.sandf.2017.04.003 – volume: Vib. 15 start-page: 673 issue: 4 year: 2016 ident: 10.1016/j.conbuildmat.2024.135360_bib48 article-title: An experimental study on dynamic response for MICP strengthening liquefiable sands publication-title: Earthq. Eng. Eng. doi: 10.1007/s11803-016-0357-6 – volume: 59 start-page: 1631 issue: 5 year: 2019 ident: 10.1016/j.conbuildmat.2024.135360_bib41 article-title: Calcium carbonate precipitation catalyzed by soybean urease as an improvement method for fine-grained soil publication-title: Soils Found. doi: 10.1016/j.sandf.2019.03.014 – volume: 26 start-page: 1051 issue: 3 year: 2021 ident: 10.1016/j.conbuildmat.2024.135360_bib3 article-title: Assessment of microbial induced calcite precipitation (MICP) in fine sand using native microbes under both aerobic and anaerobic conditions publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-021-0300-x – volume: 140 year: 2021 ident: 10.1016/j.conbuildmat.2024.135360_bib54 article-title: Cyclic degradation and pore pressure dynamics of EICP treated hydrocarbon contaminated sands publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2020.106369 – volume: 6 start-page: 455 issue: 5 year: 2014 ident: 10.1016/j.conbuildmat.2024.135360_bib63 article-title: Triaxial shear behavior of a cement-treated sand–gravel mixture publication-title: J. Rock. Mech. Geotech. Eng. doi: 10.1016/j.jrmge.2014.07.006 – volume: 43 start-page: 2643 year: 2022 ident: 10.1016/j.conbuildmat.2024.135360_bib50 article-title: Dynamic behaviors of MICP and fiber-treated calcareous sand under dynamic triaxial testing publication-title: Rock. Soil Mech. – volume: 5 issue: 8 year: 2020 ident: 10.1016/j.conbuildmat.2024.135360_bib20 article-title: Review of enzyme-induced calcite precipitation as a ground-improvement technique publication-title: Infrastructures doi: 10.3390/infrastructures5080066 – ident: 10.1016/j.conbuildmat.2024.135360_bib57 doi: 10.1520/D7181-20 – volume: 145 issue: 9 year: 2019 ident: 10.1016/j.conbuildmat.2024.135360_bib73 article-title: Influence of microbe and enzyme-induced treatments on cemented sand shear response publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0002111 – volume: 9 start-page: 1135 issue: 1 year: 2019 ident: 10.1016/j.conbuildmat.2024.135360_bib42 article-title: Enzyme Induced Biocementated Sand with High Strength at Low Carbonate Content publication-title: Sci. Rep. doi: 10.1038/s41598-018-38361-1 – volume: 111 issue: 2 year: 2011 ident: 10.1016/j.conbuildmat.2024.135360_bib35 article-title: Effects of environmental factors on microbial induced calcium carbonate precipitation publication-title: J. Appl. Microbiol. doi: 10.1111/j.1365-2672.2011.05065.x – volume: 6 issue: 3 year: 2021 ident: 10.1016/j.conbuildmat.2024.135360_bib2 article-title: Biological processes in the stabilization of weak river sediments: an innovative approach publication-title: Innov. Infrastruct. Solut. doi: 10.1007/s41062-021-00538-5 – ident: 10.1016/j.conbuildmat.2024.135360_bib40 doi: 10.1139/cgj-2018-0191 – volume: 62 issue: 6 year: 2022 ident: 10.1016/j.conbuildmat.2024.135360_bib47 article-title: Comparative study of EICP treatment methods on the mechanical properties of sandy soil publication-title: Soils Found. doi: 10.1016/j.sandf.2022.101246 – volume: 132 start-page: 194 issue: 2 year: 2006 ident: 10.1016/j.conbuildmat.2024.135360_bib75 article-title: Liquefaction resistance of undisturbed and reconstituted samples of a natural coarse sand from undrained cyclic triaxial tests publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)1090-0241(2006)132:2(194) – volume: 40 start-page: 38 issue: 1 year: 2018 ident: 10.1016/j.conbuildmat.2024.135360_bib76 article-title: Dynamic behaviors of MICP-treated calcareous sand in cyclic tests publication-title: Chin. J. Geotech. Eng. – volume: 145 issue: 11 year: 2019 ident: 10.1016/j.conbuildmat.2024.135360_bib17 article-title: Effect of particle shape on strength and stiffness of biocemented glass beads publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0002165 – volume: 16 year: 2022 ident: 10.1016/j.conbuildmat.2024.135360_bib65 article-title: Characteristics of sandy soil treated using EICP-based urease enzymatic acceleration method and natural hemp fibers publication-title: Case Stud. Constr. Mater. – volume: 56 start-page: 155 year: 2017 ident: 10.1016/j.conbuildmat.2024.135360_bib11 article-title: Evolution of mechanical and hydraulic properties in sandstone induced by simulated mineral trapping of CO2 geo-sequestration publication-title: Int. J. Greenh. Gas. Control doi: 10.1016/j.ijggc.2016.11.018 – volume: 56 start-page: 1502 issue: 10 year: 2019 ident: 10.1016/j.conbuildmat.2024.135360_bib69 article-title: Strength, stiffness, and microstructure characteristics of biocemented calcareous sand publication-title: Can. Geotech. J. doi: 10.1139/cgj-2018-0007 – volume: 33 year: 2021 ident: 10.1016/j.conbuildmat.2024.135360_bib33 article-title: Enzymatic calcification to solidify desert sands for sandstorm control publication-title: Clim. Risk Manag. – volume: 11 issue: 4 year: 2021 ident: 10.1016/j.conbuildmat.2024.135360_bib34 article-title: State-of-the-Art Review of the Applicability and Challenges of Microbial-Induced Calcite Precipitation (MICP) and Enzyme-Induced Calcite Precipitation (EICP) Techniques for Geotechnical and Geoenvironmental Applications publication-title: Crystals doi: 10.3390/cryst11040370 – volume: 63 start-page: 287 issue: 4 year: 2013 ident: 10.1016/j.conbuildmat.2024.135360_bib1 article-title: Biogeochemical processes and geotechnical applications: progress, opportunities and challenges publication-title: Géotechnique doi: 10.1680/geot.SIP13.P.017 – volume: 63 start-page: 302 issue: 4 year: 2013 ident: 10.1016/j.conbuildmat.2024.135360_bib49 article-title: Dynamic response of liquefiable sand improved by microbial-induced calcite precipitation publication-title: Géotechnique doi: 10.1680/geot.SIP13.P.019 – volume: 10 issue: 21 year: 2020 ident: 10.1016/j.conbuildmat.2024.135360_bib25 article-title: Experimental study of EICP combined with organic materials for silt improvement in the Yellow River flood area publication-title: Appl. Sci. doi: 10.3390/app10217678 – volume: 26 start-page: 2662 issue: 6 year: 2022 ident: 10.1016/j.conbuildmat.2024.135360_bib32 article-title: Effects of reaction conditions on EICP-treated desert aeolian sand publication-title: KSCE J. Civ. Eng. doi: 10.1007/s12205-022-1585-0 – volume: 20 start-page: 91 issue: 2 year: 2018 ident: 10.1016/j.conbuildmat.2024.135360_bib66 article-title: Improving shear strength parameters of sandy soil using enzyme-mediated calcite precipitation technique publication-title: Civ. Eng. Dimens. doi: 10.9744/ced.20.2.91-95 – volume: 9 issue: 6 year: 2019 ident: 10.1016/j.conbuildmat.2024.135360_bib62 article-title: Undrained behavior of microbially induced calcite precipitated sand with polyvinyl alcohol fiber publication-title: Appl. Sci. doi: 10.3390/app9061214 – volume: 56 start-page: 485 issue: 3 year: 2016 ident: 10.1016/j.conbuildmat.2024.135360_bib23 article-title: Undrained cyclic triaxial testing on sand with non-plastic fines content cemented with microbially induced CaCO3 publication-title: Soils Found. doi: 10.1016/j.sandf.2016.04.014 – ident: 10.1016/j.conbuildmat.2024.135360_bib55 doi: 10.1520/D2487-17 – volume: 36 start-page: 17 issue: 1 year: 2020 ident: 10.1016/j.conbuildmat.2024.135360_bib67 article-title: Analysis of improved shear stiffness and strength for sandy soils treated by EICP publication-title: J. Korean Geotech. Soc. – start-page: 31 year: 1970 ident: 10.1016/j.conbuildmat.2024.135360_bib56 article-title: Prediction and countermeasure against the liquefaction in sand deposits publication-title: Abstr. Semin. Port. Harb. Res. Inst. – volume: 2 start-page: 92 issue: 1 year: 2021 ident: 10.1016/j.conbuildmat.2024.135360_bib78 article-title: A review of enzyme induced carbonate precipitation (EICP): the role of enzyme kinetics publication-title: Sustain. Chem. doi: 10.3390/suschem2010007 – year: 2021 ident: 10.1016/j.conbuildmat.2024.135360_bib44 article-title: Modified one-phase-low-pH method for bacteria or enzyme-induced carbonate precipitation for soil improvement publication-title: Acta Geotech. doi: 10.1007/s11440-020-01043-2 – volume: 138 start-page: 992 issue: 8 year: 2012 ident: 10.1016/j.conbuildmat.2024.135360_bib59 article-title: Factors affecting efficiency of microbially induced calcite precipitation publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0000666 – volume: 264 year: 2020 ident: 10.1016/j.conbuildmat.2024.135360_bib26 article-title: Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP) publication-title: Eng. Geol. doi: 10.1016/j.enggeo.2019.105389 – volume: 35 start-page: 721 issue: 8 year: 2018 ident: 10.1016/j.conbuildmat.2024.135360_bib9 article-title: Evaluation of shear strength parameters of sandy soils upon microbial treatment publication-title: Geomicrobiol. J. doi: 10.1080/01490451.2018.1455766 – ident: 10.1016/j.conbuildmat.2024.135360_bib53 doi: 10.1088/1755-1315/589/1/012017 – volume: 115 start-page: 1373 issue: 10 year: 1989 ident: 10.1016/j.conbuildmat.2024.135360_bib70 article-title: Cementation effects in frictional materials publication-title: J. Geotech. Eng. doi: 10.1061/(ASCE)0733-9410(1989)115:10(1373) – volume: 141 issue: 11 year: 2015 ident: 10.1016/j.conbuildmat.2024.135360_bib38 article-title: Stiffness and dilatancy improvements in uncemented sands treated through MICP publication-title: J. Geotech. Geoenviron. Eng. – volume: 143 start-page: 1301 year: 2016 ident: 10.1016/j.conbuildmat.2024.135360_bib39 article-title: Biostabilization of a sandy soil using enzymatic calcium carbonate precipitation publication-title: Procedia Eng. doi: 10.1016/j.proeng.2016.06.144 – volume: 2020 issue: 570 year: 2020 ident: 10.1016/j.conbuildmat.2024.135360_bib74 article-title: Study on hysteretic deformation characteristics and energy dissipation of granite under cyclic loading publication-title: China Rock. – volume: 11 start-page: 739 year: 2015 ident: 10.1016/j.conbuildmat.2024.135360_bib71 article-title: An experimental database for the development, calibration and verification of constitutive models for sand with focus to cyclic loading: part I—tests with monotonic loading and stress cycles publication-title: Acta Geotech. – volume: 141 issue: 6 year: 2015 ident: 10.1016/j.conbuildmat.2024.135360_bib64 article-title: Stress-strain behavior of sands cemented by microbially induced calcite precipitation publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0001302 – volume: 147 issue: 11 year: 2021 ident: 10.1016/j.conbuildmat.2024.135360_bib10 article-title: Liquefaction resistance of biocemented loess soil publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0002638 – volume: 36 start-page: 168 issue: 2 year: 2010 ident: 10.1016/j.conbuildmat.2024.135360_bib7 article-title: Potential soil reinforcement by biological denitrification publication-title: Ecol. Eng. doi: 10.1016/j.ecoleng.2009.03.026 – volume: 147 issue: 4 year: 2021 ident: 10.1016/j.conbuildmat.2024.135360_bib43 article-title: Variability in the Unconfined Compressive Strength of EICP-Treated “Standard” Sand publication-title: J. Geotech. Geoenviron. Eng. doi: 10.1061/(ASCE)GT.1943-5606.0002480 – volume: 15 start-page: 4613 year: 2022 ident: 10.1016/j.conbuildmat.2024.135360_bib79 article-title: Mechanical properties of single-crystal calcite and their temperature and strain-rate effects publication-title: Materials doi: 10.3390/ma15134613 – volume: 271 year: 2021 ident: 10.1016/j.conbuildmat.2024.135360_bib45 article-title: Enhancing the strength of granular material with a modified enzyme-induced carbonate precipitation (EICP) treatment solution publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.121529 – volume: 21 start-page: 306 issue: 2 year: 2022 ident: 10.1016/j.conbuildmat.2024.135360_bib27 article-title: Enzyme-induced carbonate precipitation for the protection of earthen dikes and embankments under surface runoff: laboratory investigations publication-title: J. Ocean Univ. China doi: 10.1007/s11802-022-4821-9 – volume: 115 start-page: 710 year: 2018 ident: 10.1016/j.conbuildmat.2024.135360_bib52 article-title: Small-strain shear modulus and liquefaction resistance of sand with carbonate precipitation publication-title: Soil Dyn. Earthq. Eng. doi: 10.1016/j.soildyn.2018.09.027 – volume: 56 start-page: 1849 issue: 12 year: 2019 ident: 10.1016/j.conbuildmat.2024.135360_bib16 article-title: Effect of relative density and biocementation on cyclic response of calcareous sand publication-title: Can. Geotech. J. doi: 10.1139/cgj-2018-0573 – volume: 37 issue: 12 year: 2009 ident: 10.1016/j.conbuildmat.2024.135360_bib77 article-title: Experimental study on evolutionary characteristics of dynamic pore water pressure of saturated sands publication-title: J. Tongji Univ. – volume: 10 year: 2022 ident: 10.1016/j.conbuildmat.2024.135360_bib13 article-title: A review of enzyme-induced calcium carbonate precipitation applicability in the oil and gas industry publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2022.900881 |
| SSID | ssj0006262 |
| Score | 2.5085607 |
| Snippet | The enzyme-induced calcite precipitation (EICP) has recently gained popularity as a ground improvement technique. Bio-cementation via EICP increases the... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 135360 |
| SubjectTerms | Bio-cementation Calcium carbonate (CaCO3)/Calcite Consolidated drained triaxial test Cyclic triaxial test Enzyme-induced calcite precipitation (EICP) Liquefaction |
| Title | Bio-cementation of sand using enzyme-induced calcite precipitation: Mechanical behavior and microstructural analysis |
| URI | https://dx.doi.org/10.1016/j.conbuildmat.2024.135360 |
| Volume | 417 |
| WOSCitedRecordID | wos001186372200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0526 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006262 issn: 0950-0618 databaseCode: AIEXJ dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKhxB7QFzFxkVG4g15Suw0cRAvBW0MJCYkhtQ9RYntaK3WtKLNtPGX-JMc33IpoA0kXqLIio_rfF_t45NzQehlUFKqZBmTEZOCREwEpKBlRJiiSR7BlpqntthEcnTEJ5P082Dww8fCnJ8lVcUvLtLlf4Ua2gBsHTr7F3A3QqEB7gF0uALscL0W8G-nCyKsT7jXBlfaOl4bq4Cqvl_OFYGTeK2__ANCApROnSpATJcuX7e2EnxSOiTYIOgj-c13hrl24LNJZ03CjtwlNekquboIqE9La6hVuNrbr0A9tq-gcfuBIatZbmO0x3O4aVx6TmtjxT2pyZfLuuXwiTKGoIOaHK46ze9twehFPe0ZMmhkAsNZzyKpa-C45dgtzpGN7HTLqy7SYcsP_LLyWyPEDICrzKRgQnt6lL22Tz_b9sYu2Pgmere3WdYRlWlRmRV1A23RZJTyIdoaf9iffGw2fjgbUpva0c7jFnrRuhP-4Xf9Xh3qqDjHd9EddzbBY8upe2igqvtou5Ox8gFab7ALL0qs2YUNu3CfXdixC_fY9Rq33MKeW1jL2OAW9tx6iL4e7B-_OySucAcRjIZrotIozGmpIl4ylsaSKjhlJCWXKomDNIoZgydonoBqxPhIqjKUvIB1IuayCFMRskdoWC0q9VinFAhK0GjpKE8L2GvgMSVBjkqUzAOQs4O4f3-ZcPPQxVXOsitx3EG06bq0qV2u0-mNBylzOqrVPTMg4tXdd_9lzCfodvt_eYqGgIN6hm6K8_V09e25Y-FP03e_2g |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bio-cementation+of+sand+using+enzyme-induced+calcite+precipitation%3A+Mechanical+behavior+and+microstructural+analysis&rft.jtitle=Construction+%26+building+materials&rft.au=Gitanjali%2C+Amali&rft.au=Jhuo%2C+Yu-Syuan&rft.au=Yeh%2C+Fu-Hsuan&rft.au=Ge%2C+Louis&rft.date=2024-02-23&rft.issn=0950-0618&rft.volume=417&rft.spage=135360&rft_id=info:doi/10.1016%2Fj.conbuildmat.2024.135360&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conbuildmat_2024_135360 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon |