Health indicator construction and status assessment of rotating machinery by spatio-temporal fusion of multi-domain mixed features
•An integrated HI model is constructed by taking advantage of SA, LSTM, and ICAE.•RS is used to exact the multi-domain features of the Fourier transformed signals.•STOA-XGBoost can optimize the parameters of status assessment model automatically.•The validation of SALICAE is verified by both standar...
Uložené v:
| Vydané v: | Measurement : journal of the International Measurement Confederation Ročník 205; s. 112170 |
|---|---|
| Hlavní autori: | , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.12.2022
|
| Predmet: | |
| ISSN: | 0263-2241, 1873-412X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •An integrated HI model is constructed by taking advantage of SA, LSTM, and ICAE.•RS is used to exact the multi-domain features of the Fourier transformed signals.•STOA-XGBoost can optimize the parameters of status assessment model automatically.•The validation of SALICAE is verified by both standard database and lab platform.
Rotating machinery has been applied in various industries, and weak fault feature monitoring is of great significance to constructing health indicators (HIs) and assessing their status. However, there are some challenges in HI construction and status assessment, including difficult expression of weak features, incomplete information domain, and quantification of early degradation points. To construct a novel HI of rotating machinery, this paper proposes a multi-domain features-based spatio-temporal fusion method, which integrates the spatio-temporal advantages of self-attention (SA), long short-term memory (LSTM), and an improved convolutional autoencoder (ICAE), called SALICAE. On this basis, the sooty tern optimization algorithm (STOA) is used to automatically optimize the extreme gradient boosting model (XGBoost) for assessing the status of rotating machinery accurately. The effectiveness and adaptability of the proposed method are verified by the standard bearing database from Xi’an Jiaotong University, and the average accuracy under different working conditions is approximately 85.3%. Moreover, the accuracy of the proposed method is also tested by the reducer platform organized by our lab, which is 99.3%. |
|---|---|
| AbstractList | •An integrated HI model is constructed by taking advantage of SA, LSTM, and ICAE.•RS is used to exact the multi-domain features of the Fourier transformed signals.•STOA-XGBoost can optimize the parameters of status assessment model automatically.•The validation of SALICAE is verified by both standard database and lab platform.
Rotating machinery has been applied in various industries, and weak fault feature monitoring is of great significance to constructing health indicators (HIs) and assessing their status. However, there are some challenges in HI construction and status assessment, including difficult expression of weak features, incomplete information domain, and quantification of early degradation points. To construct a novel HI of rotating machinery, this paper proposes a multi-domain features-based spatio-temporal fusion method, which integrates the spatio-temporal advantages of self-attention (SA), long short-term memory (LSTM), and an improved convolutional autoencoder (ICAE), called SALICAE. On this basis, the sooty tern optimization algorithm (STOA) is used to automatically optimize the extreme gradient boosting model (XGBoost) for assessing the status of rotating machinery accurately. The effectiveness and adaptability of the proposed method are verified by the standard bearing database from Xi’an Jiaotong University, and the average accuracy under different working conditions is approximately 85.3%. Moreover, the accuracy of the proposed method is also tested by the reducer platform organized by our lab, which is 99.3%. |
| ArticleNumber | 112170 |
| Author | Duan, Yong Xu, Xin Cao, Xiangang Zhao, Jiangbin |
| Author_xml | – sequence: 1 givenname: Yong surname: Duan fullname: Duan, Yong email: duanyong152@163.com organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, PR China – sequence: 2 givenname: Xiangang surname: Cao fullname: Cao, Xiangang email: cao_xust@sina.com organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, PR China – sequence: 3 givenname: Jiangbin surname: Zhao fullname: Zhao, Jiangbin organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, PR China – sequence: 4 givenname: Xin surname: Xu fullname: Xu, Xin organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, PR China |
| BookMark | eNqNkE1LJDEQhsPiwo7u_ofsD-gxH21n5yQy-AWCFwVvoSaprBm6kyGVFufqL7eb8SCePBW8VD1V9Ryzo5QTMvZXiqUUsjvdLgcEGgsOmOpSCaWWUippxA-2kP-Mblqpno7YQqhON0q18hc7JtoKITq96hbs7Qahr888Jh8d1Fy4y4lqGV2NOXFInlOFOhIHIiSa1_AceMlTGtN_PoB7jgnLnm_2nHZTmJuKwy4X6HkYaaZM_cPY19j4PEBMfIiv6HnAiVuQfrOfAXrCPx_1hD1eXT6sb5q7--vb9cVd47SStcHuDLQyZwh6utyEFloVvA-wClqA7oRx3rVBaCdRb4wLThm58Up4o1bGB33CVgeuK5moYLC7EgcoeyuFnWXarf0k084y7UHmNHv-ZdbFWUBOtUDsv0VYHwg4vfgSsVhyEZNDHwu6an2O36C8A8tWoHM |
| CitedBy_id | crossref_primary_10_1016_j_measurement_2023_113475 crossref_primary_10_1016_j_measurement_2023_112460 crossref_primary_10_3390_math12071048 crossref_primary_10_1016_j_measurement_2024_114994 crossref_primary_10_1088_1361_6501_ad3411 crossref_primary_10_1177_09596518241237080 crossref_primary_10_1016_j_measurement_2024_115433 crossref_primary_10_1016_j_aei_2024_102945 crossref_primary_10_1016_j_ifacol_2023_10_572 crossref_primary_10_1088_1361_6501_adb5b2 crossref_primary_10_1088_1361_6501_acf515 crossref_primary_10_1109_TIM_2023_3320767 crossref_primary_10_1109_JSEN_2024_3409904 crossref_primary_10_3390_math11234833 crossref_primary_10_1088_1361_6501_ad457e crossref_primary_10_1016_j_ymssp_2023_110943 crossref_primary_10_1016_j_measurement_2023_114082 crossref_primary_10_1109_TIM_2024_3373804 crossref_primary_10_25139_ijair_v6i2_8496 crossref_primary_10_1016_j_cie_2025_110988 crossref_primary_10_1016_j_engappai_2025_110216 |
| Cites_doi | 10.1007/s12206-020-0412-0 10.1016/j.neucom.2018.02.083 10.1016/j.neucom.2017.02.045 10.1016/j.measurement.2020.107735 10.1016/j.compind.2019.04.013 10.1109/TII.2018.2858281 10.1016/j.measurement.2020.107929 10.1109/TFUZZ.2017.2718483 10.1016/j.trc.2020.102665 10.1016/j.ymssp.2012.10.006 10.1016/j.ymssp.2021.107696 10.1016/j.measurement.2021.109276 10.1088/1361-6501/ab8c0f 10.1016/j.measurement.2022.111276 10.1016/j.isatra.2020.12.052 10.1016/j.neunet.2009.11.009 10.3390/rs14030461 10.1016/j.ymssp.2022.109094 10.1016/j.microrel.2018.03.031 10.1109/TSP.2021.3106450 10.1093/bioinformatics/btz734 10.3901/JME.2019.16.001 10.1016/j.measurement.2018.11.040 10.1109/TR.2018.2882682 10.1155/2021/7756299 10.1109/TII.2020.3041114 10.1016/j.aei.2021.101247 10.1109/TIM.2022.3193196 10.1109/TNNLS.2020.3026644 10.1371/journal.pone.0213833 10.1016/j.engappai.2019.03.021 10.1016/j.isatra.2020.03.017 10.1109/TIM.2020.3041105 10.1016/j.measurement.2020.107583 10.1177/1475921720963951 10.1109/TSMC.2017.2746762 10.1109/TMECH.2020.2995757 10.1016/j.isatra.2021.04.024 10.1142/S0218001419510017 10.1109/ACCESS.2019.2942371 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.measurement.2022.112170 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Physics |
| EISSN | 1873-412X |
| ExternalDocumentID | 10_1016_j_measurement_2022_112170 S0263224122013665 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFNM ABFRF ABJNI ABMAC ABNEU ABXDB ABYKQ ACDAQ ACFVG ACGFO ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEFWE AEGXH AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GS5 HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SET SEW SPC SPCBC SPD SSQ SST SSZ T5K WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ACLOT ACVFH ADCNI AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c321t-e65a3275ea33967f4a42fddfa9f30a3607cdc4f03c1e3b7cfc271bd20d7297df3 |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000894217600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0263-2241 |
| IngestDate | Sat Nov 29 07:22:17 EST 2025 Tue Nov 18 21:33:10 EST 2025 Fri Feb 23 02:39:45 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-domain mixed features Rotating machinery Status assessment STOA-XGBoost Health indicator Spatio-temporal fusion |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c321t-e65a3275ea33967f4a42fddfa9f30a3607cdc4f03c1e3b7cfc271bd20d7297df3 |
| ParticipantIDs | crossref_primary_10_1016_j_measurement_2022_112170 crossref_citationtrail_10_1016_j_measurement_2022_112170 elsevier_sciencedirect_doi_10_1016_j_measurement_2022_112170 |
| PublicationCentury | 2000 |
| PublicationDate | December 2022 2022-12-00 |
| PublicationDateYYYYMMDD | 2022-12-01 |
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022 |
| PublicationDecade | 2020 |
| PublicationTitle | Measurement : journal of the International Measurement Confederation |
| PublicationYear | 2022 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | He, Pang, Jiang, Xie (b0130) 2021; 17 May, Maier, Dandy (b0240) 2009; 23 Kumar, Gandhi, Zhou, Kumar, Xiang (b0005) 2020; 158 Abid, Khan, Khan (b0030) 2020; 50 Guo, Si, Xiang (b0180) 2022; 196 G. Jin, Y. Cui, L. Zeng, H. Tang, Y. Feng, J. Huang, Urban ride-hailing demand prediction with multiple Spatio-temporal information fusion network, Transport. Res. C-emer. 117 (2020) 102665, doi: 10.1016/j.trc.2020.102665. Nguyen, Medjaher (b0190) 2020; 113 She, Jia, Pecht (b0090) 2020; 31 Y. Cheng, K. Hu, J. Wu, H. Zhu, X. Shao, A convolutional neural network based degradation indicator construction and health prognosis using bidirectional long short-term memory network for rolling bearings, Adv. Eng. Inform. 48 (2021) 101247, doi: 10.1016/J.AEI.2021.101247. Lei, Wen, Dong, Huang, Zhou, Zhang, Chen (b0045) 2021; 70 Su, Xiang, Hu, Gao, Yang (b0020) 2021; 177 Li, Yan, Wang, Babiker, Wu (b0200) 2019; 7 Guo, Li, Jia, Lei, Lin (b0060) 2017; 240 She, Jia (b0085) 2019; 135 Wu, Feng, Wu, Jiang, Wang (b0110) 2019; 41 Yin, Zhang, Zhou, Han, Wang, Hu (b0160) 2018; 84 Zhou, Chen, Zi, An (b0040) 2020; 34 H. Zhang, C. Cheng, Z. Xu, J. Li, Survey of data fusion based on deep learning, Comput. Eng. Appl. 56 (24) (2020) 1-11, doi: 10.3778/j.issn.1002-8331.2007-0475. D. Lei, G. Ran, L. Zhang, W. Li, A spatiotemporal fusion method based on multiscale feature extraction and spatial channel attention mechanism, Remote Sensing 14 (3) (2022) 461, doi: 10.3390/RS14030461. Z. Li, J. Wu, X. Yue, A shape-constrained neural data fusion network for health index construction and residual life prediction, IEEE T. Neur. Net. Lear. 32(11) (2021) 5022–5033, doi: 10.1109/TNNLS.2020.3026644. Xu, Shu, Li, Tang (b0095) 2021; 20 Hu, Zhang, Liang (b0205) 2013; 36 Rezaeianjouybari, Shang (b0175) 2020; 163 Hou, Wang, Kong, Liu, Peng, Tsui (b0050) 2022; 174 B. Cai, X. Kong, Y. Liu, J. Lin, X. Yuan, H. Xu, R. Ji, Application of Bayesian networks in reliability evaluation, IEEE T. Ind. Inform. 15(4) (2018) 2146–2157, doi: 10.1109/ACCESS.2019.2942371. Wang, Lei, Li, Li (b0230) 2020; 69 J. Yao, H. Jing, C. Zhao, A multimode coupled input neural network for rotating machinery fault diagnosis in the noisy environment, Control. Decis. (2022) 1–9, doi: 10.13195/j.kzyjc.2021.1851. Z. Liu, Q. Pan, J. Dezert, A. Martin, Combination of classifiers with optimal weight based on evidential reasoning, IEEE T. Fuzzy Syst. 26(3) (2017) 1217–1230, doi: 10.1109/TFUZZ.2017.2718483. Chen, Cheng, Tang, Xiao, Chen, Shi (b0035) 2020; 156 Duan, Deng (b0010) 2020; 25 Chang, Chen, Lv, Liu (b0065) 2021; 122 J. Zhan, R. Wang, L. Yi, Y. Wang, Z. Xie, Health assessment methods for wind turbines based on power prediction and Mahalanobis distance, Int. J. Pattern Recogn. 33 (02) (2019) 1951001, doi: 10.1142/S0218001419510017. Y. Zhang, B. Feng, Y. Cheng, W. Liao, C. Guo, Fault diagnosis method for oil-immersed transformer based on XGBoost optimized by genetic algorithm, Electr. Power Autom. Equip. 41(02) (2021) 200–206, doi: 10.16081/j.epae.202012021. C. Liu, G. Wen, Y. Su, Y. Yuan, X. Huang, Degradation assessment of rolling bearings based on mixed domain relative feature and FOA-XGBoost module, J. Vib. Meas. Diagn. 41 (05) (2021) 880–887+1031, doi: 10.16450/j.cnki.issn.1004-6801.2021.05.007. Chen, Qin, Wang, Zhou (b0105) 2020; 114 D. She, Research on Deep Learning Based Health Assessment and Remaining Useful Life Prediction of Rolling Bearing, Southeast University, 2020, doi: 10.27014/d.cnki.gdnau.2020.002903. Ping, Chen, Pan, Pan (b0100) 2019; 109 Olga, Qin, Markus, Pierre, Wan-Jui, Melanie (b0015) 2020; 92 John, Sadasivan, Seelamantula (b0195) 2021; 69 C. Song, F. Xiao, S. Liu, S. Li, L. Duan, Observation of vehicle state driven by wheel motor based on unscented Kalman filter, J. Jilin Univ. (Eng. Technol.) 46 (02) (2016) 333–339, doi: 10.13229/j.cnki.jdxbgxb201602001. Luo, Hu, Zhang, Shen, Cheng (b0025) 2021; 157 Yang, Zhang, Dai (b0165) 2019; 14 B. Yu, W. Qiu, C. Chen, A. Ma, J. Jiang, H. Zhou, Q. Ma, J. Hancock, SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting, Bioinformatics 36(4) (2020) 1074–1081, doi: 10.1093/bioinformatics/btz734. Yan, Fu, Lu, Li, Shen, Wang (b0075) 2022; 71 Guo, Lei, Li, Yan, Li (b0080) 2018; 292 Dhiman, Kaur (b0215) 2019; 82 Lei, Han, Wang, Li, Yan, Yang (b0225) 2019; 55 Yang, Qiang, Tian (b0185) 2021; 2021 Luo (10.1016/j.measurement.2022.112170_b0025) 2021; 157 Xu (10.1016/j.measurement.2022.112170_b0095) 2021; 20 Chang (10.1016/j.measurement.2022.112170_b0065) 2021; 122 He (10.1016/j.measurement.2022.112170_b0130) 2021; 17 She (10.1016/j.measurement.2022.112170_b0090) 2020; 31 10.1016/j.measurement.2022.112170_b0140 Ping (10.1016/j.measurement.2022.112170_b0100) 2019; 109 Li (10.1016/j.measurement.2022.112170_b0200) 2019; 7 10.1016/j.measurement.2022.112170_b0120 10.1016/j.measurement.2022.112170_b0220 10.1016/j.measurement.2022.112170_b0145 Zhou (10.1016/j.measurement.2022.112170_b0040) 2020; 34 She (10.1016/j.measurement.2022.112170_b0085) 2019; 135 10.1016/j.measurement.2022.112170_b0125 Su (10.1016/j.measurement.2022.112170_b0020) 2021; 177 Abid (10.1016/j.measurement.2022.112170_b0030) 2020; 50 Guo (10.1016/j.measurement.2022.112170_b0080) 2018; 292 Dhiman (10.1016/j.measurement.2022.112170_b0215) 2019; 82 May (10.1016/j.measurement.2022.112170_b0240) 2009; 23 Guo (10.1016/j.measurement.2022.112170_b0060) 2017; 240 Lei (10.1016/j.measurement.2022.112170_b0045) 2021; 70 Olga (10.1016/j.measurement.2022.112170_b0015) 2020; 92 Lei (10.1016/j.measurement.2022.112170_b0225) 2019; 55 10.1016/j.measurement.2022.112170_b0070 Duan (10.1016/j.measurement.2022.112170_b0010) 2020; 25 10.1016/j.measurement.2022.112170_b0170 Hu (10.1016/j.measurement.2022.112170_b0205) 2013; 36 10.1016/j.measurement.2022.112170_b0150 10.1016/j.measurement.2022.112170_b0055 10.1016/j.measurement.2022.112170_b0155 Yang (10.1016/j.measurement.2022.112170_b0165) 2019; 14 10.1016/j.measurement.2022.112170_b0210 Hou (10.1016/j.measurement.2022.112170_b0050) 2022; 174 John (10.1016/j.measurement.2022.112170_b0195) 2021; 69 Wang (10.1016/j.measurement.2022.112170_b0230) 2020; 69 10.1016/j.measurement.2022.112170_b0135 Nguyen (10.1016/j.measurement.2022.112170_b0190) 2020; 113 10.1016/j.measurement.2022.112170_b0235 10.1016/j.measurement.2022.112170_b0115 Rezaeianjouybari (10.1016/j.measurement.2022.112170_b0175) 2020; 163 Chen (10.1016/j.measurement.2022.112170_b0035) 2020; 156 Kumar (10.1016/j.measurement.2022.112170_b0005) 2020; 158 Yang (10.1016/j.measurement.2022.112170_b0185) 2021; 2021 Wu (10.1016/j.measurement.2022.112170_b0110) 2019; 41 Yin (10.1016/j.measurement.2022.112170_b0160) 2018; 84 Chen (10.1016/j.measurement.2022.112170_b0105) 2020; 114 Yan (10.1016/j.measurement.2022.112170_b0075) 2022; 71 Guo (10.1016/j.measurement.2022.112170_b0180) 2022; 196 |
| References_xml | – volume: 31 year: 2020 ident: b0090 article-title: Sparse auto-encoder with regularization method for health indicator construction and remaining useful life prediction of rolling bearing publication-title: Meas. Sci. Technol. – volume: 196 year: 2022 ident: b0180 article-title: A compound fault diagnosis method of rolling bearing based on wavelet scattering transform and improved soft threshold denoising algorithm publication-title: Measurement – volume: 34 start-page: 1901 year: 2020 end-page: 1912 ident: b0040 article-title: A modified SOM method based on nonlinear neural weight updating for bearing fault identification in variable speed condition publication-title: J. Mech. Sci. Technol. – volume: 55 start-page: 1 year: 2019 end-page: 6 ident: b0225 article-title: XJTU-SY rolling element bearing accelerated life test datasets: a tutorial publication-title: J. Mech. Eng. – reference: D. Lei, G. Ran, L. Zhang, W. Li, A spatiotemporal fusion method based on multiscale feature extraction and spatial channel attention mechanism, Remote Sensing 14 (3) (2022) 461, doi: 10.3390/RS14030461. – reference: Z. Liu, Q. Pan, J. Dezert, A. Martin, Combination of classifiers with optimal weight based on evidential reasoning, IEEE T. Fuzzy Syst. 26(3) (2017) 1217–1230, doi: 10.1109/TFUZZ.2017.2718483. – volume: 69 start-page: 5021 year: 2021 end-page: 5036 ident: b0195 article-title: adaptive Savitzky-Golay filtering in non-Gaussian noise publication-title: IEEE T. Signal Proces. – volume: 20 start-page: 2110 year: 2021 end-page: 2123 ident: b0095 article-title: Health indicator construction for roller bearing based on an unsupervised deep belief network with a novel sigmoid zero local minimum point model publication-title: Struct. Health Monit. – volume: 17 start-page: 6875 year: 2021 end-page: 6884 ident: b0130 article-title: A Spatio-temporal multiscale neural network approach for wind turbine fault diagnosis with imbalanced SCADA data publication-title: IEEE T. Ind. Inform. – reference: J. Yao, H. Jing, C. Zhao, A multimode coupled input neural network for rotating machinery fault diagnosis in the noisy environment, Control. Decis. (2022) 1–9, doi: 10.13195/j.kzyjc.2021.1851. – volume: 84 start-page: 187 year: 2018 end-page: 196 ident: b0160 article-title: A new health estimation model for CNC machine tool based on infinite irrelevance and belief rule base publication-title: Microelectron. Reliab. – volume: 70 start-page: 3505914 year: 2021 ident: b0045 article-title: An intelligent fault diagnosis method based on domain adaptation and its application for bearings under polytropic working conditions publication-title: IEEE T. Instru. Meas. – volume: 292 start-page: 142 year: 2018 end-page: 150 ident: b0080 article-title: Machinery health indicator construction based on convolutional neural networks considering trend burr publication-title: Neurocomputing – reference: C. Song, F. Xiao, S. Liu, S. Li, L. Duan, Observation of vehicle state driven by wheel motor based on unscented Kalman filter, J. Jilin Univ. (Eng. Technol.) 46 (02) (2016) 333–339, doi: 10.13229/j.cnki.jdxbgxb201602001. – reference: D. She, Research on Deep Learning Based Health Assessment and Remaining Useful Life Prediction of Rolling Bearing, Southeast University, 2020, doi: 10.27014/d.cnki.gdnau.2020.002903. – volume: 7 start-page: 138528 year: 2019 end-page: 138540 ident: b0200 article-title: Health indicator construction based on MD-CUMSUM with multi-domain features selection for rolling element bearing fault diagnosis publication-title: IEEE Access – volume: 50 start-page: 348 year: 2020 end-page: 359 ident: b0030 article-title: Multidomain features-based GA optimized artificial immune system for bearing fault detection publication-title: IEEE T. Syst. Man Cy-S. – volume: 163 year: 2020 ident: b0175 article-title: Deep learning for prognostics and health management: state of the art, challenges, and opportunities publication-title: Measurement – volume: 113 start-page: 81 year: 2020 end-page: 96 ident: b0190 article-title: An automated health indicator construction methodology for prognostics based on multi-criteria optimization publication-title: Isa T. – reference: B. Yu, W. Qiu, C. Chen, A. Ma, J. Jiang, H. Zhou, Q. Ma, J. Hancock, SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting, Bioinformatics 36(4) (2020) 1074–1081, doi: 10.1093/bioinformatics/btz734. – volume: 25 start-page: 2264 year: 2020 end-page: 2275 ident: b0010 article-title: Prognostics of health measures for machines with aging and dynamic cumulative damage publication-title: IEEE ASME T. Mech. – volume: 177 year: 2021 ident: b0020 article-title: A novel hybrid method based on KELM with SAPSO for fault diagnosis of rolling bearing under variable operating conditions publication-title: Measurement – volume: 122 start-page: 409 year: 2021 end-page: 423 ident: b0065 article-title: Heterogeneous bi-directional recurrent neural network combining fusion health indicator for predictive analytics of rotating machinery publication-title: Isa T. – volume: 71 start-page: 3518612 year: 2022 ident: b0075 article-title: Integration of a novel knowledge-guided loss function with an architecturally explainable network for machine degradation modeling publication-title: IEEE T. Instru. Meas. – volume: 92 year: 2020 ident: b0015 article-title: Potential, challenges and future directions for deep learning in prognostics and health management applications publication-title: Eng. Appl. Artif. Intel. – volume: 240 start-page: 98 year: 2017 end-page: 109 ident: b0060 article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings publication-title: Neurocomputing – volume: 109 start-page: 72 year: 2019 end-page: 82 ident: b0100 article-title: Degradation feature extraction using multi-source monitoring data via logarithmic normal distribution based variational auto-encoder publication-title: Comput. Ind. – volume: 114 start-page: 44 year: 2020 end-page: 56 ident: b0105 article-title: Health indicator construction by quadratic function-based deep convolutional auto-encoder and its application into bearing RUL prediction publication-title: Isa T. – volume: 69 start-page: 401 year: 2020 end-page: 412 ident: b0230 article-title: A hybrid prognostics approach for estimating remaining useful life of rolling element bearings publication-title: IEEE T. Reliab. – volume: 23 start-page: 283 year: 2009 end-page: 294 ident: b0240 article-title: Data splitting for artificial neural networks using SOM-based stratified sampling publication-title: Neural Networks – reference: H. Zhang, C. Cheng, Z. Xu, J. Li, Survey of data fusion based on deep learning, Comput. Eng. Appl. 56 (24) (2020) 1-11, doi: 10.3778/j.issn.1002-8331.2007-0475. – volume: 174 year: 2022 ident: b0050 article-title: Understanding importance of positive and negative signs of optimized weights used in the sum of weighted normalized Fourier spectrum/envelope spectrum for machine condition monitoring publication-title: Mech. Syst. Signal Pr. – volume: 156 year: 2020 ident: b0035 article-title: A novel optimized multi-kernel relevance vector machine with selected sensitive features and its application in early fault diagnosis for rolling bearings publication-title: Measurement – reference: Z. Li, J. Wu, X. Yue, A shape-constrained neural data fusion network for health index construction and residual life prediction, IEEE T. Neur. Net. Lear. 32(11) (2021) 5022–5033, doi: 10.1109/TNNLS.2020.3026644. – volume: 2021 start-page: 7756299 year: 2021 ident: b0185 article-title: A hybrid model for short-term traffic flow prediction based on variational mode decomposition, wavelet threshold denoising, and long short-term memory neural network publication-title: Complexity – reference: Y. Zhang, B. Feng, Y. Cheng, W. Liao, C. Guo, Fault diagnosis method for oil-immersed transformer based on XGBoost optimized by genetic algorithm, Electr. Power Autom. Equip. 41(02) (2021) 200–206, doi: 10.16081/j.epae.202012021. – volume: 36 start-page: 385 year: 2013 end-page: 400 ident: b0205 article-title: Dynamic degradation observer for bearing fault by MTS–SOM system publication-title: Mech. Syst. Signal Pr. – volume: 158 year: 2020 ident: b0005 article-title: Latest developments in gear defect diagnosis and prognosis: a review publication-title: Measurement – reference: J. Zhan, R. Wang, L. Yi, Y. Wang, Z. Xie, Health assessment methods for wind turbines based on power prediction and Mahalanobis distance, Int. J. Pattern Recogn. 33 (02) (2019) 1951001, doi: 10.1142/S0218001419510017. – reference: G. Jin, Y. Cui, L. Zeng, H. Tang, Y. Feng, J. Huang, Urban ride-hailing demand prediction with multiple Spatio-temporal information fusion network, Transport. Res. C-emer. 117 (2020) 102665, doi: 10.1016/j.trc.2020.102665. – reference: Y. Cheng, K. Hu, J. Wu, H. Zhu, X. Shao, A convolutional neural network based degradation indicator construction and health prognosis using bidirectional long short-term memory network for rolling bearings, Adv. Eng. Inform. 48 (2021) 101247, doi: 10.1016/J.AEI.2021.101247. – volume: 135 start-page: 368 year: 2019 end-page: 375 ident: b0085 article-title: Wear indicator construction of rolling bearings based on multi-channel deep convolutional neural network with exponentially decaying learning rate publication-title: Measurement – volume: 14 start-page: 1 year: 2019 end-page: 20 ident: b0165 article-title: A fuzzy comprehensive CS-SVR model-based health status evaluation of radar publication-title: PLoS ONE – reference: B. Cai, X. Kong, Y. Liu, J. Lin, X. Yuan, H. Xu, R. Ji, Application of Bayesian networks in reliability evaluation, IEEE T. Ind. Inform. 15(4) (2018) 2146–2157, doi: 10.1109/ACCESS.2019.2942371. – volume: 82 start-page: 148 year: 2019 end-page: 174 ident: b0215 article-title: STOA: a bio-inspired based optimization algorithm for industrial engineering problems publication-title: Eng. Appl. Artif. Intel. – reference: C. Liu, G. Wen, Y. Su, Y. Yuan, X. Huang, Degradation assessment of rolling bearings based on mixed domain relative feature and FOA-XGBoost module, J. Vib. Meas. Diagn. 41 (05) (2021) 880–887+1031, doi: 10.16450/j.cnki.issn.1004-6801.2021.05.007. – volume: 157 year: 2021 ident: b0025 article-title: Improved phase space warping method for degradation tracking of rotating machinery under variable working conditions publication-title: Mech. Syst. Signal Pr. – volume: 41 start-page: 526 year: 2019 ident: b0110 article-title: A method for constructing rolling bearing lifetime health indicator based on multi-scale convolutional neural networks publication-title: J. Braz. Soc. Mech. Sci. – volume: 34 start-page: 1901 issue: 7 year: 2020 ident: 10.1016/j.measurement.2022.112170_b0040 article-title: A modified SOM method based on nonlinear neural weight updating for bearing fault identification in variable speed condition publication-title: J. Mech. Sci. Technol. doi: 10.1007/s12206-020-0412-0 – volume: 292 start-page: 142 year: 2018 ident: 10.1016/j.measurement.2022.112170_b0080 article-title: Machinery health indicator construction based on convolutional neural networks considering trend burr publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.02.083 – volume: 240 start-page: 98 year: 2017 ident: 10.1016/j.measurement.2022.112170_b0060 article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.02.045 – volume: 92 year: 2020 ident: 10.1016/j.measurement.2022.112170_b0015 article-title: Potential, challenges and future directions for deep learning in prognostics and health management applications publication-title: Eng. Appl. Artif. Intel. – volume: 158 year: 2020 ident: 10.1016/j.measurement.2022.112170_b0005 article-title: Latest developments in gear defect diagnosis and prognosis: a review publication-title: Measurement doi: 10.1016/j.measurement.2020.107735 – volume: 109 start-page: 72 year: 2019 ident: 10.1016/j.measurement.2022.112170_b0100 article-title: Degradation feature extraction using multi-source monitoring data via logarithmic normal distribution based variational auto-encoder publication-title: Comput. Ind. doi: 10.1016/j.compind.2019.04.013 – ident: 10.1016/j.measurement.2022.112170_b0170 doi: 10.1109/TII.2018.2858281 – volume: 163 year: 2020 ident: 10.1016/j.measurement.2022.112170_b0175 article-title: Deep learning for prognostics and health management: state of the art, challenges, and opportunities publication-title: Measurement doi: 10.1016/j.measurement.2020.107929 – ident: 10.1016/j.measurement.2022.112170_b0210 – ident: 10.1016/j.measurement.2022.112170_b0155 doi: 10.1109/TFUZZ.2017.2718483 – ident: 10.1016/j.measurement.2022.112170_b0125 doi: 10.1016/j.trc.2020.102665 – volume: 36 start-page: 385 issue: 2 year: 2013 ident: 10.1016/j.measurement.2022.112170_b0205 article-title: Dynamic degradation observer for bearing fault by MTS–SOM system publication-title: Mech. Syst. Signal Pr. doi: 10.1016/j.ymssp.2012.10.006 – volume: 157 year: 2021 ident: 10.1016/j.measurement.2022.112170_b0025 article-title: Improved phase space warping method for degradation tracking of rotating machinery under variable working conditions publication-title: Mech. Syst. Signal Pr. doi: 10.1016/j.ymssp.2021.107696 – volume: 177 year: 2021 ident: 10.1016/j.measurement.2022.112170_b0020 article-title: A novel hybrid method based on KELM with SAPSO for fault diagnosis of rolling bearing under variable operating conditions publication-title: Measurement doi: 10.1016/j.measurement.2021.109276 – volume: 31 issue: 10 year: 2020 ident: 10.1016/j.measurement.2022.112170_b0090 article-title: Sparse auto-encoder with regularization method for health indicator construction and remaining useful life prediction of rolling bearing publication-title: Meas. Sci. Technol. doi: 10.1088/1361-6501/ab8c0f – ident: 10.1016/j.measurement.2022.112170_b0150 – ident: 10.1016/j.measurement.2022.112170_b0055 – volume: 196 year: 2022 ident: 10.1016/j.measurement.2022.112170_b0180 article-title: A compound fault diagnosis method of rolling bearing based on wavelet scattering transform and improved soft threshold denoising algorithm publication-title: Measurement doi: 10.1016/j.measurement.2022.111276 – volume: 114 start-page: 44 year: 2020 ident: 10.1016/j.measurement.2022.112170_b0105 article-title: Health indicator construction by quadratic function-based deep convolutional auto-encoder and its application into bearing RUL prediction publication-title: Isa T. doi: 10.1016/j.isatra.2020.12.052 – ident: 10.1016/j.measurement.2022.112170_b0070 – volume: 23 start-page: 283 issue: 2 year: 2009 ident: 10.1016/j.measurement.2022.112170_b0240 article-title: Data splitting for artificial neural networks using SOM-based stratified sampling publication-title: Neural Networks doi: 10.1016/j.neunet.2009.11.009 – ident: 10.1016/j.measurement.2022.112170_b0120 doi: 10.3390/rs14030461 – volume: 174 year: 2022 ident: 10.1016/j.measurement.2022.112170_b0050 article-title: Understanding importance of positive and negative signs of optimized weights used in the sum of weighted normalized Fourier spectrum/envelope spectrum for machine condition monitoring publication-title: Mech. Syst. Signal Pr. doi: 10.1016/j.ymssp.2022.109094 – volume: 84 start-page: 187 year: 2018 ident: 10.1016/j.measurement.2022.112170_b0160 article-title: A new health estimation model for CNC machine tool based on infinite irrelevance and belief rule base publication-title: Microelectron. Reliab. doi: 10.1016/j.microrel.2018.03.031 – volume: 69 start-page: 5021 year: 2021 ident: 10.1016/j.measurement.2022.112170_b0195 article-title: adaptive Savitzky-Golay filtering in non-Gaussian noise publication-title: IEEE T. Signal Proces. doi: 10.1109/TSP.2021.3106450 – ident: 10.1016/j.measurement.2022.112170_b0135 – ident: 10.1016/j.measurement.2022.112170_b0220 doi: 10.1093/bioinformatics/btz734 – volume: 55 start-page: 1 issue: 16 year: 2019 ident: 10.1016/j.measurement.2022.112170_b0225 article-title: XJTU-SY rolling element bearing accelerated life test datasets: a tutorial publication-title: J. Mech. Eng. doi: 10.3901/JME.2019.16.001 – volume: 135 start-page: 368 year: 2019 ident: 10.1016/j.measurement.2022.112170_b0085 article-title: Wear indicator construction of rolling bearings based on multi-channel deep convolutional neural network with exponentially decaying learning rate publication-title: Measurement doi: 10.1016/j.measurement.2018.11.040 – volume: 69 start-page: 401 issue: 1 year: 2020 ident: 10.1016/j.measurement.2022.112170_b0230 article-title: A hybrid prognostics approach for estimating remaining useful life of rolling element bearings publication-title: IEEE T. Reliab. doi: 10.1109/TR.2018.2882682 – volume: 2021 start-page: 7756299 year: 2021 ident: 10.1016/j.measurement.2022.112170_b0185 article-title: A hybrid model for short-term traffic flow prediction based on variational mode decomposition, wavelet threshold denoising, and long short-term memory neural network publication-title: Complexity doi: 10.1155/2021/7756299 – volume: 17 start-page: 6875 issue: 10 year: 2021 ident: 10.1016/j.measurement.2022.112170_b0130 article-title: A Spatio-temporal multiscale neural network approach for wind turbine fault diagnosis with imbalanced SCADA data publication-title: IEEE T. Ind. Inform. doi: 10.1109/TII.2020.3041114 – ident: 10.1016/j.measurement.2022.112170_b0140 doi: 10.1016/j.aei.2021.101247 – volume: 71 start-page: 3518612 year: 2022 ident: 10.1016/j.measurement.2022.112170_b0075 article-title: Integration of a novel knowledge-guided loss function with an architecturally explainable network for machine degradation modeling publication-title: IEEE T. Instru. Meas. doi: 10.1109/TIM.2022.3193196 – volume: 41 start-page: 526 issue: 11 year: 2019 ident: 10.1016/j.measurement.2022.112170_b0110 article-title: A method for constructing rolling bearing lifetime health indicator based on multi-scale convolutional neural networks publication-title: J. Braz. Soc. Mech. Sci. – ident: 10.1016/j.measurement.2022.112170_b0235 doi: 10.1109/TNNLS.2020.3026644 – volume: 14 start-page: 1 issue: 3 year: 2019 ident: 10.1016/j.measurement.2022.112170_b0165 article-title: A fuzzy comprehensive CS-SVR model-based health status evaluation of radar publication-title: PLoS ONE doi: 10.1371/journal.pone.0213833 – volume: 82 start-page: 148 year: 2019 ident: 10.1016/j.measurement.2022.112170_b0215 article-title: STOA: a bio-inspired based optimization algorithm for industrial engineering problems publication-title: Eng. Appl. Artif. Intel. doi: 10.1016/j.engappai.2019.03.021 – ident: 10.1016/j.measurement.2022.112170_b0115 – volume: 113 start-page: 81 year: 2020 ident: 10.1016/j.measurement.2022.112170_b0190 article-title: An automated health indicator construction methodology for prognostics based on multi-criteria optimization publication-title: Isa T. doi: 10.1016/j.isatra.2020.03.017 – volume: 70 start-page: 3505914 year: 2021 ident: 10.1016/j.measurement.2022.112170_b0045 article-title: An intelligent fault diagnosis method based on domain adaptation and its application for bearings under polytropic working conditions publication-title: IEEE T. Instru. Meas. doi: 10.1109/TIM.2020.3041105 – volume: 156 year: 2020 ident: 10.1016/j.measurement.2022.112170_b0035 article-title: A novel optimized multi-kernel relevance vector machine with selected sensitive features and its application in early fault diagnosis for rolling bearings publication-title: Measurement doi: 10.1016/j.measurement.2020.107583 – volume: 20 start-page: 2110 issue: 4 year: 2021 ident: 10.1016/j.measurement.2022.112170_b0095 article-title: Health indicator construction for roller bearing based on an unsupervised deep belief network with a novel sigmoid zero local minimum point model publication-title: Struct. Health Monit. doi: 10.1177/1475921720963951 – volume: 50 start-page: 348 issue: 1 year: 2020 ident: 10.1016/j.measurement.2022.112170_b0030 article-title: Multidomain features-based GA optimized artificial immune system for bearing fault detection publication-title: IEEE T. Syst. Man Cy-S. doi: 10.1109/TSMC.2017.2746762 – volume: 25 start-page: 2264 issue: 5 year: 2020 ident: 10.1016/j.measurement.2022.112170_b0010 article-title: Prognostics of health measures for machines with aging and dynamic cumulative damage publication-title: IEEE ASME T. Mech. doi: 10.1109/TMECH.2020.2995757 – volume: 122 start-page: 409 year: 2021 ident: 10.1016/j.measurement.2022.112170_b0065 article-title: Heterogeneous bi-directional recurrent neural network combining fusion health indicator for predictive analytics of rotating machinery publication-title: Isa T. doi: 10.1016/j.isatra.2021.04.024 – ident: 10.1016/j.measurement.2022.112170_b0145 doi: 10.1142/S0218001419510017 – volume: 7 start-page: 138528 year: 2019 ident: 10.1016/j.measurement.2022.112170_b0200 article-title: Health indicator construction based on MD-CUMSUM with multi-domain features selection for rolling element bearing fault diagnosis publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2942371 |
| SSID | ssj0006396 |
| Score | 2.433583 |
| Snippet | •An integrated HI model is constructed by taking advantage of SA, LSTM, and ICAE.•RS is used to exact the multi-domain features of the Fourier transformed... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 112170 |
| SubjectTerms | Health indicator Multi-domain mixed features Rotating machinery Spatio-temporal fusion Status assessment STOA-XGBoost |
| Title | Health indicator construction and status assessment of rotating machinery by spatio-temporal fusion of multi-domain mixed features |
| URI | https://dx.doi.org/10.1016/j.measurement.2022.112170 |
| Volume | 205 |
| WOSCitedRecordID | wos000894217600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-412X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006396 issn: 0263-2241 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKB4g9IBggtgEyEm9VqsRu7UTiZRpDMImJhyEFXiLHsUenNpmadepe-Yn8Iq7tfJgB2kDiJaos2_m4p_a518fXCL2KuY45jVSgqEmqLXkYCHCbg4IBO-dEMUmkPWyCHx3FaZp8HAy-t3thLua8LOP1Ojn7r6aGMjC22Tr7F-buOoUC-A1GhyuYHa43MnyzscisRUvjURtheZcl1q4VmE1Eq3okuqSchjEuK7MoX56MFlZeqZaXhpnWVnAdNAms5iO9qhuGaZWIQVEtxKwcLWZrIK5a2SyhtU94P_QxSBt98DJV9LrNNiDpV7ZbEU1aUF8p8Gbl4rWfq2bCtasnNtqbAs5PRF_85asrPzTl-azrIl252qUf7yDE0464YZEwGhji4Y_hJJx6ozBwyMgdR_LLBOFiFafjRf9CY3OXcd_m56TcVybLTsLYquNOM6-rzHSVua5uoQ3Cp0k8RBt77w_Sw44fACdkLvLn3uMuetmrDv_wXL9nTR4TOn6A7jcuDN5z0HuIBqrcQpteYsstdMcKi2X9CH1zcMQdHLEPRwxwxA6OuIcjrjRu4Yg7OOL8El-BI3ZwNPV9OGILR9zC8TH69PbgeP9d0Jz7EUhKovNAsamg8O0UjBoJ43oiJkQXhRaJpqGgLOSykBMdUhkpmnOpJeFRXpCwAE-RF5o-QcOyKtVThLWYaq1UziKmJ0WigZ1rrpkAv0bm4Mtvo7j9rplskuKbs1nm2bX23Uaka3rmMsPcpNHr1nhZQ3Eddc0AoNc33_mXe-6ie_3_6BkagonVc3RbXpzP6uWLBp0_APAK2bo |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Health+indicator+construction+and+status+assessment+of+rotating+machinery+by+spatio-temporal+fusion+of+multi-domain+mixed+features&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Duan%2C+Yong&rft.au=Cao%2C+Xiangang&rft.au=Zhao%2C+Jiangbin&rft.au=Xu%2C+Xin&rft.date=2022-12-01&rft.issn=0263-2241&rft.volume=205&rft.spage=112170&rft_id=info:doi/10.1016%2Fj.measurement.2022.112170&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2022_112170 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon |