Health indicator construction and status assessment of rotating machinery by spatio-temporal fusion of multi-domain mixed features

•An integrated HI model is constructed by taking advantage of SA, LSTM, and ICAE.•RS is used to exact the multi-domain features of the Fourier transformed signals.•STOA-XGBoost can optimize the parameters of status assessment model automatically.•The validation of SALICAE is verified by both standar...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Measurement : journal of the International Measurement Confederation Ročník 205; s. 112170
Hlavní autori: Duan, Yong, Cao, Xiangang, Zhao, Jiangbin, Xu, Xin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 01.12.2022
Predmet:
ISSN:0263-2241, 1873-412X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract •An integrated HI model is constructed by taking advantage of SA, LSTM, and ICAE.•RS is used to exact the multi-domain features of the Fourier transformed signals.•STOA-XGBoost can optimize the parameters of status assessment model automatically.•The validation of SALICAE is verified by both standard database and lab platform. Rotating machinery has been applied in various industries, and weak fault feature monitoring is of great significance to constructing health indicators (HIs) and assessing their status. However, there are some challenges in HI construction and status assessment, including difficult expression of weak features, incomplete information domain, and quantification of early degradation points. To construct a novel HI of rotating machinery, this paper proposes a multi-domain features-based spatio-temporal fusion method, which integrates the spatio-temporal advantages of self-attention (SA), long short-term memory (LSTM), and an improved convolutional autoencoder (ICAE), called SALICAE. On this basis, the sooty tern optimization algorithm (STOA) is used to automatically optimize the extreme gradient boosting model (XGBoost) for assessing the status of rotating machinery accurately. The effectiveness and adaptability of the proposed method are verified by the standard bearing database from Xi’an Jiaotong University, and the average accuracy under different working conditions is approximately 85.3%. Moreover, the accuracy of the proposed method is also tested by the reducer platform organized by our lab, which is 99.3%.
AbstractList •An integrated HI model is constructed by taking advantage of SA, LSTM, and ICAE.•RS is used to exact the multi-domain features of the Fourier transformed signals.•STOA-XGBoost can optimize the parameters of status assessment model automatically.•The validation of SALICAE is verified by both standard database and lab platform. Rotating machinery has been applied in various industries, and weak fault feature monitoring is of great significance to constructing health indicators (HIs) and assessing their status. However, there are some challenges in HI construction and status assessment, including difficult expression of weak features, incomplete information domain, and quantification of early degradation points. To construct a novel HI of rotating machinery, this paper proposes a multi-domain features-based spatio-temporal fusion method, which integrates the spatio-temporal advantages of self-attention (SA), long short-term memory (LSTM), and an improved convolutional autoencoder (ICAE), called SALICAE. On this basis, the sooty tern optimization algorithm (STOA) is used to automatically optimize the extreme gradient boosting model (XGBoost) for assessing the status of rotating machinery accurately. The effectiveness and adaptability of the proposed method are verified by the standard bearing database from Xi’an Jiaotong University, and the average accuracy under different working conditions is approximately 85.3%. Moreover, the accuracy of the proposed method is also tested by the reducer platform organized by our lab, which is 99.3%.
ArticleNumber 112170
Author Duan, Yong
Xu, Xin
Cao, Xiangang
Zhao, Jiangbin
Author_xml – sequence: 1
  givenname: Yong
  surname: Duan
  fullname: Duan, Yong
  email: duanyong152@163.com
  organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, PR China
– sequence: 2
  givenname: Xiangang
  surname: Cao
  fullname: Cao, Xiangang
  email: cao_xust@sina.com
  organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, PR China
– sequence: 3
  givenname: Jiangbin
  surname: Zhao
  fullname: Zhao, Jiangbin
  organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, PR China
– sequence: 4
  givenname: Xin
  surname: Xu
  fullname: Xu, Xin
  organization: School of Mechanical Engineering, Xi’an University of Science and Technology, Xi’an 710054, PR China
BookMark eNqNkE1LJDEQhsPiwo7u_ofsD-gxH21n5yQy-AWCFwVvoSaprBm6kyGVFufqL7eb8SCePBW8VD1V9Ryzo5QTMvZXiqUUsjvdLgcEGgsOmOpSCaWWUippxA-2kP-Mblqpno7YQqhON0q18hc7JtoKITq96hbs7Qahr888Jh8d1Fy4y4lqGV2NOXFInlOFOhIHIiSa1_AceMlTGtN_PoB7jgnLnm_2nHZTmJuKwy4X6HkYaaZM_cPY19j4PEBMfIiv6HnAiVuQfrOfAXrCPx_1hD1eXT6sb5q7--vb9cVd47SStcHuDLQyZwh6utyEFloVvA-wClqA7oRx3rVBaCdRb4wLThm58Up4o1bGB33CVgeuK5moYLC7EgcoeyuFnWXarf0k084y7UHmNHv-ZdbFWUBOtUDsv0VYHwg4vfgSsVhyEZNDHwu6an2O36C8A8tWoHM
CitedBy_id crossref_primary_10_1016_j_measurement_2023_113475
crossref_primary_10_1016_j_measurement_2023_112460
crossref_primary_10_3390_math12071048
crossref_primary_10_1016_j_measurement_2024_114994
crossref_primary_10_1088_1361_6501_ad3411
crossref_primary_10_1177_09596518241237080
crossref_primary_10_1016_j_measurement_2024_115433
crossref_primary_10_1016_j_aei_2024_102945
crossref_primary_10_1016_j_ifacol_2023_10_572
crossref_primary_10_1088_1361_6501_adb5b2
crossref_primary_10_1088_1361_6501_acf515
crossref_primary_10_1109_TIM_2023_3320767
crossref_primary_10_1109_JSEN_2024_3409904
crossref_primary_10_3390_math11234833
crossref_primary_10_1088_1361_6501_ad457e
crossref_primary_10_1016_j_ymssp_2023_110943
crossref_primary_10_1016_j_measurement_2023_114082
crossref_primary_10_1109_TIM_2024_3373804
crossref_primary_10_25139_ijair_v6i2_8496
crossref_primary_10_1016_j_cie_2025_110988
crossref_primary_10_1016_j_engappai_2025_110216
Cites_doi 10.1007/s12206-020-0412-0
10.1016/j.neucom.2018.02.083
10.1016/j.neucom.2017.02.045
10.1016/j.measurement.2020.107735
10.1016/j.compind.2019.04.013
10.1109/TII.2018.2858281
10.1016/j.measurement.2020.107929
10.1109/TFUZZ.2017.2718483
10.1016/j.trc.2020.102665
10.1016/j.ymssp.2012.10.006
10.1016/j.ymssp.2021.107696
10.1016/j.measurement.2021.109276
10.1088/1361-6501/ab8c0f
10.1016/j.measurement.2022.111276
10.1016/j.isatra.2020.12.052
10.1016/j.neunet.2009.11.009
10.3390/rs14030461
10.1016/j.ymssp.2022.109094
10.1016/j.microrel.2018.03.031
10.1109/TSP.2021.3106450
10.1093/bioinformatics/btz734
10.3901/JME.2019.16.001
10.1016/j.measurement.2018.11.040
10.1109/TR.2018.2882682
10.1155/2021/7756299
10.1109/TII.2020.3041114
10.1016/j.aei.2021.101247
10.1109/TIM.2022.3193196
10.1109/TNNLS.2020.3026644
10.1371/journal.pone.0213833
10.1016/j.engappai.2019.03.021
10.1016/j.isatra.2020.03.017
10.1109/TIM.2020.3041105
10.1016/j.measurement.2020.107583
10.1177/1475921720963951
10.1109/TSMC.2017.2746762
10.1109/TMECH.2020.2995757
10.1016/j.isatra.2021.04.024
10.1142/S0218001419510017
10.1109/ACCESS.2019.2942371
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2022.112170
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2022_112170
S0263224122013665
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GS5
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c321t-e65a3275ea33967f4a42fddfa9f30a3607cdc4f03c1e3b7cfc271bd20d7297df3
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000894217600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Sat Nov 29 07:22:17 EST 2025
Tue Nov 18 21:33:10 EST 2025
Fri Feb 23 02:39:45 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-domain mixed features
Rotating machinery
Status assessment
STOA-XGBoost
Health indicator
Spatio-temporal fusion
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-e65a3275ea33967f4a42fddfa9f30a3607cdc4f03c1e3b7cfc271bd20d7297df3
ParticipantIDs crossref_primary_10_1016_j_measurement_2022_112170
crossref_citationtrail_10_1016_j_measurement_2022_112170
elsevier_sciencedirect_doi_10_1016_j_measurement_2022_112170
PublicationCentury 2000
PublicationDate December 2022
2022-12-00
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References He, Pang, Jiang, Xie (b0130) 2021; 17
May, Maier, Dandy (b0240) 2009; 23
Kumar, Gandhi, Zhou, Kumar, Xiang (b0005) 2020; 158
Abid, Khan, Khan (b0030) 2020; 50
Guo, Si, Xiang (b0180) 2022; 196
G. Jin, Y. Cui, L. Zeng, H. Tang, Y. Feng, J. Huang, Urban ride-hailing demand prediction with multiple Spatio-temporal information fusion network, Transport. Res. C-emer. 117 (2020) 102665, doi: 10.1016/j.trc.2020.102665.
Nguyen, Medjaher (b0190) 2020; 113
She, Jia, Pecht (b0090) 2020; 31
Y. Cheng, K. Hu, J. Wu, H. Zhu, X. Shao, A convolutional neural network based degradation indicator construction and health prognosis using bidirectional long short-term memory network for rolling bearings, Adv. Eng. Inform. 48 (2021) 101247, doi: 10.1016/J.AEI.2021.101247.
Lei, Wen, Dong, Huang, Zhou, Zhang, Chen (b0045) 2021; 70
Su, Xiang, Hu, Gao, Yang (b0020) 2021; 177
Li, Yan, Wang, Babiker, Wu (b0200) 2019; 7
Guo, Li, Jia, Lei, Lin (b0060) 2017; 240
She, Jia (b0085) 2019; 135
Wu, Feng, Wu, Jiang, Wang (b0110) 2019; 41
Yin, Zhang, Zhou, Han, Wang, Hu (b0160) 2018; 84
Zhou, Chen, Zi, An (b0040) 2020; 34
H. Zhang, C. Cheng, Z. Xu, J. Li, Survey of data fusion based on deep learning, Comput. Eng. Appl. 56 (24) (2020) 1-11, doi: 10.3778/j.issn.1002-8331.2007-0475.
D. Lei, G. Ran, L. Zhang, W. Li, A spatiotemporal fusion method based on multiscale feature extraction and spatial channel attention mechanism, Remote Sensing 14 (3) (2022) 461, doi: 10.3390/RS14030461.
Z. Li, J. Wu, X. Yue, A shape-constrained neural data fusion network for health index construction and residual life prediction, IEEE T. Neur. Net. Lear. 32(11) (2021) 5022–5033, doi: 10.1109/TNNLS.2020.3026644.
Xu, Shu, Li, Tang (b0095) 2021; 20
Hu, Zhang, Liang (b0205) 2013; 36
Rezaeianjouybari, Shang (b0175) 2020; 163
Hou, Wang, Kong, Liu, Peng, Tsui (b0050) 2022; 174
B. Cai, X. Kong, Y. Liu, J. Lin, X. Yuan, H. Xu, R. Ji, Application of Bayesian networks in reliability evaluation, IEEE T. Ind. Inform. 15(4) (2018) 2146–2157, doi: 10.1109/ACCESS.2019.2942371.
Wang, Lei, Li, Li (b0230) 2020; 69
J. Yao, H. Jing, C. Zhao, A multimode coupled input neural network for rotating machinery fault diagnosis in the noisy environment, Control. Decis. (2022) 1–9, doi: 10.13195/j.kzyjc.2021.1851.
Z. Liu, Q. Pan, J. Dezert, A. Martin, Combination of classifiers with optimal weight based on evidential reasoning, IEEE T. Fuzzy Syst. 26(3) (2017) 1217–1230, doi: 10.1109/TFUZZ.2017.2718483.
Chen, Cheng, Tang, Xiao, Chen, Shi (b0035) 2020; 156
Duan, Deng (b0010) 2020; 25
Chang, Chen, Lv, Liu (b0065) 2021; 122
J. Zhan, R. Wang, L. Yi, Y. Wang, Z. Xie, Health assessment methods for wind turbines based on power prediction and Mahalanobis distance, Int. J. Pattern Recogn. 33 (02) (2019) 1951001, doi: 10.1142/S0218001419510017.
Y. Zhang, B. Feng, Y. Cheng, W. Liao, C. Guo, Fault diagnosis method for oil-immersed transformer based on XGBoost optimized by genetic algorithm, Electr. Power Autom. Equip. 41(02) (2021) 200–206, doi: 10.16081/j.epae.202012021.
C. Liu, G. Wen, Y. Su, Y. Yuan, X. Huang, Degradation assessment of rolling bearings based on mixed domain relative feature and FOA-XGBoost module, J. Vib. Meas. Diagn. 41 (05) (2021) 880–887+1031, doi: 10.16450/j.cnki.issn.1004-6801.2021.05.007.
Chen, Qin, Wang, Zhou (b0105) 2020; 114
D. She, Research on Deep Learning Based Health Assessment and Remaining Useful Life Prediction of Rolling Bearing, Southeast University, 2020, doi: 10.27014/d.cnki.gdnau.2020.002903.
Ping, Chen, Pan, Pan (b0100) 2019; 109
Olga, Qin, Markus, Pierre, Wan-Jui, Melanie (b0015) 2020; 92
John, Sadasivan, Seelamantula (b0195) 2021; 69
C. Song, F. Xiao, S. Liu, S. Li, L. Duan, Observation of vehicle state driven by wheel motor based on unscented Kalman filter, J. Jilin Univ. (Eng. Technol.) 46 (02) (2016) 333–339, doi: 10.13229/j.cnki.jdxbgxb201602001.
Luo, Hu, Zhang, Shen, Cheng (b0025) 2021; 157
Yang, Zhang, Dai (b0165) 2019; 14
B. Yu, W. Qiu, C. Chen, A. Ma, J. Jiang, H. Zhou, Q. Ma, J. Hancock, SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting, Bioinformatics 36(4) (2020) 1074–1081, doi: 10.1093/bioinformatics/btz734.
Yan, Fu, Lu, Li, Shen, Wang (b0075) 2022; 71
Guo, Lei, Li, Yan, Li (b0080) 2018; 292
Dhiman, Kaur (b0215) 2019; 82
Lei, Han, Wang, Li, Yan, Yang (b0225) 2019; 55
Yang, Qiang, Tian (b0185) 2021; 2021
Luo (10.1016/j.measurement.2022.112170_b0025) 2021; 157
Xu (10.1016/j.measurement.2022.112170_b0095) 2021; 20
Chang (10.1016/j.measurement.2022.112170_b0065) 2021; 122
He (10.1016/j.measurement.2022.112170_b0130) 2021; 17
She (10.1016/j.measurement.2022.112170_b0090) 2020; 31
10.1016/j.measurement.2022.112170_b0140
Ping (10.1016/j.measurement.2022.112170_b0100) 2019; 109
Li (10.1016/j.measurement.2022.112170_b0200) 2019; 7
10.1016/j.measurement.2022.112170_b0120
10.1016/j.measurement.2022.112170_b0220
10.1016/j.measurement.2022.112170_b0145
Zhou (10.1016/j.measurement.2022.112170_b0040) 2020; 34
She (10.1016/j.measurement.2022.112170_b0085) 2019; 135
10.1016/j.measurement.2022.112170_b0125
Su (10.1016/j.measurement.2022.112170_b0020) 2021; 177
Abid (10.1016/j.measurement.2022.112170_b0030) 2020; 50
Guo (10.1016/j.measurement.2022.112170_b0080) 2018; 292
Dhiman (10.1016/j.measurement.2022.112170_b0215) 2019; 82
May (10.1016/j.measurement.2022.112170_b0240) 2009; 23
Guo (10.1016/j.measurement.2022.112170_b0060) 2017; 240
Lei (10.1016/j.measurement.2022.112170_b0045) 2021; 70
Olga (10.1016/j.measurement.2022.112170_b0015) 2020; 92
Lei (10.1016/j.measurement.2022.112170_b0225) 2019; 55
10.1016/j.measurement.2022.112170_b0070
Duan (10.1016/j.measurement.2022.112170_b0010) 2020; 25
10.1016/j.measurement.2022.112170_b0170
Hu (10.1016/j.measurement.2022.112170_b0205) 2013; 36
10.1016/j.measurement.2022.112170_b0150
10.1016/j.measurement.2022.112170_b0055
10.1016/j.measurement.2022.112170_b0155
Yang (10.1016/j.measurement.2022.112170_b0165) 2019; 14
10.1016/j.measurement.2022.112170_b0210
Hou (10.1016/j.measurement.2022.112170_b0050) 2022; 174
John (10.1016/j.measurement.2022.112170_b0195) 2021; 69
Wang (10.1016/j.measurement.2022.112170_b0230) 2020; 69
10.1016/j.measurement.2022.112170_b0135
Nguyen (10.1016/j.measurement.2022.112170_b0190) 2020; 113
10.1016/j.measurement.2022.112170_b0235
10.1016/j.measurement.2022.112170_b0115
Rezaeianjouybari (10.1016/j.measurement.2022.112170_b0175) 2020; 163
Chen (10.1016/j.measurement.2022.112170_b0035) 2020; 156
Kumar (10.1016/j.measurement.2022.112170_b0005) 2020; 158
Yang (10.1016/j.measurement.2022.112170_b0185) 2021; 2021
Wu (10.1016/j.measurement.2022.112170_b0110) 2019; 41
Yin (10.1016/j.measurement.2022.112170_b0160) 2018; 84
Chen (10.1016/j.measurement.2022.112170_b0105) 2020; 114
Yan (10.1016/j.measurement.2022.112170_b0075) 2022; 71
Guo (10.1016/j.measurement.2022.112170_b0180) 2022; 196
References_xml – volume: 31
  year: 2020
  ident: b0090
  article-title: Sparse auto-encoder with regularization method for health indicator construction and remaining useful life prediction of rolling bearing
  publication-title: Meas. Sci. Technol.
– volume: 196
  year: 2022
  ident: b0180
  article-title: A compound fault diagnosis method of rolling bearing based on wavelet scattering transform and improved soft threshold denoising algorithm
  publication-title: Measurement
– volume: 34
  start-page: 1901
  year: 2020
  end-page: 1912
  ident: b0040
  article-title: A modified SOM method based on nonlinear neural weight updating for bearing fault identification in variable speed condition
  publication-title: J. Mech. Sci. Technol.
– volume: 55
  start-page: 1
  year: 2019
  end-page: 6
  ident: b0225
  article-title: XJTU-SY rolling element bearing accelerated life test datasets: a tutorial
  publication-title: J. Mech. Eng.
– reference: D. Lei, G. Ran, L. Zhang, W. Li, A spatiotemporal fusion method based on multiscale feature extraction and spatial channel attention mechanism, Remote Sensing 14 (3) (2022) 461, doi: 10.3390/RS14030461.
– reference: Z. Liu, Q. Pan, J. Dezert, A. Martin, Combination of classifiers with optimal weight based on evidential reasoning, IEEE T. Fuzzy Syst. 26(3) (2017) 1217–1230, doi: 10.1109/TFUZZ.2017.2718483.
– volume: 69
  start-page: 5021
  year: 2021
  end-page: 5036
  ident: b0195
  article-title: adaptive Savitzky-Golay filtering in non-Gaussian noise
  publication-title: IEEE T. Signal Proces.
– volume: 20
  start-page: 2110
  year: 2021
  end-page: 2123
  ident: b0095
  article-title: Health indicator construction for roller bearing based on an unsupervised deep belief network with a novel sigmoid zero local minimum point model
  publication-title: Struct. Health Monit.
– volume: 17
  start-page: 6875
  year: 2021
  end-page: 6884
  ident: b0130
  article-title: A Spatio-temporal multiscale neural network approach for wind turbine fault diagnosis with imbalanced SCADA data
  publication-title: IEEE T. Ind. Inform.
– reference: J. Yao, H. Jing, C. Zhao, A multimode coupled input neural network for rotating machinery fault diagnosis in the noisy environment, Control. Decis. (2022) 1–9, doi: 10.13195/j.kzyjc.2021.1851.
– volume: 84
  start-page: 187
  year: 2018
  end-page: 196
  ident: b0160
  article-title: A new health estimation model for CNC machine tool based on infinite irrelevance and belief rule base
  publication-title: Microelectron. Reliab.
– volume: 70
  start-page: 3505914
  year: 2021
  ident: b0045
  article-title: An intelligent fault diagnosis method based on domain adaptation and its application for bearings under polytropic working conditions
  publication-title: IEEE T. Instru. Meas.
– volume: 292
  start-page: 142
  year: 2018
  end-page: 150
  ident: b0080
  article-title: Machinery health indicator construction based on convolutional neural networks considering trend burr
  publication-title: Neurocomputing
– reference: C. Song, F. Xiao, S. Liu, S. Li, L. Duan, Observation of vehicle state driven by wheel motor based on unscented Kalman filter, J. Jilin Univ. (Eng. Technol.) 46 (02) (2016) 333–339, doi: 10.13229/j.cnki.jdxbgxb201602001.
– reference: D. She, Research on Deep Learning Based Health Assessment and Remaining Useful Life Prediction of Rolling Bearing, Southeast University, 2020, doi: 10.27014/d.cnki.gdnau.2020.002903.
– volume: 7
  start-page: 138528
  year: 2019
  end-page: 138540
  ident: b0200
  article-title: Health indicator construction based on MD-CUMSUM with multi-domain features selection for rolling element bearing fault diagnosis
  publication-title: IEEE Access
– volume: 50
  start-page: 348
  year: 2020
  end-page: 359
  ident: b0030
  article-title: Multidomain features-based GA optimized artificial immune system for bearing fault detection
  publication-title: IEEE T. Syst. Man Cy-S.
– volume: 163
  year: 2020
  ident: b0175
  article-title: Deep learning for prognostics and health management: state of the art, challenges, and opportunities
  publication-title: Measurement
– volume: 113
  start-page: 81
  year: 2020
  end-page: 96
  ident: b0190
  article-title: An automated health indicator construction methodology for prognostics based on multi-criteria optimization
  publication-title: Isa T.
– reference: B. Yu, W. Qiu, C. Chen, A. Ma, J. Jiang, H. Zhou, Q. Ma, J. Hancock, SubMito-XGBoost: predicting protein submitochondrial localization by fusing multiple feature information and eXtreme gradient boosting, Bioinformatics 36(4) (2020) 1074–1081, doi: 10.1093/bioinformatics/btz734.
– volume: 25
  start-page: 2264
  year: 2020
  end-page: 2275
  ident: b0010
  article-title: Prognostics of health measures for machines with aging and dynamic cumulative damage
  publication-title: IEEE ASME T. Mech.
– volume: 177
  year: 2021
  ident: b0020
  article-title: A novel hybrid method based on KELM with SAPSO for fault diagnosis of rolling bearing under variable operating conditions
  publication-title: Measurement
– volume: 122
  start-page: 409
  year: 2021
  end-page: 423
  ident: b0065
  article-title: Heterogeneous bi-directional recurrent neural network combining fusion health indicator for predictive analytics of rotating machinery
  publication-title: Isa T.
– volume: 71
  start-page: 3518612
  year: 2022
  ident: b0075
  article-title: Integration of a novel knowledge-guided loss function with an architecturally explainable network for machine degradation modeling
  publication-title: IEEE T. Instru. Meas.
– volume: 92
  year: 2020
  ident: b0015
  article-title: Potential, challenges and future directions for deep learning in prognostics and health management applications
  publication-title: Eng. Appl. Artif. Intel.
– volume: 240
  start-page: 98
  year: 2017
  end-page: 109
  ident: b0060
  article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings
  publication-title: Neurocomputing
– volume: 109
  start-page: 72
  year: 2019
  end-page: 82
  ident: b0100
  article-title: Degradation feature extraction using multi-source monitoring data via logarithmic normal distribution based variational auto-encoder
  publication-title: Comput. Ind.
– volume: 114
  start-page: 44
  year: 2020
  end-page: 56
  ident: b0105
  article-title: Health indicator construction by quadratic function-based deep convolutional auto-encoder and its application into bearing RUL prediction
  publication-title: Isa T.
– volume: 69
  start-page: 401
  year: 2020
  end-page: 412
  ident: b0230
  article-title: A hybrid prognostics approach for estimating remaining useful life of rolling element bearings
  publication-title: IEEE T. Reliab.
– volume: 23
  start-page: 283
  year: 2009
  end-page: 294
  ident: b0240
  article-title: Data splitting for artificial neural networks using SOM-based stratified sampling
  publication-title: Neural Networks
– reference: H. Zhang, C. Cheng, Z. Xu, J. Li, Survey of data fusion based on deep learning, Comput. Eng. Appl. 56 (24) (2020) 1-11, doi: 10.3778/j.issn.1002-8331.2007-0475.
– volume: 174
  year: 2022
  ident: b0050
  article-title: Understanding importance of positive and negative signs of optimized weights used in the sum of weighted normalized Fourier spectrum/envelope spectrum for machine condition monitoring
  publication-title: Mech. Syst. Signal Pr.
– volume: 156
  year: 2020
  ident: b0035
  article-title: A novel optimized multi-kernel relevance vector machine with selected sensitive features and its application in early fault diagnosis for rolling bearings
  publication-title: Measurement
– reference: Z. Li, J. Wu, X. Yue, A shape-constrained neural data fusion network for health index construction and residual life prediction, IEEE T. Neur. Net. Lear. 32(11) (2021) 5022–5033, doi: 10.1109/TNNLS.2020.3026644.
– volume: 2021
  start-page: 7756299
  year: 2021
  ident: b0185
  article-title: A hybrid model for short-term traffic flow prediction based on variational mode decomposition, wavelet threshold denoising, and long short-term memory neural network
  publication-title: Complexity
– reference: Y. Zhang, B. Feng, Y. Cheng, W. Liao, C. Guo, Fault diagnosis method for oil-immersed transformer based on XGBoost optimized by genetic algorithm, Electr. Power Autom. Equip. 41(02) (2021) 200–206, doi: 10.16081/j.epae.202012021.
– volume: 36
  start-page: 385
  year: 2013
  end-page: 400
  ident: b0205
  article-title: Dynamic degradation observer for bearing fault by MTS–SOM system
  publication-title: Mech. Syst. Signal Pr.
– volume: 158
  year: 2020
  ident: b0005
  article-title: Latest developments in gear defect diagnosis and prognosis: a review
  publication-title: Measurement
– reference: J. Zhan, R. Wang, L. Yi, Y. Wang, Z. Xie, Health assessment methods for wind turbines based on power prediction and Mahalanobis distance, Int. J. Pattern Recogn. 33 (02) (2019) 1951001, doi: 10.1142/S0218001419510017.
– reference: G. Jin, Y. Cui, L. Zeng, H. Tang, Y. Feng, J. Huang, Urban ride-hailing demand prediction with multiple Spatio-temporal information fusion network, Transport. Res. C-emer. 117 (2020) 102665, doi: 10.1016/j.trc.2020.102665.
– reference: Y. Cheng, K. Hu, J. Wu, H. Zhu, X. Shao, A convolutional neural network based degradation indicator construction and health prognosis using bidirectional long short-term memory network for rolling bearings, Adv. Eng. Inform. 48 (2021) 101247, doi: 10.1016/J.AEI.2021.101247.
– volume: 135
  start-page: 368
  year: 2019
  end-page: 375
  ident: b0085
  article-title: Wear indicator construction of rolling bearings based on multi-channel deep convolutional neural network with exponentially decaying learning rate
  publication-title: Measurement
– volume: 14
  start-page: 1
  year: 2019
  end-page: 20
  ident: b0165
  article-title: A fuzzy comprehensive CS-SVR model-based health status evaluation of radar
  publication-title: PLoS ONE
– reference: B. Cai, X. Kong, Y. Liu, J. Lin, X. Yuan, H. Xu, R. Ji, Application of Bayesian networks in reliability evaluation, IEEE T. Ind. Inform. 15(4) (2018) 2146–2157, doi: 10.1109/ACCESS.2019.2942371.
– volume: 82
  start-page: 148
  year: 2019
  end-page: 174
  ident: b0215
  article-title: STOA: a bio-inspired based optimization algorithm for industrial engineering problems
  publication-title: Eng. Appl. Artif. Intel.
– reference: C. Liu, G. Wen, Y. Su, Y. Yuan, X. Huang, Degradation assessment of rolling bearings based on mixed domain relative feature and FOA-XGBoost module, J. Vib. Meas. Diagn. 41 (05) (2021) 880–887+1031, doi: 10.16450/j.cnki.issn.1004-6801.2021.05.007.
– volume: 157
  year: 2021
  ident: b0025
  article-title: Improved phase space warping method for degradation tracking of rotating machinery under variable working conditions
  publication-title: Mech. Syst. Signal Pr.
– volume: 41
  start-page: 526
  year: 2019
  ident: b0110
  article-title: A method for constructing rolling bearing lifetime health indicator based on multi-scale convolutional neural networks
  publication-title: J. Braz. Soc. Mech. Sci.
– volume: 34
  start-page: 1901
  issue: 7
  year: 2020
  ident: 10.1016/j.measurement.2022.112170_b0040
  article-title: A modified SOM method based on nonlinear neural weight updating for bearing fault identification in variable speed condition
  publication-title: J. Mech. Sci. Technol.
  doi: 10.1007/s12206-020-0412-0
– volume: 292
  start-page: 142
  year: 2018
  ident: 10.1016/j.measurement.2022.112170_b0080
  article-title: Machinery health indicator construction based on convolutional neural networks considering trend burr
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.02.083
– volume: 240
  start-page: 98
  year: 2017
  ident: 10.1016/j.measurement.2022.112170_b0060
  article-title: A recurrent neural network based health indicator for remaining useful life prediction of bearings
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.02.045
– volume: 92
  year: 2020
  ident: 10.1016/j.measurement.2022.112170_b0015
  article-title: Potential, challenges and future directions for deep learning in prognostics and health management applications
  publication-title: Eng. Appl. Artif. Intel.
– volume: 158
  year: 2020
  ident: 10.1016/j.measurement.2022.112170_b0005
  article-title: Latest developments in gear defect diagnosis and prognosis: a review
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107735
– volume: 109
  start-page: 72
  year: 2019
  ident: 10.1016/j.measurement.2022.112170_b0100
  article-title: Degradation feature extraction using multi-source monitoring data via logarithmic normal distribution based variational auto-encoder
  publication-title: Comput. Ind.
  doi: 10.1016/j.compind.2019.04.013
– ident: 10.1016/j.measurement.2022.112170_b0170
  doi: 10.1109/TII.2018.2858281
– volume: 163
  year: 2020
  ident: 10.1016/j.measurement.2022.112170_b0175
  article-title: Deep learning for prognostics and health management: state of the art, challenges, and opportunities
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107929
– ident: 10.1016/j.measurement.2022.112170_b0210
– ident: 10.1016/j.measurement.2022.112170_b0155
  doi: 10.1109/TFUZZ.2017.2718483
– ident: 10.1016/j.measurement.2022.112170_b0125
  doi: 10.1016/j.trc.2020.102665
– volume: 36
  start-page: 385
  issue: 2
  year: 2013
  ident: 10.1016/j.measurement.2022.112170_b0205
  article-title: Dynamic degradation observer for bearing fault by MTS–SOM system
  publication-title: Mech. Syst. Signal Pr.
  doi: 10.1016/j.ymssp.2012.10.006
– volume: 157
  year: 2021
  ident: 10.1016/j.measurement.2022.112170_b0025
  article-title: Improved phase space warping method for degradation tracking of rotating machinery under variable working conditions
  publication-title: Mech. Syst. Signal Pr.
  doi: 10.1016/j.ymssp.2021.107696
– volume: 177
  year: 2021
  ident: 10.1016/j.measurement.2022.112170_b0020
  article-title: A novel hybrid method based on KELM with SAPSO for fault diagnosis of rolling bearing under variable operating conditions
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.109276
– volume: 31
  issue: 10
  year: 2020
  ident: 10.1016/j.measurement.2022.112170_b0090
  article-title: Sparse auto-encoder with regularization method for health indicator construction and remaining useful life prediction of rolling bearing
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab8c0f
– ident: 10.1016/j.measurement.2022.112170_b0150
– ident: 10.1016/j.measurement.2022.112170_b0055
– volume: 196
  year: 2022
  ident: 10.1016/j.measurement.2022.112170_b0180
  article-title: A compound fault diagnosis method of rolling bearing based on wavelet scattering transform and improved soft threshold denoising algorithm
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.111276
– volume: 114
  start-page: 44
  year: 2020
  ident: 10.1016/j.measurement.2022.112170_b0105
  article-title: Health indicator construction by quadratic function-based deep convolutional auto-encoder and its application into bearing RUL prediction
  publication-title: Isa T.
  doi: 10.1016/j.isatra.2020.12.052
– ident: 10.1016/j.measurement.2022.112170_b0070
– volume: 23
  start-page: 283
  issue: 2
  year: 2009
  ident: 10.1016/j.measurement.2022.112170_b0240
  article-title: Data splitting for artificial neural networks using SOM-based stratified sampling
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2009.11.009
– ident: 10.1016/j.measurement.2022.112170_b0120
  doi: 10.3390/rs14030461
– volume: 174
  year: 2022
  ident: 10.1016/j.measurement.2022.112170_b0050
  article-title: Understanding importance of positive and negative signs of optimized weights used in the sum of weighted normalized Fourier spectrum/envelope spectrum for machine condition monitoring
  publication-title: Mech. Syst. Signal Pr.
  doi: 10.1016/j.ymssp.2022.109094
– volume: 84
  start-page: 187
  year: 2018
  ident: 10.1016/j.measurement.2022.112170_b0160
  article-title: A new health estimation model for CNC machine tool based on infinite irrelevance and belief rule base
  publication-title: Microelectron. Reliab.
  doi: 10.1016/j.microrel.2018.03.031
– volume: 69
  start-page: 5021
  year: 2021
  ident: 10.1016/j.measurement.2022.112170_b0195
  article-title: adaptive Savitzky-Golay filtering in non-Gaussian noise
  publication-title: IEEE T. Signal Proces.
  doi: 10.1109/TSP.2021.3106450
– ident: 10.1016/j.measurement.2022.112170_b0135
– ident: 10.1016/j.measurement.2022.112170_b0220
  doi: 10.1093/bioinformatics/btz734
– volume: 55
  start-page: 1
  issue: 16
  year: 2019
  ident: 10.1016/j.measurement.2022.112170_b0225
  article-title: XJTU-SY rolling element bearing accelerated life test datasets: a tutorial
  publication-title: J. Mech. Eng.
  doi: 10.3901/JME.2019.16.001
– volume: 135
  start-page: 368
  year: 2019
  ident: 10.1016/j.measurement.2022.112170_b0085
  article-title: Wear indicator construction of rolling bearings based on multi-channel deep convolutional neural network with exponentially decaying learning rate
  publication-title: Measurement
  doi: 10.1016/j.measurement.2018.11.040
– volume: 69
  start-page: 401
  issue: 1
  year: 2020
  ident: 10.1016/j.measurement.2022.112170_b0230
  article-title: A hybrid prognostics approach for estimating remaining useful life of rolling element bearings
  publication-title: IEEE T. Reliab.
  doi: 10.1109/TR.2018.2882682
– volume: 2021
  start-page: 7756299
  year: 2021
  ident: 10.1016/j.measurement.2022.112170_b0185
  article-title: A hybrid model for short-term traffic flow prediction based on variational mode decomposition, wavelet threshold denoising, and long short-term memory neural network
  publication-title: Complexity
  doi: 10.1155/2021/7756299
– volume: 17
  start-page: 6875
  issue: 10
  year: 2021
  ident: 10.1016/j.measurement.2022.112170_b0130
  article-title: A Spatio-temporal multiscale neural network approach for wind turbine fault diagnosis with imbalanced SCADA data
  publication-title: IEEE T. Ind. Inform.
  doi: 10.1109/TII.2020.3041114
– ident: 10.1016/j.measurement.2022.112170_b0140
  doi: 10.1016/j.aei.2021.101247
– volume: 71
  start-page: 3518612
  year: 2022
  ident: 10.1016/j.measurement.2022.112170_b0075
  article-title: Integration of a novel knowledge-guided loss function with an architecturally explainable network for machine degradation modeling
  publication-title: IEEE T. Instru. Meas.
  doi: 10.1109/TIM.2022.3193196
– volume: 41
  start-page: 526
  issue: 11
  year: 2019
  ident: 10.1016/j.measurement.2022.112170_b0110
  article-title: A method for constructing rolling bearing lifetime health indicator based on multi-scale convolutional neural networks
  publication-title: J. Braz. Soc. Mech. Sci.
– ident: 10.1016/j.measurement.2022.112170_b0235
  doi: 10.1109/TNNLS.2020.3026644
– volume: 14
  start-page: 1
  issue: 3
  year: 2019
  ident: 10.1016/j.measurement.2022.112170_b0165
  article-title: A fuzzy comprehensive CS-SVR model-based health status evaluation of radar
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0213833
– volume: 82
  start-page: 148
  year: 2019
  ident: 10.1016/j.measurement.2022.112170_b0215
  article-title: STOA: a bio-inspired based optimization algorithm for industrial engineering problems
  publication-title: Eng. Appl. Artif. Intel.
  doi: 10.1016/j.engappai.2019.03.021
– ident: 10.1016/j.measurement.2022.112170_b0115
– volume: 113
  start-page: 81
  year: 2020
  ident: 10.1016/j.measurement.2022.112170_b0190
  article-title: An automated health indicator construction methodology for prognostics based on multi-criteria optimization
  publication-title: Isa T.
  doi: 10.1016/j.isatra.2020.03.017
– volume: 70
  start-page: 3505914
  year: 2021
  ident: 10.1016/j.measurement.2022.112170_b0045
  article-title: An intelligent fault diagnosis method based on domain adaptation and its application for bearings under polytropic working conditions
  publication-title: IEEE T. Instru. Meas.
  doi: 10.1109/TIM.2020.3041105
– volume: 156
  year: 2020
  ident: 10.1016/j.measurement.2022.112170_b0035
  article-title: A novel optimized multi-kernel relevance vector machine with selected sensitive features and its application in early fault diagnosis for rolling bearings
  publication-title: Measurement
  doi: 10.1016/j.measurement.2020.107583
– volume: 20
  start-page: 2110
  issue: 4
  year: 2021
  ident: 10.1016/j.measurement.2022.112170_b0095
  article-title: Health indicator construction for roller bearing based on an unsupervised deep belief network with a novel sigmoid zero local minimum point model
  publication-title: Struct. Health Monit.
  doi: 10.1177/1475921720963951
– volume: 50
  start-page: 348
  issue: 1
  year: 2020
  ident: 10.1016/j.measurement.2022.112170_b0030
  article-title: Multidomain features-based GA optimized artificial immune system for bearing fault detection
  publication-title: IEEE T. Syst. Man Cy-S.
  doi: 10.1109/TSMC.2017.2746762
– volume: 25
  start-page: 2264
  issue: 5
  year: 2020
  ident: 10.1016/j.measurement.2022.112170_b0010
  article-title: Prognostics of health measures for machines with aging and dynamic cumulative damage
  publication-title: IEEE ASME T. Mech.
  doi: 10.1109/TMECH.2020.2995757
– volume: 122
  start-page: 409
  year: 2021
  ident: 10.1016/j.measurement.2022.112170_b0065
  article-title: Heterogeneous bi-directional recurrent neural network combining fusion health indicator for predictive analytics of rotating machinery
  publication-title: Isa T.
  doi: 10.1016/j.isatra.2021.04.024
– ident: 10.1016/j.measurement.2022.112170_b0145
  doi: 10.1142/S0218001419510017
– volume: 7
  start-page: 138528
  year: 2019
  ident: 10.1016/j.measurement.2022.112170_b0200
  article-title: Health indicator construction based on MD-CUMSUM with multi-domain features selection for rolling element bearing fault diagnosis
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2942371
SSID ssj0006396
Score 2.433583
Snippet •An integrated HI model is constructed by taking advantage of SA, LSTM, and ICAE.•RS is used to exact the multi-domain features of the Fourier transformed...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 112170
SubjectTerms Health indicator
Multi-domain mixed features
Rotating machinery
Spatio-temporal fusion
Status assessment
STOA-XGBoost
Title Health indicator construction and status assessment of rotating machinery by spatio-temporal fusion of multi-domain mixed features
URI https://dx.doi.org/10.1016/j.measurement.2022.112170
Volume 205
WOSCitedRecordID wos000894217600003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFLVKB4g9IBggtgEyEm9VqsRu7UTiZRpDMImJhyEFXiLHsUenNpmadepe-Yn8Iq7tfJgB2kDiJaos2_m4p_a518fXCL2KuY45jVSgqEmqLXkYCHCbg4IBO-dEMUmkPWyCHx3FaZp8HAy-t3thLua8LOP1Ojn7r6aGMjC22Tr7F-buOoUC-A1GhyuYHa43MnyzscisRUvjURtheZcl1q4VmE1Eq3okuqSchjEuK7MoX56MFlZeqZaXhpnWVnAdNAms5iO9qhuGaZWIQVEtxKwcLWZrIK5a2SyhtU94P_QxSBt98DJV9LrNNiDpV7ZbEU1aUF8p8Gbl4rWfq2bCtasnNtqbAs5PRF_85asrPzTl-azrIl252qUf7yDE0464YZEwGhji4Y_hJJx6ozBwyMgdR_LLBOFiFafjRf9CY3OXcd_m56TcVybLTsLYquNOM6-rzHSVua5uoQ3Cp0k8RBt77w_Sw44fACdkLvLn3uMuetmrDv_wXL9nTR4TOn6A7jcuDN5z0HuIBqrcQpteYsstdMcKi2X9CH1zcMQdHLEPRwxwxA6OuIcjrjRu4Yg7OOL8El-BI3ZwNPV9OGILR9zC8TH69PbgeP9d0Jz7EUhKovNAsamg8O0UjBoJ43oiJkQXhRaJpqGgLOSykBMdUhkpmnOpJeFRXpCwAE-RF5o-QcOyKtVThLWYaq1UziKmJ0WigZ1rrpkAv0bm4Mtvo7j9rplskuKbs1nm2bX23Uaka3rmMsPcpNHr1nhZQ3Eddc0AoNc33_mXe-6ie_3_6BkagonVc3RbXpzP6uWLBp0_APAK2bo
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Health+indicator+construction+and+status+assessment+of+rotating+machinery+by+spatio-temporal+fusion+of+multi-domain+mixed+features&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Duan%2C+Yong&rft.au=Cao%2C+Xiangang&rft.au=Zhao%2C+Jiangbin&rft.au=Xu%2C+Xin&rft.date=2022-12-01&rft.issn=0263-2241&rft.volume=205&rft.spage=112170&rft_id=info:doi/10.1016%2Fj.measurement.2022.112170&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_measurement_2022_112170
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon