On reducing a quantile optimization problem with discrete distribution to a mixed integer programming problem

We propose an equivalent reduction of the quantile optimization problem with a discrete distribution of random parameters to a partially integer programming problem of large dimension. The number of integer (Boolean) variables in this problem equals the number of possible values for the random param...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Automation and remote control Ročník 74; číslo 6; s. 951 - 967
Hlavní autoři: Kibzun, A. I., Naumov, A. V., Norkin, V. I.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht SP MAIK Nauka/Interperiodica 01.06.2013
Témata:
ISSN:0005-1179, 1608-3032
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We propose an equivalent reduction of the quantile optimization problem with a discrete distribution of random parameters to a partially integer programming problem of large dimension. The number of integer (Boolean) variables in this problem equals the number of possible values for the random parameters vector. The resulting problems can be solved with standard discrete optimization software. We consider applications to quantile optimization of a financial portfolio and show results of numerical experiments.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0005-1179
1608-3032
DOI:10.1134/S0005117913060064