Predicting Drug-Target Interactions Via Dual-Stream Graph Neural Network
Drug target interaction prediction is a crucial stage in drug discovery. However, brute-force search over a compound database is financially infeasible. We have witnessed the increasing measured drug-target interactions records in recent years, and the rich drug/protein-related information allows th...
Uloženo v:
| Vydáno v: | IEEE/ACM transactions on computational biology and bioinformatics Ročník 21; číslo 4; s. 948 - 958 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.07.2024
|
| Témata: | |
| ISSN: | 1545-5963, 1557-9964, 1557-9964 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Drug target interaction prediction is a crucial stage in drug discovery. However, brute-force search over a compound database is financially infeasible. We have witnessed the increasing measured drug-target interactions records in recent years, and the rich drug/protein-related information allows the usage of graph machine learning. Despite the advances in deep learning-enabled drug-target interaction, there are still open challenges: (1) rich and complex relationship between drugs and proteins can be explored; (2) the intermediate node is not calibrated in the heterogeneous graph. To tackle with above issues, this paper proposed a framework named DSG-DTI. Specifically, DSG-DTI has the heterogeneous graph autoencoder and heterogeneous attention network-based Matrix Completion. Our framework ensures that the known types of nodes (e.g., drug, target, side effects, diseases) are precisely embedded into high-dimensional space with our pretraining skills. Also, the attention-based heterogeneous graph-based matrix completion achieves highly competitive results via effective long-range dependencies extraction. We verify our model on two public benchmarks. The result of two publicly available benchmark application programs show that the proposed scheme effectively predicts drug-target interactions and can generalize to newly registered drugs and targets with slight performance degradation, outperforming the best accuracy compared with other baselines. |
|---|---|
| AbstractList | Drug target interaction prediction is a crucial stage in drug discovery. However, brute-force search over a compound database is financially infeasible. We have witnessed the increasing measured drug-target interactions records in recent years, and the rich drug/protein-related information allows the usage of graph machine learning. Despite the advances in deep learning-enabled drug-target interaction, there are still open challenges: (1) rich and complex relationship between drugs and proteins can be explored; (2) the intermediate node is not calibrated in the heterogeneous graph. To tackle with above issues, this paper proposed a framework named DSG-DTI. Specifically, DSG-DTI has the heterogeneous graph autoencoder and heterogeneous attention network-based Matrix Completion. Our framework ensures that the known types of nodes (e.g., drug, target, side effects, diseases) are precisely embedded into high-dimensional space with our pretraining skills. Also, the attention-based heterogeneous graph-based matrix completion achieves highly competitive results via effective long-range dependencies extraction. We verify our model on two public benchmarks. The result of two publicly available benchmark application programs show that the proposed scheme effectively predicts drug-target interactions and can generalize to newly registered drugs and targets with slight performance degradation, outperforming the best accuracy compared with other baselines.Drug target interaction prediction is a crucial stage in drug discovery. However, brute-force search over a compound database is financially infeasible. We have witnessed the increasing measured drug-target interactions records in recent years, and the rich drug/protein-related information allows the usage of graph machine learning. Despite the advances in deep learning-enabled drug-target interaction, there are still open challenges: (1) rich and complex relationship between drugs and proteins can be explored; (2) the intermediate node is not calibrated in the heterogeneous graph. To tackle with above issues, this paper proposed a framework named DSG-DTI. Specifically, DSG-DTI has the heterogeneous graph autoencoder and heterogeneous attention network-based Matrix Completion. Our framework ensures that the known types of nodes (e.g., drug, target, side effects, diseases) are precisely embedded into high-dimensional space with our pretraining skills. Also, the attention-based heterogeneous graph-based matrix completion achieves highly competitive results via effective long-range dependencies extraction. We verify our model on two public benchmarks. The result of two publicly available benchmark application programs show that the proposed scheme effectively predicts drug-target interactions and can generalize to newly registered drugs and targets with slight performance degradation, outperforming the best accuracy compared with other baselines. Drug target interaction prediction is a crucial stage in drug discovery. However, brute-force search over a compound database is financially infeasible. We have witnessed the increasing measured drug-target interactions records in recent years, and the rich drug/protein-related information allows the usage of graph machine learning. Despite the advances in deep learning-enabled drug-target interaction, there are still open challenges: (1) rich and complex relationship between drugs and proteins can be explored; (2) the intermediate node is not calibrated in the heterogeneous graph. To tackle with above issues, this paper proposed a framework named DSG-DTI. Specifically, DSG-DTI has the heterogeneous graph autoencoder and heterogeneous attention network-based Matrix Completion. Our framework ensures that the known types of nodes (e.g., drug, target, side effects, diseases) are precisely embedded into high-dimensional space with our pretraining skills. Also, the attention-based heterogeneous graph-based matrix completion achieves highly competitive results via effective long-range dependencies extraction. We verify our model on two public benchmarks. The result of two publicly available benchmark application programs show that the proposed scheme effectively predicts drug-target interactions and can generalize to newly registered drugs and targets with slight performance degradation, outperforming the best accuracy compared with other baselines. |
| Author | Yang, Cheng Li, Kuan-Ching Li, Yuhui Zhang, Dafang Liang, Wei Peng, Li |
| Author_xml | – sequence: 1 givenname: Yuhui surname: Li fullname: Li, Yuhui email: liyuhui@hnu.edu.cn organization: College of Computer Science, Electronic Engineering, Hunan University, Changsha, China – sequence: 2 givenname: Wei orcidid: 0000-0002-5074-1363 surname: Liang fullname: Liang, Wei email: wliang@hnust.edu.cn organization: College of Computer Science, Electronic Engineering, Hunan University, Changsha, China – sequence: 3 givenname: Li orcidid: 0000-0002-5078-5091 surname: Peng fullname: Peng, Li email: plpeng@hnu.edu.cn organization: School of Computer Science, Engineering, Hunan University of Science, Technology, Xiangtan, China – sequence: 4 givenname: Dafang surname: Zhang fullname: Zhang, Dafang email: dfzhang@hnu.edu.cn organization: College of Computer Science, Electronic Engineering, Hunan University, Changsha, China – sequence: 5 givenname: Cheng surname: Yang fullname: Yang, Cheng email: yangchengyjs@163.com organization: School of Computer Science, Engineering, Hunan University of Science, Technology, Xiangtan, China – sequence: 6 givenname: Kuan-Ching orcidid: 0000-0003-1381-4364 surname: Li fullname: Li, Kuan-Ching email: kuancli@pu.edu.tw organization: School of Computer Science, Engineering, Hunan University of Science, Technology, Xiangtan, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36074878$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1Lw0AQhhdRrK3-ABEkRy-p-5nsHrX1oyAqWL2G6WZSo2lSdzeI_96EVg8ePM0wPO8M8wzJbt3USMgxo2PGqDmfTy4vx5xyPhacSqb1DjlgSqWxMYnc7XupYmUSMSBD798o5dJQuU8GIqGp1Kk-ILePDvPShrJeRlPXLuM5uCWGaFYHdNDNm9pHLyVE0xaq-Ck4hFV042D9Gt1j66DqSvhs3Psh2Sug8ni0rSPyfH01n9zGdw83s8nFXWwFZyFGJfhCc1sUkIDBQipmcguFzakSVphEW5BWUrDcKg25VLnVC5YWaCkaXIgROdvsXbvmo0UfslXpLVYV1Ni0PuMp41omnCUderpF28UK82ztyhW4r-zn-w5gG8C6xnuHxS_CaNYbznrDWW842xruMumfjC0D9J6Cg7L6N3mySZaI-HvJaM0ZN-IbMHyIjQ |
| CODEN | ITCBCY |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2025_3587345 crossref_primary_10_1080_09540091_2023_2241669 crossref_primary_10_3390_rs17162750 crossref_primary_10_3389_fgene_2022_1010089 crossref_primary_10_3390_electronics12112429 crossref_primary_10_1016_j_cjche_2024_10_014 crossref_primary_10_1016_j_asoc_2023_110151 crossref_primary_10_1016_j_dt_2025_01_013 crossref_primary_10_1080_09540091_2023_2233714 crossref_primary_10_1002_dac_5553 crossref_primary_10_1080_09540091_2023_2195595 crossref_primary_10_1145_3657292 crossref_primary_10_3389_fnagi_2023_1176400 crossref_primary_10_1007_s11030_025_11303_6 crossref_primary_10_1007_s11227_023_05442_6 |
| Cites_doi | 10.1021/ci8001167 10.1093/bib/bbz042 10.1021/jm020406h 10.1109/SACI.2016.7507416 10.1016/j.ygeno.2018.12.007 10.1145/2487575.2487670 10.1093/bioinformatics/bty543 10.1038/sj.bjp.0707515 10.1016/j.ins.2013.12.007 10.1109/TII.2017.2768998 10.1093/bioinformatics/btaa921 10.1109/JIOT.2021.3130434 10.1145/3292500.3330958 10.1145/3308558.3313562 10.1371/journal.pcbi.1004760 10.1093/bioinformatics/btaa880 10.1002/jcc.23905 10.1109/TCBB.2017.2706267 10.1016/j.compbiolchem.2019.03.016 10.1109/TCBB.2020.2994780 10.1109/BIBM.2018.8621368 10.1021/acs.jcim.9b00237 10.1093/bioinformatics/btq176 10.1093/bioinformatics/bts413 10.1186/s13321-015-0089-z 10.1021/acs.jcim.8b00582 10.1109/TNSE.2020.3014455 10.1016/j.jmgm.2004.11.007 10.1002/jcc.21334 10.1007/978-3-030-14680-1_63 10.5040/9781501365072.6891 10.1109/JIOT.2021.3053842 10.1371/journal.pcbi.1007129 10.1109/tnse.2021.3092204 10.1021/ci400219z 10.1016/j.neucom.2017.04.055 10.1109/tc.2021.3077738 10.18653/v1/D19-1514 10.1016/j.knosys.2015.06.010 10.1371/journal.pcbi.1002503 10.1016/j.chemolab.2017.01.016 10.1186/s13321-017-0209-z 10.1109/ISBI48211.2021.9434063 10.1109/TCYB.2018.2795041 10.1186/s12859-020-03677-1 10.1093/bioinformatics/btm266 10.1145/3426968 10.1145/3394486.3403104 10.1021/ci100369f 10.1093/bioinformatics/btq112 10.1006/jmbi.1999.3371 10.1155/2018/1425608 10.1016/j.ymeth.2015.04.036 10.1021/acs.jcim.9b00387 10.1089/cmb.2017.0135 10.1002/minf.201400009 10.1016/j.compbiolchem.2017.03.011 10.1039/c2mb00002d 10.1002/prot.21082 10.1038/s41467-017-00680-8 10.1093/bioinformatics/bty593 10.1371/journal.pone.0009603 10.1089/cmb.2010.0213 10.1109/BIOCAS.2018.8584817 10.1109/TCSS.2019.2918285 10.1016/j.cmpb.2017.09.003 10.1093/bioinformatics/btn409 10.1093/bioinformatics/bts670 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TCBB.2022.3204188 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 1557-9964 |
| EndPage | 958 |
| ExternalDocumentID | 36074878 10_1109_TCBB_2022_3204188 9882129 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 62072170; 61976087 funderid: 10.13039/501100001809 – fundername: Science and Technology Project of Department of Communications of Hunan Provincial grantid: 202101 – fundername: National Key Research and Development Program of China grantid: 2021YFA1000600 – fundername: Key Research and Development Program of Hunan Province grantid: 2022GK2015 – fundername: Natural Science Foundation of Hunan Province; Hunan Provincial Natural Science Foundation of China grantid: 2021JJ30141 funderid: 10.13039/501100004735 |
| GroupedDBID | 0R~ 29I 4.4 53G 5GY 5VS 6IK 8US 97E AAJGR AAKMM AALFJ AARMG AASAJ AAWTH AAWTV ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACM ACPRK ADBCU ADL AEBYY AEFXT AEJOY AENEX AENSD AETIX AFRAH AFWIH AFWXC AGQYO AGSQL AHBIQ AIBXA AIKLT AKJIK AKQYR AKRVB ALMA_UNASSIGNED_HOLDINGS ASPBG ATWAV AVWKF BDXCO BEFXN BFFAM BGNUA BKEBE BPEOZ CCLIF CS3 DU5 EBS EJD FEDTE GUFHI HGAVV HZ~ I07 IEDLZ IFIPE IPLJI JAVBF LAI LHSKQ M43 O9- OCL P1C P2P PQQKQ RIA RIE RNI RNS ROL RZB TN5 XOL AAYXX CITATION NPM 7X8 |
| ID | FETCH-LOGICAL-c321t-e532b82cffa6a9ef4519dcafcd053c3968ca4c40ac2c58ad45dc8b17fec0e9eb3 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001290429100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1545-5963 1557-9964 |
| IngestDate | Sun Sep 28 07:09:06 EDT 2025 Mon Jul 21 06:07:44 EDT 2025 Sat Nov 29 01:52:06 EST 2025 Tue Nov 18 21:27:19 EST 2025 Wed Aug 27 02:33:38 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c321t-e532b82cffa6a9ef4519dcafcd053c3968ca4c40ac2c58ad45dc8b17fec0e9eb3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-1381-4364 0000-0002-5074-1363 0000-0002-5078-5091 |
| PMID | 36074878 |
| PQID | 2712846216 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_TCBB_2022_3204188 proquest_miscellaneous_2712846216 crossref_citationtrail_10_1109_TCBB_2022_3204188 pubmed_primary_36074878 ieee_primary_9882129 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-07-01 |
| PublicationDateYYYYMMDD | 2024-07-01 |
| PublicationDate_xml | – month: 07 year: 2024 text: 2024-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE/ACM transactions on computational biology and bioinformatics |
| PublicationTitleAbbrev | TCBB |
| PublicationTitleAlternate | IEEE/ACM Trans Comput Biol Bioinform |
| PublicationYear | 2024 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref13 ref57 ref56 ref15 ref59 Ramsundar (ref76) 2019 ref14 ref58 ref53 ref52 ref55 ref54 Ötürk (ref10) 2019 Kipf (ref68) 2016 ref17 ref19 ref18 Maziarka (ref12) 2020 ref51 ref50 ref46 ref45 ref48 ref47 ref42 ref41 ref44 Schütt (ref71) ref43 Gomes (ref11) 2017 ref49 ref8 ref7 ref9 ref4 Poli (ref22) 2019 ref3 ref6 ref5 Hamilton (ref69) ref40 Klicpera (ref16) 2019 ref35 ref79 ref34 ref78 ref37 Wang (ref21) 2021 ref36 ref31 ref75 ref30 ref74 ref33 ref77 ref32 Xu (ref70) ref2 ref1 ref39 ref38 ref73 ref72 ref24 ref23 ref67 ref26 ref25 ref20 ref64 ref63 ref66 ref65 ref28 ref27 ref29 ref60 ref62 ref61 |
| References_xml | – ident: ref65 doi: 10.1021/ci8001167 – ident: ref14 doi: 10.1093/bib/bbz042 – ident: ref60 doi: 10.1021/jm020406h – ident: ref28 doi: 10.1109/SACI.2016.7507416 – ident: ref46 doi: 10.1016/j.ygeno.2018.12.007 – year: 2016 ident: ref68 article-title: Semi-supervised classification with graph convolutional networks – ident: ref5 doi: 10.1145/2487575.2487670 – year: 2019 ident: ref76 article-title: Deep learning for the life sciences. o’reilly media – ident: ref78 doi: 10.1093/bioinformatics/bty543 – ident: ref61 doi: 10.1038/sj.bjp.0707515 – start-page: 992 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref71 article-title: Schnet: A continuous-filter convolutional neural network for modeling quantum interactions – ident: ref32 doi: 10.1016/j.ins.2013.12.007 – ident: ref3 doi: 10.1109/TII.2017.2768998 – ident: ref72 doi: 10.1093/bioinformatics/btaa921 – ident: ref2 doi: 10.1109/JIOT.2021.3130434 – ident: ref18 doi: 10.1145/3292500.3330958 – ident: ref77 doi: 10.1145/3308558.3313562 – year: 2019 ident: ref16 article-title: Directional message passing for molecular graphs publication-title: Int. Conf. Learn. Representations – ident: ref50 doi: 10.1371/journal.pcbi.1004760 – ident: ref75 doi: 10.1093/bioinformatics/btaa880 – year: 2017 ident: ref11 article-title: Atomic convolutional networks for predicting protein-ligand binding affinity – ident: ref62 doi: 10.1002/jcc.23905 – year: 2021 ident: ref21 article-title: Hampdti: A heterogeneous graph automatic meta-path learning method for drug-target interaction prediction – ident: ref49 doi: 10.1109/TCBB.2017.2706267 – ident: ref40 doi: 10.1016/j.compbiolchem.2019.03.016 – ident: ref8 doi: 10.1109/TCBB.2020.2994780 – ident: ref57 doi: 10.1109/BIBM.2018.8621368 – ident: ref17 doi: 10.1021/acs.jcim.9b00237 – ident: ref47 doi: 10.1093/bioinformatics/btq176 – ident: ref26 doi: 10.1093/bioinformatics/bts413 – ident: ref55 doi: 10.1186/s13321-015-0089-z – ident: ref66 doi: 10.1021/acs.jcim.8b00582 – ident: ref4 doi: 10.1109/TNSE.2020.3014455 – year: 2019 ident: ref10 article-title: Widedta: Prediction of drug-target binding affinity – ident: ref64 doi: 10.1016/j.jmgm.2004.11.007 – ident: ref67 doi: 10.1002/jcc.21334 – ident: ref54 doi: 10.1007/978-3-030-14680-1_63 – ident: ref20 doi: 10.5040/9781501365072.6891 – ident: ref37 doi: 10.1109/JIOT.2021.3053842 – ident: ref39 doi: 10.1371/journal.pcbi.1007129 – ident: ref33 doi: 10.1109/tnse.2021.3092204 – ident: ref6 doi: 10.1021/ci400219z – ident: ref27 doi: 10.1016/j.neucom.2017.04.055 – ident: ref35 doi: 10.1109/tc.2021.3077738 – start-page: 1025 volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst. ident: ref69 article-title: Inductive representation learning on large graphs – ident: ref73 doi: 10.18653/v1/D19-1514 – ident: ref29 doi: 10.1016/j.knosys.2015.06.010 – ident: ref52 doi: 10.1371/journal.pcbi.1002503 – ident: ref56 doi: 10.1016/j.chemolab.2017.01.016 – ident: ref7 doi: 10.1186/s13321-017-0209-z – ident: ref74 doi: 10.1109/ISBI48211.2021.9434063 – ident: ref34 doi: 10.1109/TCYB.2018.2795041 – ident: ref79 doi: 10.1186/s12859-020-03677-1 – ident: ref42 doi: 10.1093/bioinformatics/btm266 – ident: ref36 doi: 10.1145/3426968 – ident: ref15 doi: 10.1145/3394486.3403104 – ident: ref44 doi: 10.1021/ci100369f – ident: ref45 doi: 10.1093/bioinformatics/btq112 – volume-title: Proc. Int. Conf. Learn. Representations ident: ref70 article-title: How powerful are graph neural networks? – ident: ref63 doi: 10.1006/jmbi.1999.3371 – ident: ref51 doi: 10.1155/2018/1425608 – ident: ref31 doi: 10.1016/j.ymeth.2015.04.036 – ident: ref13 doi: 10.1021/acs.jcim.9b00387 – ident: ref38 doi: 10.1089/cmb.2017.0135 – ident: ref43 doi: 10.1002/minf.201400009 – ident: ref30 doi: 10.1016/j.compbiolchem.2017.03.011 – ident: ref53 doi: 10.1039/c2mb00002d – ident: ref59 doi: 10.1002/prot.21082 – ident: ref1 doi: 10.1038/s41467-017-00680-8 – ident: ref9 doi: 10.1093/bioinformatics/bty593 – year: 2019 ident: ref22 article-title: Graph neural ordinary differential equations – ident: ref24 doi: 10.1371/journal.pone.0009603 – ident: ref25 doi: 10.1089/cmb.2010.0213 – ident: ref58 doi: 10.1109/BIOCAS.2018.8584817 – ident: ref23 doi: 10.1109/TCSS.2019.2918285 – ident: ref48 doi: 10.1016/j.cmpb.2017.09.003 – ident: ref41 doi: 10.1093/bioinformatics/btn409 – ident: ref19 doi: 10.1093/bioinformatics/bts670 – year: 2020 ident: ref12 article-title: Molecule attention transformer |
| SSID | ssj0024904 |
| Score | 2.4925313 |
| Snippet | Drug target interaction prediction is a crucial stage in drug discovery. However, brute-force search over a compound database is financially infeasible. We... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 948 |
| SubjectTerms | Deep learning Diffusion tensor imaging Diseases drug-target interactions Drugs graph neural network Machine learning matrix completion Predictive models Proteins Task analysis |
| Title | Predicting Drug-Target Interactions Via Dual-Stream Graph Neural Network |
| URI | https://ieeexplore.ieee.org/document/9882129 https://www.ncbi.nlm.nih.gov/pubmed/36074878 https://www.proquest.com/docview/2712846216 |
| Volume | 21 |
| WOSCitedRecordID | wos001290429100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1557-9964 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0024904 issn: 1545-5963 databaseCode: RIE dateStart: 20040101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21VZG4QEv5WChVkHpCuE0cJ7aPtKXtoVr1sKC9Rc54jCqVXbS7QeLf43GyWw6AxC2KbCeaGWvGnpn3AI69ZMdat6ImH4TyqESbWydMFePXNrReYYLMv9HjsZlO7e0WfNj0whBRKj6jE35MuXw_x46vyk5tDAejf9qGba3rvlfrAVfPJqpAjghEFa1qyGAWuT2dnJ-dxZOglCelzFVhmKOvrKPvNEyu9ps7Svwqfw81k8u5fPp_P7sHT4bQMvvY28I-bNHsGTzqySZ_HsD17YKTMlzmnF0suq9ikorAs3Qn2Lc3LLMvdy676Ny94Gy1-5ZdMZ51xggeceVxXzL-HD5ffpqcX4uBR0FgKYuVoKqUrZEYgqudpcCIMh5dQB93IJa2NugUqtyhxMo4ryqPpi10IMzJxtP2C9iZzWf0CjJdudaH-EprDkWMpUqVziEFTU5LGkG-FmeDA8g4c13cN-mwkduGldGwMppBGSN4v5nyvUfY-NfgA5b0ZuAg5BG8W-usiduDcx5uRvNu2UjNDriWRT2Cl70yN5PXNvD6z4u-gcfx06qvzT2EndWio7ewiz9Wd8vFUbTBqTlKNvgL-LzWdw |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NDQQvG7ABhQFB4gnhLXGcxH7cD0YRpdpDQXuLnPMZTRotahsk_nt8Tlp4YJP2FkW2ZfnOujvf3fcBvHWSDWvZiJKcF8qhEk1qrNBF8F8b3ziFETJ_VI3H-uLCnG_A-3UvDBHF4jM64M-Yy3czbPmp7NAEdzDYpzuwVSgl065b6y-ynolkgewTiCLoVZ_DzFJzODk5Pg6xoJQHuUxVppmlLy-D9dRMr_aPQYoMK9c7m9HonO3cbrsPYbt3LpOjThsewQZNH8O9jm7y9y4Mz-ecluFC5-R03n4Xk1gGnsRXwa7BYZF8u7TJaWuvBOer7Y_kIyNaJ4zhEVYed0Xje_D17MPkZCh6JgWBucyWgopcNlqi97a0hjxjyji0Hl24g5ibUqNVqFKLEgttnSoc6iarPGFKJsTbT2BzOpvSM0iqwjbOh19Vxc6INlSo3FokX5GtJA0gXR1njT3MOLNdXNUx3EhNzcKoWRh1L4wBvFtP-dlhbNw0eJdPej2wP-QBvFnJrA4XhLMedkqzdlHLik1wKbNyAE87Ya4nr3Tg-f8XfQ33h5Mvo3r0afz5BTwI21Bdpe4-bC7nLb2Eu_hrebmYv4qa-Ac7YtjW |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Drug-Target+Interactions+via+Dual-Stream+Graph+Neural+Network&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Li%2C+Yuhui&rft.au=Liang%2C+Wei&rft.au=Peng%2C+Li&rft.au=Zhang%2C+Dafang&rft.date=2024-07-01&rft.eissn=1557-9964&rft.volume=PP&rft_id=info:doi/10.1109%2FTCBB.2022.3204188&rft_id=info%3Apmid%2F36074878&rft.externalDocID=36074878 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon |