Predicting Drug-Target Interactions Via Dual-Stream Graph Neural Network

Drug target interaction prediction is a crucial stage in drug discovery. However, brute-force search over a compound database is financially infeasible. We have witnessed the increasing measured drug-target interactions records in recent years, and the rich drug/protein-related information allows th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE/ACM transactions on computational biology and bioinformatics Ročník 21; číslo 4; s. 948 - 958
Hlavní autoři: Li, Yuhui, Liang, Wei, Peng, Li, Zhang, Dafang, Yang, Cheng, Li, Kuan-Ching
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.07.2024
Témata:
ISSN:1545-5963, 1557-9964, 1557-9964
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Drug target interaction prediction is a crucial stage in drug discovery. However, brute-force search over a compound database is financially infeasible. We have witnessed the increasing measured drug-target interactions records in recent years, and the rich drug/protein-related information allows the usage of graph machine learning. Despite the advances in deep learning-enabled drug-target interaction, there are still open challenges: (1) rich and complex relationship between drugs and proteins can be explored; (2) the intermediate node is not calibrated in the heterogeneous graph. To tackle with above issues, this paper proposed a framework named DSG-DTI. Specifically, DSG-DTI has the heterogeneous graph autoencoder and heterogeneous attention network-based Matrix Completion. Our framework ensures that the known types of nodes (e.g., drug, target, side effects, diseases) are precisely embedded into high-dimensional space with our pretraining skills. Also, the attention-based heterogeneous graph-based matrix completion achieves highly competitive results via effective long-range dependencies extraction. We verify our model on two public benchmarks. The result of two publicly available benchmark application programs show that the proposed scheme effectively predicts drug-target interactions and can generalize to newly registered drugs and targets with slight performance degradation, outperforming the best accuracy compared with other baselines.
AbstractList Drug target interaction prediction is a crucial stage in drug discovery. However, brute-force search over a compound database is financially infeasible. We have witnessed the increasing measured drug-target interactions records in recent years, and the rich drug/protein-related information allows the usage of graph machine learning. Despite the advances in deep learning-enabled drug-target interaction, there are still open challenges: (1) rich and complex relationship between drugs and proteins can be explored; (2) the intermediate node is not calibrated in the heterogeneous graph. To tackle with above issues, this paper proposed a framework named DSG-DTI. Specifically, DSG-DTI has the heterogeneous graph autoencoder and heterogeneous attention network-based Matrix Completion. Our framework ensures that the known types of nodes (e.g., drug, target, side effects, diseases) are precisely embedded into high-dimensional space with our pretraining skills. Also, the attention-based heterogeneous graph-based matrix completion achieves highly competitive results via effective long-range dependencies extraction. We verify our model on two public benchmarks. The result of two publicly available benchmark application programs show that the proposed scheme effectively predicts drug-target interactions and can generalize to newly registered drugs and targets with slight performance degradation, outperforming the best accuracy compared with other baselines.Drug target interaction prediction is a crucial stage in drug discovery. However, brute-force search over a compound database is financially infeasible. We have witnessed the increasing measured drug-target interactions records in recent years, and the rich drug/protein-related information allows the usage of graph machine learning. Despite the advances in deep learning-enabled drug-target interaction, there are still open challenges: (1) rich and complex relationship between drugs and proteins can be explored; (2) the intermediate node is not calibrated in the heterogeneous graph. To tackle with above issues, this paper proposed a framework named DSG-DTI. Specifically, DSG-DTI has the heterogeneous graph autoencoder and heterogeneous attention network-based Matrix Completion. Our framework ensures that the known types of nodes (e.g., drug, target, side effects, diseases) are precisely embedded into high-dimensional space with our pretraining skills. Also, the attention-based heterogeneous graph-based matrix completion achieves highly competitive results via effective long-range dependencies extraction. We verify our model on two public benchmarks. The result of two publicly available benchmark application programs show that the proposed scheme effectively predicts drug-target interactions and can generalize to newly registered drugs and targets with slight performance degradation, outperforming the best accuracy compared with other baselines.
Drug target interaction prediction is a crucial stage in drug discovery. However, brute-force search over a compound database is financially infeasible. We have witnessed the increasing measured drug-target interactions records in recent years, and the rich drug/protein-related information allows the usage of graph machine learning. Despite the advances in deep learning-enabled drug-target interaction, there are still open challenges: (1) rich and complex relationship between drugs and proteins can be explored; (2) the intermediate node is not calibrated in the heterogeneous graph. To tackle with above issues, this paper proposed a framework named DSG-DTI. Specifically, DSG-DTI has the heterogeneous graph autoencoder and heterogeneous attention network-based Matrix Completion. Our framework ensures that the known types of nodes (e.g., drug, target, side effects, diseases) are precisely embedded into high-dimensional space with our pretraining skills. Also, the attention-based heterogeneous graph-based matrix completion achieves highly competitive results via effective long-range dependencies extraction. We verify our model on two public benchmarks. The result of two publicly available benchmark application programs show that the proposed scheme effectively predicts drug-target interactions and can generalize to newly registered drugs and targets with slight performance degradation, outperforming the best accuracy compared with other baselines.
Author Yang, Cheng
Li, Kuan-Ching
Li, Yuhui
Zhang, Dafang
Liang, Wei
Peng, Li
Author_xml – sequence: 1
  givenname: Yuhui
  surname: Li
  fullname: Li, Yuhui
  email: liyuhui@hnu.edu.cn
  organization: College of Computer Science, Electronic Engineering, Hunan University, Changsha, China
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-5074-1363
  surname: Liang
  fullname: Liang, Wei
  email: wliang@hnust.edu.cn
  organization: College of Computer Science, Electronic Engineering, Hunan University, Changsha, China
– sequence: 3
  givenname: Li
  orcidid: 0000-0002-5078-5091
  surname: Peng
  fullname: Peng, Li
  email: plpeng@hnu.edu.cn
  organization: School of Computer Science, Engineering, Hunan University of Science, Technology, Xiangtan, China
– sequence: 4
  givenname: Dafang
  surname: Zhang
  fullname: Zhang, Dafang
  email: dfzhang@hnu.edu.cn
  organization: College of Computer Science, Electronic Engineering, Hunan University, Changsha, China
– sequence: 5
  givenname: Cheng
  surname: Yang
  fullname: Yang, Cheng
  email: yangchengyjs@163.com
  organization: School of Computer Science, Engineering, Hunan University of Science, Technology, Xiangtan, China
– sequence: 6
  givenname: Kuan-Ching
  orcidid: 0000-0003-1381-4364
  surname: Li
  fullname: Li, Kuan-Ching
  email: kuancli@pu.edu.tw
  organization: School of Computer Science, Engineering, Hunan University of Science, Technology, Xiangtan, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36074878$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1Lw0AQhhdRrK3-ABEkRy-p-5nsHrX1oyAqWL2G6WZSo2lSdzeI_96EVg8ePM0wPO8M8wzJbt3USMgxo2PGqDmfTy4vx5xyPhacSqb1DjlgSqWxMYnc7XupYmUSMSBD798o5dJQuU8GIqGp1Kk-ILePDvPShrJeRlPXLuM5uCWGaFYHdNDNm9pHLyVE0xaq-Ck4hFV042D9Gt1j66DqSvhs3Psh2Sug8ni0rSPyfH01n9zGdw83s8nFXWwFZyFGJfhCc1sUkIDBQipmcguFzakSVphEW5BWUrDcKg25VLnVC5YWaCkaXIgROdvsXbvmo0UfslXpLVYV1Ni0PuMp41omnCUderpF28UK82ztyhW4r-zn-w5gG8C6xnuHxS_CaNYbznrDWW842xruMumfjC0D9J6Cg7L6N3mySZaI-HvJaM0ZN-IbMHyIjQ
CODEN ITCBCY
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3587345
crossref_primary_10_1080_09540091_2023_2241669
crossref_primary_10_3390_rs17162750
crossref_primary_10_3389_fgene_2022_1010089
crossref_primary_10_3390_electronics12112429
crossref_primary_10_1016_j_cjche_2024_10_014
crossref_primary_10_1016_j_asoc_2023_110151
crossref_primary_10_1016_j_dt_2025_01_013
crossref_primary_10_1080_09540091_2023_2233714
crossref_primary_10_1002_dac_5553
crossref_primary_10_1080_09540091_2023_2195595
crossref_primary_10_1145_3657292
crossref_primary_10_3389_fnagi_2023_1176400
crossref_primary_10_1007_s11030_025_11303_6
crossref_primary_10_1007_s11227_023_05442_6
Cites_doi 10.1021/ci8001167
10.1093/bib/bbz042
10.1021/jm020406h
10.1109/SACI.2016.7507416
10.1016/j.ygeno.2018.12.007
10.1145/2487575.2487670
10.1093/bioinformatics/bty543
10.1038/sj.bjp.0707515
10.1016/j.ins.2013.12.007
10.1109/TII.2017.2768998
10.1093/bioinformatics/btaa921
10.1109/JIOT.2021.3130434
10.1145/3292500.3330958
10.1145/3308558.3313562
10.1371/journal.pcbi.1004760
10.1093/bioinformatics/btaa880
10.1002/jcc.23905
10.1109/TCBB.2017.2706267
10.1016/j.compbiolchem.2019.03.016
10.1109/TCBB.2020.2994780
10.1109/BIBM.2018.8621368
10.1021/acs.jcim.9b00237
10.1093/bioinformatics/btq176
10.1093/bioinformatics/bts413
10.1186/s13321-015-0089-z
10.1021/acs.jcim.8b00582
10.1109/TNSE.2020.3014455
10.1016/j.jmgm.2004.11.007
10.1002/jcc.21334
10.1007/978-3-030-14680-1_63
10.5040/9781501365072.6891
10.1109/JIOT.2021.3053842
10.1371/journal.pcbi.1007129
10.1109/tnse.2021.3092204
10.1021/ci400219z
10.1016/j.neucom.2017.04.055
10.1109/tc.2021.3077738
10.18653/v1/D19-1514
10.1016/j.knosys.2015.06.010
10.1371/journal.pcbi.1002503
10.1016/j.chemolab.2017.01.016
10.1186/s13321-017-0209-z
10.1109/ISBI48211.2021.9434063
10.1109/TCYB.2018.2795041
10.1186/s12859-020-03677-1
10.1093/bioinformatics/btm266
10.1145/3426968
10.1145/3394486.3403104
10.1021/ci100369f
10.1093/bioinformatics/btq112
10.1006/jmbi.1999.3371
10.1155/2018/1425608
10.1016/j.ymeth.2015.04.036
10.1021/acs.jcim.9b00387
10.1089/cmb.2017.0135
10.1002/minf.201400009
10.1016/j.compbiolchem.2017.03.011
10.1039/c2mb00002d
10.1002/prot.21082
10.1038/s41467-017-00680-8
10.1093/bioinformatics/bty593
10.1371/journal.pone.0009603
10.1089/cmb.2010.0213
10.1109/BIOCAS.2018.8584817
10.1109/TCSS.2019.2918285
10.1016/j.cmpb.2017.09.003
10.1093/bioinformatics/btn409
10.1093/bioinformatics/bts670
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7X8
DOI 10.1109/TCBB.2022.3204188
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1557-9964
EndPage 958
ExternalDocumentID 36074878
10_1109_TCBB_2022_3204188
9882129
Genre orig-research
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 62072170; 61976087
  funderid: 10.13039/501100001809
– fundername: Science and Technology Project of Department of Communications of Hunan Provincial
  grantid: 202101
– fundername: National Key Research and Development Program of China
  grantid: 2021YFA1000600
– fundername: Key Research and Development Program of Hunan Province
  grantid: 2022GK2015
– fundername: Natural Science Foundation of Hunan Province; Hunan Provincial Natural Science Foundation of China
  grantid: 2021JJ30141
  funderid: 10.13039/501100004735
GroupedDBID 0R~
29I
4.4
53G
5GY
5VS
6IK
8US
97E
AAJGR
AAKMM
AALFJ
AARMG
AASAJ
AAWTH
AAWTV
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACM
ACPRK
ADBCU
ADL
AEBYY
AEFXT
AEJOY
AENEX
AENSD
AETIX
AFRAH
AFWIH
AFWXC
AGQYO
AGSQL
AHBIQ
AIBXA
AIKLT
AKJIK
AKQYR
AKRVB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATWAV
AVWKF
BDXCO
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CCLIF
CS3
DU5
EBS
EJD
FEDTE
GUFHI
HGAVV
HZ~
I07
IEDLZ
IFIPE
IPLJI
JAVBF
LAI
LHSKQ
M43
O9-
OCL
P1C
P2P
PQQKQ
RIA
RIE
RNI
RNS
ROL
RZB
TN5
XOL
AAYXX
CITATION
NPM
7X8
ID FETCH-LOGICAL-c321t-e532b82cffa6a9ef4519dcafcd053c3968ca4c40ac2c58ad45dc8b17fec0e9eb3
IEDL.DBID RIE
ISICitedReferencesCount 22
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001290429100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1545-5963
1557-9964
IngestDate Sun Sep 28 07:09:06 EDT 2025
Mon Jul 21 06:07:44 EDT 2025
Sat Nov 29 01:52:06 EST 2025
Tue Nov 18 21:27:19 EST 2025
Wed Aug 27 02:33:38 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-e532b82cffa6a9ef4519dcafcd053c3968ca4c40ac2c58ad45dc8b17fec0e9eb3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-1381-4364
0000-0002-5074-1363
0000-0002-5078-5091
PMID 36074878
PQID 2712846216
PQPubID 23479
PageCount 11
ParticipantIDs crossref_primary_10_1109_TCBB_2022_3204188
proquest_miscellaneous_2712846216
crossref_citationtrail_10_1109_TCBB_2022_3204188
pubmed_primary_36074878
ieee_primary_9882129
PublicationCentury 2000
PublicationDate 2024-07-01
PublicationDateYYYYMMDD 2024-07-01
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE/ACM transactions on computational biology and bioinformatics
PublicationTitleAbbrev TCBB
PublicationTitleAlternate IEEE/ACM Trans Comput Biol Bioinform
PublicationYear 2024
Publisher IEEE
Publisher_xml – name: IEEE
References ref13
ref57
ref56
ref15
ref59
Ramsundar (ref76) 2019
ref14
ref58
ref53
ref52
ref55
ref54
Ötürk (ref10) 2019
Kipf (ref68) 2016
ref17
ref19
ref18
Maziarka (ref12) 2020
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
Schütt (ref71)
ref43
Gomes (ref11) 2017
ref49
ref8
ref7
ref9
ref4
Poli (ref22) 2019
ref3
ref6
ref5
Hamilton (ref69)
ref40
Klicpera (ref16) 2019
ref35
ref79
ref34
ref78
ref37
Wang (ref21) 2021
ref36
ref31
ref75
ref30
ref74
ref33
ref77
ref32
Xu (ref70)
ref2
ref1
ref39
ref38
ref73
ref72
ref24
ref23
ref67
ref26
ref25
ref20
ref64
ref63
ref66
ref65
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref65
  doi: 10.1021/ci8001167
– ident: ref14
  doi: 10.1093/bib/bbz042
– ident: ref60
  doi: 10.1021/jm020406h
– ident: ref28
  doi: 10.1109/SACI.2016.7507416
– ident: ref46
  doi: 10.1016/j.ygeno.2018.12.007
– year: 2016
  ident: ref68
  article-title: Semi-supervised classification with graph convolutional networks
– ident: ref5
  doi: 10.1145/2487575.2487670
– year: 2019
  ident: ref76
  article-title: Deep learning for the life sciences. o’reilly media
– ident: ref78
  doi: 10.1093/bioinformatics/bty543
– ident: ref61
  doi: 10.1038/sj.bjp.0707515
– start-page: 992
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  ident: ref71
  article-title: Schnet: A continuous-filter convolutional neural network for modeling quantum interactions
– ident: ref32
  doi: 10.1016/j.ins.2013.12.007
– ident: ref3
  doi: 10.1109/TII.2017.2768998
– ident: ref72
  doi: 10.1093/bioinformatics/btaa921
– ident: ref2
  doi: 10.1109/JIOT.2021.3130434
– ident: ref18
  doi: 10.1145/3292500.3330958
– ident: ref77
  doi: 10.1145/3308558.3313562
– year: 2019
  ident: ref16
  article-title: Directional message passing for molecular graphs
  publication-title: Int. Conf. Learn. Representations
– ident: ref50
  doi: 10.1371/journal.pcbi.1004760
– ident: ref75
  doi: 10.1093/bioinformatics/btaa880
– year: 2017
  ident: ref11
  article-title: Atomic convolutional networks for predicting protein-ligand binding affinity
– ident: ref62
  doi: 10.1002/jcc.23905
– year: 2021
  ident: ref21
  article-title: Hampdti: A heterogeneous graph automatic meta-path learning method for drug-target interaction prediction
– ident: ref49
  doi: 10.1109/TCBB.2017.2706267
– ident: ref40
  doi: 10.1016/j.compbiolchem.2019.03.016
– ident: ref8
  doi: 10.1109/TCBB.2020.2994780
– ident: ref57
  doi: 10.1109/BIBM.2018.8621368
– ident: ref17
  doi: 10.1021/acs.jcim.9b00237
– ident: ref47
  doi: 10.1093/bioinformatics/btq176
– ident: ref26
  doi: 10.1093/bioinformatics/bts413
– ident: ref55
  doi: 10.1186/s13321-015-0089-z
– ident: ref66
  doi: 10.1021/acs.jcim.8b00582
– ident: ref4
  doi: 10.1109/TNSE.2020.3014455
– year: 2019
  ident: ref10
  article-title: Widedta: Prediction of drug-target binding affinity
– ident: ref64
  doi: 10.1016/j.jmgm.2004.11.007
– ident: ref67
  doi: 10.1002/jcc.21334
– ident: ref54
  doi: 10.1007/978-3-030-14680-1_63
– ident: ref20
  doi: 10.5040/9781501365072.6891
– ident: ref37
  doi: 10.1109/JIOT.2021.3053842
– ident: ref39
  doi: 10.1371/journal.pcbi.1007129
– ident: ref33
  doi: 10.1109/tnse.2021.3092204
– ident: ref6
  doi: 10.1021/ci400219z
– ident: ref27
  doi: 10.1016/j.neucom.2017.04.055
– ident: ref35
  doi: 10.1109/tc.2021.3077738
– start-page: 1025
  volume-title: Proc. 31st Int. Conf. Neural Inf. Process. Syst.
  ident: ref69
  article-title: Inductive representation learning on large graphs
– ident: ref73
  doi: 10.18653/v1/D19-1514
– ident: ref29
  doi: 10.1016/j.knosys.2015.06.010
– ident: ref52
  doi: 10.1371/journal.pcbi.1002503
– ident: ref56
  doi: 10.1016/j.chemolab.2017.01.016
– ident: ref7
  doi: 10.1186/s13321-017-0209-z
– ident: ref74
  doi: 10.1109/ISBI48211.2021.9434063
– ident: ref34
  doi: 10.1109/TCYB.2018.2795041
– ident: ref79
  doi: 10.1186/s12859-020-03677-1
– ident: ref42
  doi: 10.1093/bioinformatics/btm266
– ident: ref36
  doi: 10.1145/3426968
– ident: ref15
  doi: 10.1145/3394486.3403104
– ident: ref44
  doi: 10.1021/ci100369f
– ident: ref45
  doi: 10.1093/bioinformatics/btq112
– volume-title: Proc. Int. Conf. Learn. Representations
  ident: ref70
  article-title: How powerful are graph neural networks?
– ident: ref63
  doi: 10.1006/jmbi.1999.3371
– ident: ref51
  doi: 10.1155/2018/1425608
– ident: ref31
  doi: 10.1016/j.ymeth.2015.04.036
– ident: ref13
  doi: 10.1021/acs.jcim.9b00387
– ident: ref38
  doi: 10.1089/cmb.2017.0135
– ident: ref43
  doi: 10.1002/minf.201400009
– ident: ref30
  doi: 10.1016/j.compbiolchem.2017.03.011
– ident: ref53
  doi: 10.1039/c2mb00002d
– ident: ref59
  doi: 10.1002/prot.21082
– ident: ref1
  doi: 10.1038/s41467-017-00680-8
– ident: ref9
  doi: 10.1093/bioinformatics/bty593
– year: 2019
  ident: ref22
  article-title: Graph neural ordinary differential equations
– ident: ref24
  doi: 10.1371/journal.pone.0009603
– ident: ref25
  doi: 10.1089/cmb.2010.0213
– ident: ref58
  doi: 10.1109/BIOCAS.2018.8584817
– ident: ref23
  doi: 10.1109/TCSS.2019.2918285
– ident: ref48
  doi: 10.1016/j.cmpb.2017.09.003
– ident: ref41
  doi: 10.1093/bioinformatics/btn409
– ident: ref19
  doi: 10.1093/bioinformatics/bts670
– year: 2020
  ident: ref12
  article-title: Molecule attention transformer
SSID ssj0024904
Score 2.4925313
Snippet Drug target interaction prediction is a crucial stage in drug discovery. However, brute-force search over a compound database is financially infeasible. We...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 948
SubjectTerms Deep learning
Diffusion tensor imaging
Diseases
drug-target interactions
Drugs
graph neural network
Machine learning
matrix completion
Predictive models
Proteins
Task analysis
Title Predicting Drug-Target Interactions Via Dual-Stream Graph Neural Network
URI https://ieeexplore.ieee.org/document/9882129
https://www.ncbi.nlm.nih.gov/pubmed/36074878
https://www.proquest.com/docview/2712846216
Volume 21
WOSCitedRecordID wos001290429100002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1557-9964
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0024904
  issn: 1545-5963
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB21VZG4QEv5WChVkHpCuE0cJ7aPtKXtoVr1sKC9Rc54jCqVXbS7QeLf43GyWw6AxC2KbCeaGWvGnpn3AI69ZMdat6ImH4TyqESbWydMFePXNrReYYLMv9HjsZlO7e0WfNj0whBRKj6jE35MuXw_x46vyk5tDAejf9qGba3rvlfrAVfPJqpAjghEFa1qyGAWuT2dnJ-dxZOglCelzFVhmKOvrKPvNEyu9ps7Svwqfw81k8u5fPp_P7sHT4bQMvvY28I-bNHsGTzqySZ_HsD17YKTMlzmnF0suq9ikorAs3Qn2Lc3LLMvdy676Ny94Gy1-5ZdMZ51xggeceVxXzL-HD5ffpqcX4uBR0FgKYuVoKqUrZEYgqudpcCIMh5dQB93IJa2NugUqtyhxMo4ryqPpi10IMzJxtP2C9iZzWf0CjJdudaH-EprDkWMpUqVziEFTU5LGkG-FmeDA8g4c13cN-mwkduGldGwMppBGSN4v5nyvUfY-NfgA5b0ZuAg5BG8W-usiduDcx5uRvNu2UjNDriWRT2Cl70yN5PXNvD6z4u-gcfx06qvzT2EndWio7ewiz9Wd8vFUbTBqTlKNvgL-LzWdw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fb9MwED6NDQQvG7ABhQFB4gnhLXGcxH7cD0YRpdpDQXuLnPMZTRotahsk_nt8Tlp4YJP2FkW2ZfnOujvf3fcBvHWSDWvZiJKcF8qhEk1qrNBF8F8b3ziFETJ_VI3H-uLCnG_A-3UvDBHF4jM64M-Yy3czbPmp7NAEdzDYpzuwVSgl065b6y-ynolkgewTiCLoVZ_DzFJzODk5Pg6xoJQHuUxVppmlLy-D9dRMr_aPQYoMK9c7m9HonO3cbrsPYbt3LpOjThsewQZNH8O9jm7y9y4Mz-ecluFC5-R03n4Xk1gGnsRXwa7BYZF8u7TJaWuvBOer7Y_kIyNaJ4zhEVYed0Xje_D17MPkZCh6JgWBucyWgopcNlqi97a0hjxjyji0Hl24g5ibUqNVqFKLEgttnSoc6iarPGFKJsTbT2BzOpvSM0iqwjbOh19Vxc6INlSo3FokX5GtJA0gXR1njT3MOLNdXNUx3EhNzcKoWRh1L4wBvFtP-dlhbNw0eJdPej2wP-QBvFnJrA4XhLMedkqzdlHLik1wKbNyAE87Ya4nr3Tg-f8XfQ33h5Mvo3r0afz5BTwI21Bdpe4-bC7nLb2Eu_hrebmYv4qa-Ac7YtjW
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+Drug-Target+Interactions+via+Dual-Stream+Graph+Neural+Network&rft.jtitle=IEEE%2FACM+transactions+on+computational+biology+and+bioinformatics&rft.au=Li%2C+Yuhui&rft.au=Liang%2C+Wei&rft.au=Peng%2C+Li&rft.au=Zhang%2C+Dafang&rft.date=2024-07-01&rft.eissn=1557-9964&rft.volume=PP&rft_id=info:doi/10.1109%2FTCBB.2022.3204188&rft_id=info%3Apmid%2F36074878&rft.externalDocID=36074878
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1545-5963&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1545-5963&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1545-5963&client=summon