Randomized Algorithms for Low-Rank Matrix Factorizations: Sharp Performance Bounds

The development of randomized algorithms for numerical linear algebra, e.g. for computing approximate QR and SVD factorizations, has recently become an intense area of research. This paper studies one of the most frequently discussed algorithms in the literature for dimensionality reduction—specific...

Full description

Saved in:
Bibliographic Details
Published in:Algorithmica Vol. 72; no. 1; pp. 264 - 281
Main Authors: Witten, Rafi, Candès, Emmanuel
Format: Journal Article
Language:English
Published: Boston Springer US 01.05.2015
Subjects:
ISSN:0178-4617, 1432-0541
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The development of randomized algorithms for numerical linear algebra, e.g. for computing approximate QR and SVD factorizations, has recently become an intense area of research. This paper studies one of the most frequently discussed algorithms in the literature for dimensionality reduction—specifically for approximating an input matrix with a low-rank element. We introduce a novel and rather intuitive analysis of the algorithm in [ 6 ], which allows us to derive sharp estimates and give new insights about its performance. This analysis yields theoretical guarantees about the approximation error and at the same time, ultimate limits of performance (lower bounds) showing that our upper bounds are tight. Numerical experiments complement our study and show the tightness of our predictions compared with empirical observations.
ISSN:0178-4617
1432-0541
DOI:10.1007/s00453-014-9891-7