Autoencoder-based dense denoiser and block-based wiener filter for noise reduction of optical coherence tomography

•Optical coherence tomography, an imaging modality used for diagnosis of retinal diseases.•Presence of speckle noise in retinal images reduces the efficacy of diagnosis.•Existing approaches resulted in loss of structural edge details leading to inaccurate diagnosis.•Proposed approaches removed speck...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & electrical engineering Ročník 108; s. 108708
Hlavní autoři: Juneja, Mamta, Chhatwal, Gurunameh Singh, Bhattacharya, Shatabarto, Thakur, Niharika, Jindal, Prashant
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.05.2023
Témata:
ISSN:0045-7906
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •Optical coherence tomography, an imaging modality used for diagnosis of retinal diseases.•Presence of speckle noise in retinal images reduces the efficacy of diagnosis.•Existing approaches resulted in loss of structural edge details leading to inaccurate diagnosis.•Proposed approaches removed speckle noise, while preserving significant details.•Better performance of the proposed approaches in comparison to the state-of-the-art. Optical Coherence Tomography (OCT) is an advanced imaging modality used for diagnosis of retinal abnormalities. OCT is acquired using low coherence light waves, typically infra-red waves having resolution in micrometres so as to capture the retinal layers present in the eye. Analysing variation in thickness of different retinal layers using OCT can be used for diagnosis. However, these layers are not clearly visible due to the presence of varying amounts of speckle noise, due to which the efficacy of further diagnosis gets compromised. Despite multiple approaches being available for denoising of OCT images, an undesirable over smoothening of images, leads to loss of structural edge details, thereby leading to inaccurate diagnosis. Thus, an efficient approach that removes speckle noise, without compromising on the significant image details, is preferred. This paper presents an approach to eliminate the speckle noise from OCT images using an Autoencoder-based Dense Denoiser (ADD) neural network and Block-based Wiener Filter (BBWF). [Display omitted]
AbstractList •Optical coherence tomography, an imaging modality used for diagnosis of retinal diseases.•Presence of speckle noise in retinal images reduces the efficacy of diagnosis.•Existing approaches resulted in loss of structural edge details leading to inaccurate diagnosis.•Proposed approaches removed speckle noise, while preserving significant details.•Better performance of the proposed approaches in comparison to the state-of-the-art. Optical Coherence Tomography (OCT) is an advanced imaging modality used for diagnosis of retinal abnormalities. OCT is acquired using low coherence light waves, typically infra-red waves having resolution in micrometres so as to capture the retinal layers present in the eye. Analysing variation in thickness of different retinal layers using OCT can be used for diagnosis. However, these layers are not clearly visible due to the presence of varying amounts of speckle noise, due to which the efficacy of further diagnosis gets compromised. Despite multiple approaches being available for denoising of OCT images, an undesirable over smoothening of images, leads to loss of structural edge details, thereby leading to inaccurate diagnosis. Thus, an efficient approach that removes speckle noise, without compromising on the significant image details, is preferred. This paper presents an approach to eliminate the speckle noise from OCT images using an Autoencoder-based Dense Denoiser (ADD) neural network and Block-based Wiener Filter (BBWF). [Display omitted]
ArticleNumber 108708
Author Thakur, Niharika
Chhatwal, Gurunameh Singh
Bhattacharya, Shatabarto
Jindal, Prashant
Juneja, Mamta
Author_xml – sequence: 1
  givenname: Mamta
  surname: Juneja
  fullname: Juneja, Mamta
  email: mamtajuneja@pu.ac.in
– sequence: 2
  givenname: Gurunameh Singh
  surname: Chhatwal
  fullname: Chhatwal, Gurunameh Singh
– sequence: 3
  givenname: Shatabarto
  surname: Bhattacharya
  fullname: Bhattacharya, Shatabarto
– sequence: 4
  givenname: Niharika
  surname: Thakur
  fullname: Thakur, Niharika
– sequence: 5
  givenname: Prashant
  surname: Jindal
  fullname: Jindal, Prashant
  email: jindalp@pu.ac.in
BookMark eNqNkEtuwjAQQL2gUoH2Du4BQu2YOMmqQqg_Cambdm054zGYhhjZphW3b1JYVF2xmdH8njRvQkad75CQO85mnHF5v52B3-2xRcBuPctZLvp-VbJqRMaMzYusrJm8JpMYt6yvJa_GJCwOyWMH3mDIGh3RUINdxCF6FzFQ3RnatB4-z-Nvh13ftq5NQ_KB_i7SgOYAyfmOekv9PjnQLQW_wdDjkSa_8-ug95vjDbmyuo14e85T8vH0-L58yVZvz6_LxSoDkfOUoRBomcyltVUuyqrhVmoQpdWiMHOOFfAmLxB40dR6nvNczhtWW14ICSCFEVNSn7gQfIwBrdoHt9PhqDhTgzC1VX-EqUGYOgnrbx_-3YJLevguBe3aiwjLEwH7F78cBhXBDSaMCwhJGe8uoPwAjaOWfQ
CitedBy_id crossref_primary_10_1016_j_compeleceng_2025_110360
crossref_primary_10_1177_09574565251319277
crossref_primary_10_1007_s12596_024_02066_8
crossref_primary_10_1016_j_compeleceng_2024_109363
crossref_primary_10_1007_s12596_025_02625_7
Cites_doi 10.1364/OL.34.001516
10.1117/1.JBO.23.3.036014
10.1117/1.JMI.4.1.014002
10.1117/1.JBO.19.5.056009
10.1016/j.ajo.2004.04.049
10.1364/OE.18.008338
10.1126/science.1957169
10.1364/OL.38.002900
10.4236/jcc.2019.73002
10.1007/s10278-014-9742-8
10.1002/ima.22668
10.1109/TNNLS.2018.2838679
10.1016/j.bspc.2021.102844
10.1016/j.bspc.2015.09.012
10.1109/TIM.2021.3072109
10.1364/BOE.3.000927
ContentType Journal Article
Copyright 2023
Copyright_xml – notice: 2023
DBID AAYXX
CITATION
DOI 10.1016/j.compeleceng.2023.108708
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_compeleceng_2023_108708
S0045790623001325
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AFFNX
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
9DU
AAYWO
AAYXX
ACLOT
ACVFH
ADCNI
AEUPX
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c321t-e33ef0626ff82378b1f6ac37fa35d41e8c1b25ec15b9a421264b09f1536cc63d3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000976359500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7906
IngestDate Sat Nov 29 07:30:25 EST 2025
Tue Nov 18 20:40:35 EST 2025
Sun Apr 06 06:54:51 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Speckle noise
Optical coherence tomography (OCT)
Convolutional filters
Denoising
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-e33ef0626ff82378b1f6ac37fa35d41e8c1b25ec15b9a421264b09f1536cc63d3
ParticipantIDs crossref_primary_10_1016_j_compeleceng_2023_108708
crossref_citationtrail_10_1016_j_compeleceng_2023_108708
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2023_108708
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationTitle Computers & electrical engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Menon, Vineeth Reddy, Yeshwanth, Anoop, Rajan (bib0016) 2020
Juneja, Saini, Kaul, Acharjee, Thakur, Jindal (bib0018) 2021; 69
Wojtkowski, Bajraszewski, Gorczyńska, Targowski, Kowalczyk, Wasilewski, Radzewicz (bib0002) 2004; 138
Bonini Filho, Witkin (bib0005) 2015; 15
Xu, Ou, Lam, Chui, Wong (bib0009) 2013; 38
Laves, Ihler, Kahrs, Ortmaier (bib0015) 2019
Duan, Lu, Tench, Gottlob, Proudlock, Samani, Bai (bib0012) 2016; 24
Majumdar (bib0020) 2018; 30
Kermany D., Zhang K., Goldbaum M. Labeled optical coherence tomography (OCT) and chest X- ray images for classification. Mendeley Data, v2 [Dataset] 2018.
Du, Liu, Feng, Chen (bib0010) 2014; 19
Chen, Fu, Wang, Lv, Zhang (bib0014) 2018; 23
Fang, Li, Nie, Izatt, Toth, Farsiu (bib0008) 2012; 3
Huang, Swanson, Lin, Schuman, Stinson, Chang, Hee, Flotte, Gregory, Puliafito (bib0001) 1991; 254
Liu, Yang, Wang, Liu, Zhang, Hu (bib0013) 2017; 4
Jian, Yu, Yu, Rao, Chen, Tromberg (bib0006) 2009; 34
Wong, Mishra, Bizheva, Clausi (bib0007) 2010; 18
Chen, de Sisternes, Leng, Rubin (bib0011) 2015; 28
Juneja, Joshi, Singla, Ahuja, Saini, Thakur (bib0019) 2022; 32
Maity, Pattanaik, Sagnika, Pani (bib0004) 2015
Sara, Akter, Uddin (bib0022) 2019; 7
Tajmirriahi, Kafieh, Amini, Rabbani (bib0017) 2021; 70
El Tanboly, Ismail, Switala, Mahmoud, Soliman, Neyer, Palacio, Hadayer, El-Azab, Schaal (bib0003) 2023
Juneja (10.1016/j.compeleceng.2023.108708_bib0018) 2021; 69
Jian (10.1016/j.compeleceng.2023.108708_bib0006) 2009; 34
Menon (10.1016/j.compeleceng.2023.108708_bib0016) 2020
Fang (10.1016/j.compeleceng.2023.108708_bib0008) 2012; 3
Wojtkowski (10.1016/j.compeleceng.2023.108708_bib0002) 2004; 138
Bonini Filho (10.1016/j.compeleceng.2023.108708_bib0005) 2015; 15
Duan (10.1016/j.compeleceng.2023.108708_bib0012) 2016; 24
Juneja (10.1016/j.compeleceng.2023.108708_bib0019) 2022; 32
Wong (10.1016/j.compeleceng.2023.108708_bib0007) 2010; 18
10.1016/j.compeleceng.2023.108708_bib0021
Du (10.1016/j.compeleceng.2023.108708_bib0010) 2014; 19
Liu (10.1016/j.compeleceng.2023.108708_bib0013) 2017; 4
Maity (10.1016/j.compeleceng.2023.108708_bib0004) 2015
Sara (10.1016/j.compeleceng.2023.108708_bib0022) 2019; 7
Chen (10.1016/j.compeleceng.2023.108708_bib0011) 2015; 28
Chen (10.1016/j.compeleceng.2023.108708_bib0014) 2018; 23
Tajmirriahi (10.1016/j.compeleceng.2023.108708_bib0017) 2021; 70
El Tanboly (10.1016/j.compeleceng.2023.108708_bib0003) 2023
Huang (10.1016/j.compeleceng.2023.108708_bib0001) 1991; 254
Xu (10.1016/j.compeleceng.2023.108708_bib0009) 2013; 38
Majumdar (10.1016/j.compeleceng.2023.108708_bib0020) 2018; 30
Laves (10.1016/j.compeleceng.2023.108708_bib0015) 2019
References_xml – volume: 24
  start-page: 120
  year: 2016
  end-page: 127
  ident: bib0012
  article-title: Denoising optical coherence tomography using second order total generalized variation decomposition
  publication-title: Biomed Signal Process Control
– volume: 30
  start-page: 312
  year: 2018
  end-page: 317
  ident: bib0020
  article-title: Blind denoising autoencoder
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 3
  start-page: 927
  year: 2012
  end-page: 942
  ident: bib0008
  article-title: Sparsity based denoising of spectral domain optical coherence tomography images
  publication-title: Biomed Opt Express
– volume: 4
  year: 2017
  ident: bib0013
  article-title: Patch-based denoising method using low-rank technique and targeted database for optical coherence tomography image
  publication-title: J Med Imaging
– reference: Kermany D., Zhang K., Goldbaum M. Labeled optical coherence tomography (OCT) and chest X- ray images for classification. Mendeley Data, v2 [Dataset] 2018.
– volume: 7
  start-page: 8
  year: 2019
  end-page: 18
  ident: bib0022
  article-title: Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study
  publication-title: J Comput Commun
– volume: 34
  start-page: 1516
  year: 2009
  end-page: 1518
  ident: bib0006
  article-title: Speckle attenuation in optical coherence tomography by curvelet shrinkage
  publication-title: Opt Lett
– volume: 15
  year: 2015
  ident: bib0005
  article-title: Outer retinal layers as predictors of vision loss
  publication-title: Rev Ophthalmol
– volume: 254
  start-page: 1178
  year: 1991
  end-page: 1181
  ident: bib0001
  article-title: Optical coherence tomography
  publication-title: Science
– volume: 138
  start-page: 412
  year: 2004
  end-page: 419
  ident: bib0002
  article-title: Ophthalmic imaging by spectral optical coherence tomography
  publication-title: Am J Ophthalmol
– volume: 23
  start-page: 1
  year: 2018
  end-page: 8
  ident: bib0014
  article-title: Speckle attenuation by adaptive singular value shrinking with generalized likelihood matching in optical coherence tomography
  publication-title: J Biomed Opt
– start-page: 115
  year: 2020
  end-page: 126
  ident: bib0016
  article-title: A novel deep learning approach for the removal of speckle noise from optical coherence tomography images using gated convolution–deconvolution structure
  publication-title: Proceedings of the 3rd international conference on computer vision and image processing
– start-page: 11078_43
  year: 2019
  ident: bib0015
  article-title: Semantic denoising autoencoders for retinal optical coherence tomography
  publication-title: Proceedings of the European conference on biomedical optics
– volume: 70
  start-page: 1
  year: 2021
  end-page: 8
  ident: bib0017
  article-title: A lightweight mimic convolutional auto-encoder for denoising retinal optical coherence tomography images
  publication-title: IEEE Trans Instrum Meas
– start-page: 116
  year: 2023
  end-page: 120
  ident: bib0003
  article-title: A novel automated method for the objective quantification of retinal layers reveals sequential changes that occur in the normal retina with age. In Image Processing (ICIP)
  publication-title: Proceedings of the IEEE international conference on
– volume: 19
  year: 2014
  ident: bib0010
  article-title: Speckle reduction in optical coherence tomography images based on wave atoms
  publication-title: J Biomed Opt
– start-page: 148
  year: 2015
  end-page: 155
  ident: bib0004
  article-title: A comparative study on approaches to speckle noise reduction in images
  publication-title: Proceedings of the international conference on computational intelligence and networks
– volume: 38
  start-page: 2900
  year: 2013
  end-page: 2903
  ident: bib0009
  article-title: Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage
  publication-title: Opt Lett
– volume: 18
  start-page: 8338
  year: 2010
  end-page: 8352
  ident: bib0007
  article-title: General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery
  publication-title: Opt Express
– volume: 32
  start-page: 935
  year: 2022
  end-page: 955
  ident: bib0019
  article-title: Denoising of computed tomography using bilateral median based autoencoder network
  publication-title: Int J Imaging Syst Technol
– volume: 28
  start-page: 346
  year: 2015
  end-page: 361
  ident: bib0011
  article-title: Application of improved homogeneity similarity-based denoising in optical coherence tomography retinal images
  publication-title: J Digit Imaging
– volume: 69
  year: 2021
  ident: bib0018
  article-title: Denoising of magnetic resonance imaging using Bayes shrinkage based fused wavelet transform and autoencoder based deep learning approach
  publication-title: Biomed Signal Process Control
– start-page: 11078_43
  year: 2019
  ident: 10.1016/j.compeleceng.2023.108708_bib0015
  article-title: Semantic denoising autoencoders for retinal optical coherence tomography
– start-page: 115
  year: 2020
  ident: 10.1016/j.compeleceng.2023.108708_bib0016
  article-title: A novel deep learning approach for the removal of speckle noise from optical coherence tomography images using gated convolution–deconvolution structure
– volume: 34
  start-page: 1516
  issue: 10
  year: 2009
  ident: 10.1016/j.compeleceng.2023.108708_bib0006
  article-title: Speckle attenuation in optical coherence tomography by curvelet shrinkage
  publication-title: Opt Lett
  doi: 10.1364/OL.34.001516
– volume: 23
  start-page: 1
  issue: 3
  year: 2018
  ident: 10.1016/j.compeleceng.2023.108708_bib0014
  article-title: Speckle attenuation by adaptive singular value shrinking with generalized likelihood matching in optical coherence tomography
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.23.3.036014
– volume: 4
  issue: 1
  year: 2017
  ident: 10.1016/j.compeleceng.2023.108708_bib0013
  article-title: Patch-based denoising method using low-rank technique and targeted database for optical coherence tomography image
  publication-title: J Med Imaging
  doi: 10.1117/1.JMI.4.1.014002
– volume: 19
  issue: 5
  year: 2014
  ident: 10.1016/j.compeleceng.2023.108708_bib0010
  article-title: Speckle reduction in optical coherence tomography images based on wave atoms
  publication-title: J Biomed Opt
  doi: 10.1117/1.JBO.19.5.056009
– volume: 138
  start-page: 412
  issue: 3
  year: 2004
  ident: 10.1016/j.compeleceng.2023.108708_bib0002
  article-title: Ophthalmic imaging by spectral optical coherence tomography
  publication-title: Am J Ophthalmol
  doi: 10.1016/j.ajo.2004.04.049
– volume: 18
  start-page: 8338
  issue: 8
  year: 2010
  ident: 10.1016/j.compeleceng.2023.108708_bib0007
  article-title: General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery
  publication-title: Opt Express
  doi: 10.1364/OE.18.008338
– volume: 254
  start-page: 1178
  issue: 5035
  year: 1991
  ident: 10.1016/j.compeleceng.2023.108708_bib0001
  article-title: Optical coherence tomography
  publication-title: Science
  doi: 10.1126/science.1957169
– ident: 10.1016/j.compeleceng.2023.108708_bib0021
– start-page: 148
  year: 2015
  ident: 10.1016/j.compeleceng.2023.108708_bib0004
  article-title: A comparative study on approaches to speckle noise reduction in images
– volume: 15
  year: 2015
  ident: 10.1016/j.compeleceng.2023.108708_bib0005
  article-title: Outer retinal layers as predictors of vision loss
  publication-title: Rev Ophthalmol
– volume: 38
  start-page: 2900
  issue: 15
  year: 2013
  ident: 10.1016/j.compeleceng.2023.108708_bib0009
  article-title: Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage
  publication-title: Opt Lett
  doi: 10.1364/OL.38.002900
– volume: 7
  start-page: 8
  issue: 3
  year: 2019
  ident: 10.1016/j.compeleceng.2023.108708_bib0022
  article-title: Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study
  publication-title: J Comput Commun
  doi: 10.4236/jcc.2019.73002
– start-page: 116
  year: 2023
  ident: 10.1016/j.compeleceng.2023.108708_bib0003
  article-title: A novel automated method for the objective quantification of retinal layers reveals sequential changes that occur in the normal retina with age. In Image Processing (ICIP)
– volume: 28
  start-page: 346
  issue: 3
  year: 2015
  ident: 10.1016/j.compeleceng.2023.108708_bib0011
  article-title: Application of improved homogeneity similarity-based denoising in optical coherence tomography retinal images
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-014-9742-8
– volume: 32
  start-page: 935
  issue: 3
  year: 2022
  ident: 10.1016/j.compeleceng.2023.108708_bib0019
  article-title: Denoising of computed tomography using bilateral median based autoencoder network
  publication-title: Int J Imaging Syst Technol
  doi: 10.1002/ima.22668
– volume: 30
  start-page: 312
  issue: 1
  year: 2018
  ident: 10.1016/j.compeleceng.2023.108708_bib0020
  article-title: Blind denoising autoencoder
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2018.2838679
– volume: 69
  year: 2021
  ident: 10.1016/j.compeleceng.2023.108708_bib0018
  article-title: Denoising of magnetic resonance imaging using Bayes shrinkage based fused wavelet transform and autoencoder based deep learning approach
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2021.102844
– volume: 24
  start-page: 120
  year: 2016
  ident: 10.1016/j.compeleceng.2023.108708_bib0012
  article-title: Denoising optical coherence tomography using second order total generalized variation decomposition
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2015.09.012
– volume: 70
  start-page: 1
  year: 2021
  ident: 10.1016/j.compeleceng.2023.108708_bib0017
  article-title: A lightweight mimic convolutional auto-encoder for denoising retinal optical coherence tomography images
  publication-title: IEEE Trans Instrum Meas
  doi: 10.1109/TIM.2021.3072109
– volume: 3
  start-page: 927
  issue: 5
  year: 2012
  ident: 10.1016/j.compeleceng.2023.108708_bib0008
  article-title: Sparsity based denoising of spectral domain optical coherence tomography images
  publication-title: Biomed Opt Express
  doi: 10.1364/BOE.3.000927
SSID ssj0004618
Score 2.339542
Snippet •Optical coherence tomography, an imaging modality used for diagnosis of retinal diseases.•Presence of speckle noise in retinal images reduces the efficacy of...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108708
SubjectTerms Convolutional filters
Denoising
Optical coherence tomography (OCT)
Speckle noise
Title Autoencoder-based dense denoiser and block-based wiener filter for noise reduction of optical coherence tomography
URI https://dx.doi.org/10.1016/j.compeleceng.2023.108708
Volume 108
WOSCitedRecordID wos000976359500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0045-7906
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0004618
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB5qV0QfxCuuN0bwrUQ6uQ_4UmVFRRahK_QtTJIZetkmJU1211_jX_WcmclFV3FFfAltOmeSzPk6t3znO4S8ZIGKIq64kwfSd3wRuI7gXDhRxuIUzsGCTAcKf4qOj-PFgn8ejb61sTBnp1FRxBcXfPdfXQ3nwNkYOvsX7u4qhRPwGZwOR3A7HK_k-FlTl6hOmcvKwTEqn0DXssfwqKLExMv6dUEKY9jG_ny-QulpVGhCwUSkHeqCkwpVXdsJZbmrrZbI0grT1uV2KHfdqh3YLBF7jSmTZEcbyl74sGPtNIVcCxMxtK17ytByKepzYTJ_NVVTiK1cTuZg2G1dv4EStcCIsa_afg7fNTeh7IkuYtNUButQbLURw_0Nd8AmNJtubeBNz3LSHbmPSpvT8IeOXCtEXB4UzP7EGn26w-eGB36FV0J-ZWRsftLcnmP9WD0s0PBlVHCNHLhRwOMxOZh9OFp8HITeMjPY2_u5QV70FMLfXPDXU6DBtObkDrlt1yN0ZnB0l4xkcY_cGqhU3ifVJURRjSjaIooCougAUdQgihpEUUAU1QVphyhaKmoRRTtE0R5RD8iXd0cnb987NlWHk3kuqx3peVJBc4VKofpRnDIVisyLlPCC3GcyzljqBjJjQcoFkhBCP51yBcNtmGWhl3sPybgoC_mI0CiPGBNpKHgKS3WVpyxMvVywqZ8zV_rikMRt6yWZ1bHHdCqnSUtYXCeDhk-w4RPT8IfE7Ux3RszlKkavWxcldlZqZpsJ4OvP5o__zfwJudn_KZ6ScV018hm5np3Vq3313KLxO3jiwKA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoder-based+dense+denoiser+and+block-based+wiener+filter+for+noise+reduction+of+optical+coherence+tomography&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Juneja%2C+Mamta&rft.au=Chhatwal%2C+Gurunameh+Singh&rft.au=Bhattacharya%2C+Shatabarto&rft.au=Thakur%2C+Niharika&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7906&rft.volume=108&rft_id=info:doi/10.1016%2Fj.compeleceng.2023.108708&rft.externalDocID=S0045790623001325
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon