Autoencoder-based dense denoiser and block-based wiener filter for noise reduction of optical coherence tomography
•Optical coherence tomography, an imaging modality used for diagnosis of retinal diseases.•Presence of speckle noise in retinal images reduces the efficacy of diagnosis.•Existing approaches resulted in loss of structural edge details leading to inaccurate diagnosis.•Proposed approaches removed speck...
Uloženo v:
| Vydáno v: | Computers & electrical engineering Ročník 108; s. 108708 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.05.2023
|
| Témata: | |
| ISSN: | 0045-7906 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | •Optical coherence tomography, an imaging modality used for diagnosis of retinal diseases.•Presence of speckle noise in retinal images reduces the efficacy of diagnosis.•Existing approaches resulted in loss of structural edge details leading to inaccurate diagnosis.•Proposed approaches removed speckle noise, while preserving significant details.•Better performance of the proposed approaches in comparison to the state-of-the-art.
Optical Coherence Tomography (OCT) is an advanced imaging modality used for diagnosis of retinal abnormalities. OCT is acquired using low coherence light waves, typically infra-red waves having resolution in micrometres so as to capture the retinal layers present in the eye. Analysing variation in thickness of different retinal layers using OCT can be used for diagnosis. However, these layers are not clearly visible due to the presence of varying amounts of speckle noise, due to which the efficacy of further diagnosis gets compromised. Despite multiple approaches being available for denoising of OCT images, an undesirable over smoothening of images, leads to loss of structural edge details, thereby leading to inaccurate diagnosis. Thus, an efficient approach that removes speckle noise, without compromising on the significant image details, is preferred. This paper presents an approach to eliminate the speckle noise from OCT images using an Autoencoder-based Dense Denoiser (ADD) neural network and Block-based Wiener Filter (BBWF).
[Display omitted] |
|---|---|
| AbstractList | •Optical coherence tomography, an imaging modality used for diagnosis of retinal diseases.•Presence of speckle noise in retinal images reduces the efficacy of diagnosis.•Existing approaches resulted in loss of structural edge details leading to inaccurate diagnosis.•Proposed approaches removed speckle noise, while preserving significant details.•Better performance of the proposed approaches in comparison to the state-of-the-art.
Optical Coherence Tomography (OCT) is an advanced imaging modality used for diagnosis of retinal abnormalities. OCT is acquired using low coherence light waves, typically infra-red waves having resolution in micrometres so as to capture the retinal layers present in the eye. Analysing variation in thickness of different retinal layers using OCT can be used for diagnosis. However, these layers are not clearly visible due to the presence of varying amounts of speckle noise, due to which the efficacy of further diagnosis gets compromised. Despite multiple approaches being available for denoising of OCT images, an undesirable over smoothening of images, leads to loss of structural edge details, thereby leading to inaccurate diagnosis. Thus, an efficient approach that removes speckle noise, without compromising on the significant image details, is preferred. This paper presents an approach to eliminate the speckle noise from OCT images using an Autoencoder-based Dense Denoiser (ADD) neural network and Block-based Wiener Filter (BBWF).
[Display omitted] |
| ArticleNumber | 108708 |
| Author | Thakur, Niharika Chhatwal, Gurunameh Singh Bhattacharya, Shatabarto Jindal, Prashant Juneja, Mamta |
| Author_xml | – sequence: 1 givenname: Mamta surname: Juneja fullname: Juneja, Mamta email: mamtajuneja@pu.ac.in – sequence: 2 givenname: Gurunameh Singh surname: Chhatwal fullname: Chhatwal, Gurunameh Singh – sequence: 3 givenname: Shatabarto surname: Bhattacharya fullname: Bhattacharya, Shatabarto – sequence: 4 givenname: Niharika surname: Thakur fullname: Thakur, Niharika – sequence: 5 givenname: Prashant surname: Jindal fullname: Jindal, Prashant email: jindalp@pu.ac.in |
| BookMark | eNqNkEtuwjAQQL2gUoH2Du4BQu2YOMmqQqg_Cambdm054zGYhhjZphW3b1JYVF2xmdH8njRvQkad75CQO85mnHF5v52B3-2xRcBuPctZLvp-VbJqRMaMzYusrJm8JpMYt6yvJa_GJCwOyWMH3mDIGh3RUINdxCF6FzFQ3RnatB4-z-Nvh13ftq5NQ_KB_i7SgOYAyfmOekv9PjnQLQW_wdDjkSa_8-ug95vjDbmyuo14e85T8vH0-L58yVZvz6_LxSoDkfOUoRBomcyltVUuyqrhVmoQpdWiMHOOFfAmLxB40dR6nvNczhtWW14ICSCFEVNSn7gQfIwBrdoHt9PhqDhTgzC1VX-EqUGYOgnrbx_-3YJLevguBe3aiwjLEwH7F78cBhXBDSaMCwhJGe8uoPwAjaOWfQ |
| CitedBy_id | crossref_primary_10_1016_j_compeleceng_2025_110360 crossref_primary_10_1177_09574565251319277 crossref_primary_10_1007_s12596_024_02066_8 crossref_primary_10_1016_j_compeleceng_2024_109363 crossref_primary_10_1007_s12596_025_02625_7 |
| Cites_doi | 10.1364/OL.34.001516 10.1117/1.JBO.23.3.036014 10.1117/1.JMI.4.1.014002 10.1117/1.JBO.19.5.056009 10.1016/j.ajo.2004.04.049 10.1364/OE.18.008338 10.1126/science.1957169 10.1364/OL.38.002900 10.4236/jcc.2019.73002 10.1007/s10278-014-9742-8 10.1002/ima.22668 10.1109/TNNLS.2018.2838679 10.1016/j.bspc.2021.102844 10.1016/j.bspc.2015.09.012 10.1109/TIM.2021.3072109 10.1364/BOE.3.000927 |
| ContentType | Journal Article |
| Copyright | 2023 |
| Copyright_xml | – notice: 2023 |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compeleceng.2023.108708 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_compeleceng_2023_108708 S0045790623001325 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN ABBOA ABEFU ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACZNC ADBBV ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEIPS AEKER AENEX AFFNX AFJKZ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AKRWK ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HVGLF HZ~ IHE J1W JJJVA KOM LG9 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 R2- RIG ROL RPZ RXW SBC SDF SDG SDP SES SET SEW SPC SPCBC SSH SST SSV SSZ T5K TAE TN5 UHS VOH WH7 WUQ XPP ZMT ~G- ~S- 9DU AAYWO AAYXX ACLOT ACVFH ADCNI AEUPX AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c321t-e33ef0626ff82378b1f6ac37fa35d41e8c1b25ec15b9a421264b09f1536cc63d3 |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000976359500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0045-7906 |
| IngestDate | Sat Nov 29 07:30:25 EST 2025 Tue Nov 18 20:40:35 EST 2025 Sun Apr 06 06:54:51 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Speckle noise Optical coherence tomography (OCT) Convolutional filters Denoising |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c321t-e33ef0626ff82378b1f6ac37fa35d41e8c1b25ec15b9a421264b09f1536cc63d3 |
| ParticipantIDs | crossref_primary_10_1016_j_compeleceng_2023_108708 crossref_citationtrail_10_1016_j_compeleceng_2023_108708 elsevier_sciencedirect_doi_10_1016_j_compeleceng_2023_108708 |
| PublicationCentury | 2000 |
| PublicationDate | May 2023 2023-05-00 |
| PublicationDateYYYYMMDD | 2023-05-01 |
| PublicationDate_xml | – month: 05 year: 2023 text: May 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | Computers & electrical engineering |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Menon, Vineeth Reddy, Yeshwanth, Anoop, Rajan (bib0016) 2020 Juneja, Saini, Kaul, Acharjee, Thakur, Jindal (bib0018) 2021; 69 Wojtkowski, Bajraszewski, Gorczyńska, Targowski, Kowalczyk, Wasilewski, Radzewicz (bib0002) 2004; 138 Bonini Filho, Witkin (bib0005) 2015; 15 Xu, Ou, Lam, Chui, Wong (bib0009) 2013; 38 Laves, Ihler, Kahrs, Ortmaier (bib0015) 2019 Duan, Lu, Tench, Gottlob, Proudlock, Samani, Bai (bib0012) 2016; 24 Majumdar (bib0020) 2018; 30 Kermany D., Zhang K., Goldbaum M. Labeled optical coherence tomography (OCT) and chest X- ray images for classification. Mendeley Data, v2 [Dataset] 2018. Du, Liu, Feng, Chen (bib0010) 2014; 19 Chen, Fu, Wang, Lv, Zhang (bib0014) 2018; 23 Fang, Li, Nie, Izatt, Toth, Farsiu (bib0008) 2012; 3 Huang, Swanson, Lin, Schuman, Stinson, Chang, Hee, Flotte, Gregory, Puliafito (bib0001) 1991; 254 Liu, Yang, Wang, Liu, Zhang, Hu (bib0013) 2017; 4 Jian, Yu, Yu, Rao, Chen, Tromberg (bib0006) 2009; 34 Wong, Mishra, Bizheva, Clausi (bib0007) 2010; 18 Chen, de Sisternes, Leng, Rubin (bib0011) 2015; 28 Juneja, Joshi, Singla, Ahuja, Saini, Thakur (bib0019) 2022; 32 Maity, Pattanaik, Sagnika, Pani (bib0004) 2015 Sara, Akter, Uddin (bib0022) 2019; 7 Tajmirriahi, Kafieh, Amini, Rabbani (bib0017) 2021; 70 El Tanboly, Ismail, Switala, Mahmoud, Soliman, Neyer, Palacio, Hadayer, El-Azab, Schaal (bib0003) 2023 Juneja (10.1016/j.compeleceng.2023.108708_bib0018) 2021; 69 Jian (10.1016/j.compeleceng.2023.108708_bib0006) 2009; 34 Menon (10.1016/j.compeleceng.2023.108708_bib0016) 2020 Fang (10.1016/j.compeleceng.2023.108708_bib0008) 2012; 3 Wojtkowski (10.1016/j.compeleceng.2023.108708_bib0002) 2004; 138 Bonini Filho (10.1016/j.compeleceng.2023.108708_bib0005) 2015; 15 Duan (10.1016/j.compeleceng.2023.108708_bib0012) 2016; 24 Juneja (10.1016/j.compeleceng.2023.108708_bib0019) 2022; 32 Wong (10.1016/j.compeleceng.2023.108708_bib0007) 2010; 18 10.1016/j.compeleceng.2023.108708_bib0021 Du (10.1016/j.compeleceng.2023.108708_bib0010) 2014; 19 Liu (10.1016/j.compeleceng.2023.108708_bib0013) 2017; 4 Maity (10.1016/j.compeleceng.2023.108708_bib0004) 2015 Sara (10.1016/j.compeleceng.2023.108708_bib0022) 2019; 7 Chen (10.1016/j.compeleceng.2023.108708_bib0011) 2015; 28 Chen (10.1016/j.compeleceng.2023.108708_bib0014) 2018; 23 Tajmirriahi (10.1016/j.compeleceng.2023.108708_bib0017) 2021; 70 El Tanboly (10.1016/j.compeleceng.2023.108708_bib0003) 2023 Huang (10.1016/j.compeleceng.2023.108708_bib0001) 1991; 254 Xu (10.1016/j.compeleceng.2023.108708_bib0009) 2013; 38 Majumdar (10.1016/j.compeleceng.2023.108708_bib0020) 2018; 30 Laves (10.1016/j.compeleceng.2023.108708_bib0015) 2019 |
| References_xml | – volume: 24 start-page: 120 year: 2016 end-page: 127 ident: bib0012 article-title: Denoising optical coherence tomography using second order total generalized variation decomposition publication-title: Biomed Signal Process Control – volume: 30 start-page: 312 year: 2018 end-page: 317 ident: bib0020 article-title: Blind denoising autoencoder publication-title: IEEE Trans Neural Netw Learn Syst – volume: 3 start-page: 927 year: 2012 end-page: 942 ident: bib0008 article-title: Sparsity based denoising of spectral domain optical coherence tomography images publication-title: Biomed Opt Express – volume: 4 year: 2017 ident: bib0013 article-title: Patch-based denoising method using low-rank technique and targeted database for optical coherence tomography image publication-title: J Med Imaging – reference: Kermany D., Zhang K., Goldbaum M. Labeled optical coherence tomography (OCT) and chest X- ray images for classification. Mendeley Data, v2 [Dataset] 2018. – volume: 7 start-page: 8 year: 2019 end-page: 18 ident: bib0022 article-title: Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study publication-title: J Comput Commun – volume: 34 start-page: 1516 year: 2009 end-page: 1518 ident: bib0006 article-title: Speckle attenuation in optical coherence tomography by curvelet shrinkage publication-title: Opt Lett – volume: 15 year: 2015 ident: bib0005 article-title: Outer retinal layers as predictors of vision loss publication-title: Rev Ophthalmol – volume: 254 start-page: 1178 year: 1991 end-page: 1181 ident: bib0001 article-title: Optical coherence tomography publication-title: Science – volume: 138 start-page: 412 year: 2004 end-page: 419 ident: bib0002 article-title: Ophthalmic imaging by spectral optical coherence tomography publication-title: Am J Ophthalmol – volume: 23 start-page: 1 year: 2018 end-page: 8 ident: bib0014 article-title: Speckle attenuation by adaptive singular value shrinking with generalized likelihood matching in optical coherence tomography publication-title: J Biomed Opt – start-page: 115 year: 2020 end-page: 126 ident: bib0016 article-title: A novel deep learning approach for the removal of speckle noise from optical coherence tomography images using gated convolution–deconvolution structure publication-title: Proceedings of the 3rd international conference on computer vision and image processing – start-page: 11078_43 year: 2019 ident: bib0015 article-title: Semantic denoising autoencoders for retinal optical coherence tomography publication-title: Proceedings of the European conference on biomedical optics – volume: 70 start-page: 1 year: 2021 end-page: 8 ident: bib0017 article-title: A lightweight mimic convolutional auto-encoder for denoising retinal optical coherence tomography images publication-title: IEEE Trans Instrum Meas – start-page: 116 year: 2023 end-page: 120 ident: bib0003 article-title: A novel automated method for the objective quantification of retinal layers reveals sequential changes that occur in the normal retina with age. In Image Processing (ICIP) publication-title: Proceedings of the IEEE international conference on – volume: 19 year: 2014 ident: bib0010 article-title: Speckle reduction in optical coherence tomography images based on wave atoms publication-title: J Biomed Opt – start-page: 148 year: 2015 end-page: 155 ident: bib0004 article-title: A comparative study on approaches to speckle noise reduction in images publication-title: Proceedings of the international conference on computational intelligence and networks – volume: 38 start-page: 2900 year: 2013 end-page: 2903 ident: bib0009 article-title: Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage publication-title: Opt Lett – volume: 18 start-page: 8338 year: 2010 end-page: 8352 ident: bib0007 article-title: General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery publication-title: Opt Express – volume: 32 start-page: 935 year: 2022 end-page: 955 ident: bib0019 article-title: Denoising of computed tomography using bilateral median based autoencoder network publication-title: Int J Imaging Syst Technol – volume: 28 start-page: 346 year: 2015 end-page: 361 ident: bib0011 article-title: Application of improved homogeneity similarity-based denoising in optical coherence tomography retinal images publication-title: J Digit Imaging – volume: 69 year: 2021 ident: bib0018 article-title: Denoising of magnetic resonance imaging using Bayes shrinkage based fused wavelet transform and autoencoder based deep learning approach publication-title: Biomed Signal Process Control – start-page: 11078_43 year: 2019 ident: 10.1016/j.compeleceng.2023.108708_bib0015 article-title: Semantic denoising autoencoders for retinal optical coherence tomography – start-page: 115 year: 2020 ident: 10.1016/j.compeleceng.2023.108708_bib0016 article-title: A novel deep learning approach for the removal of speckle noise from optical coherence tomography images using gated convolution–deconvolution structure – volume: 34 start-page: 1516 issue: 10 year: 2009 ident: 10.1016/j.compeleceng.2023.108708_bib0006 article-title: Speckle attenuation in optical coherence tomography by curvelet shrinkage publication-title: Opt Lett doi: 10.1364/OL.34.001516 – volume: 23 start-page: 1 issue: 3 year: 2018 ident: 10.1016/j.compeleceng.2023.108708_bib0014 article-title: Speckle attenuation by adaptive singular value shrinking with generalized likelihood matching in optical coherence tomography publication-title: J Biomed Opt doi: 10.1117/1.JBO.23.3.036014 – volume: 4 issue: 1 year: 2017 ident: 10.1016/j.compeleceng.2023.108708_bib0013 article-title: Patch-based denoising method using low-rank technique and targeted database for optical coherence tomography image publication-title: J Med Imaging doi: 10.1117/1.JMI.4.1.014002 – volume: 19 issue: 5 year: 2014 ident: 10.1016/j.compeleceng.2023.108708_bib0010 article-title: Speckle reduction in optical coherence tomography images based on wave atoms publication-title: J Biomed Opt doi: 10.1117/1.JBO.19.5.056009 – volume: 138 start-page: 412 issue: 3 year: 2004 ident: 10.1016/j.compeleceng.2023.108708_bib0002 article-title: Ophthalmic imaging by spectral optical coherence tomography publication-title: Am J Ophthalmol doi: 10.1016/j.ajo.2004.04.049 – volume: 18 start-page: 8338 issue: 8 year: 2010 ident: 10.1016/j.compeleceng.2023.108708_bib0007 article-title: General Bayesian estimation for speckle noise reduction in optical coherence tomography retinal imagery publication-title: Opt Express doi: 10.1364/OE.18.008338 – volume: 254 start-page: 1178 issue: 5035 year: 1991 ident: 10.1016/j.compeleceng.2023.108708_bib0001 article-title: Optical coherence tomography publication-title: Science doi: 10.1126/science.1957169 – ident: 10.1016/j.compeleceng.2023.108708_bib0021 – start-page: 148 year: 2015 ident: 10.1016/j.compeleceng.2023.108708_bib0004 article-title: A comparative study on approaches to speckle noise reduction in images – volume: 15 year: 2015 ident: 10.1016/j.compeleceng.2023.108708_bib0005 article-title: Outer retinal layers as predictors of vision loss publication-title: Rev Ophthalmol – volume: 38 start-page: 2900 issue: 15 year: 2013 ident: 10.1016/j.compeleceng.2023.108708_bib0009 article-title: Speckle reduction of retinal optical coherence tomography based on contourlet shrinkage publication-title: Opt Lett doi: 10.1364/OL.38.002900 – volume: 7 start-page: 8 issue: 3 year: 2019 ident: 10.1016/j.compeleceng.2023.108708_bib0022 article-title: Image quality assessment through FSIM, SSIM, MSE and PSNR—A comparative study publication-title: J Comput Commun doi: 10.4236/jcc.2019.73002 – start-page: 116 year: 2023 ident: 10.1016/j.compeleceng.2023.108708_bib0003 article-title: A novel automated method for the objective quantification of retinal layers reveals sequential changes that occur in the normal retina with age. In Image Processing (ICIP) – volume: 28 start-page: 346 issue: 3 year: 2015 ident: 10.1016/j.compeleceng.2023.108708_bib0011 article-title: Application of improved homogeneity similarity-based denoising in optical coherence tomography retinal images publication-title: J Digit Imaging doi: 10.1007/s10278-014-9742-8 – volume: 32 start-page: 935 issue: 3 year: 2022 ident: 10.1016/j.compeleceng.2023.108708_bib0019 article-title: Denoising of computed tomography using bilateral median based autoencoder network publication-title: Int J Imaging Syst Technol doi: 10.1002/ima.22668 – volume: 30 start-page: 312 issue: 1 year: 2018 ident: 10.1016/j.compeleceng.2023.108708_bib0020 article-title: Blind denoising autoencoder publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2018.2838679 – volume: 69 year: 2021 ident: 10.1016/j.compeleceng.2023.108708_bib0018 article-title: Denoising of magnetic resonance imaging using Bayes shrinkage based fused wavelet transform and autoencoder based deep learning approach publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2021.102844 – volume: 24 start-page: 120 year: 2016 ident: 10.1016/j.compeleceng.2023.108708_bib0012 article-title: Denoising optical coherence tomography using second order total generalized variation decomposition publication-title: Biomed Signal Process Control doi: 10.1016/j.bspc.2015.09.012 – volume: 70 start-page: 1 year: 2021 ident: 10.1016/j.compeleceng.2023.108708_bib0017 article-title: A lightweight mimic convolutional auto-encoder for denoising retinal optical coherence tomography images publication-title: IEEE Trans Instrum Meas doi: 10.1109/TIM.2021.3072109 – volume: 3 start-page: 927 issue: 5 year: 2012 ident: 10.1016/j.compeleceng.2023.108708_bib0008 article-title: Sparsity based denoising of spectral domain optical coherence tomography images publication-title: Biomed Opt Express doi: 10.1364/BOE.3.000927 |
| SSID | ssj0004618 |
| Score | 2.339542 |
| Snippet | •Optical coherence tomography, an imaging modality used for diagnosis of retinal diseases.•Presence of speckle noise in retinal images reduces the efficacy of... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 108708 |
| SubjectTerms | Convolutional filters Denoising Optical coherence tomography (OCT) Speckle noise |
| Title | Autoencoder-based dense denoiser and block-based wiener filter for noise reduction of optical coherence tomography |
| URI | https://dx.doi.org/10.1016/j.compeleceng.2023.108708 |
| Volume | 108 |
| WOSCitedRecordID | wos000976359500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0045-7906 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0004618 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bi9NAFB5qV0QfxCuuN0bwrUQ6uQ_4UmVFRRahK_QtTJIZetkmJU1211_jX_WcmclFV3FFfAltOmeSzPk6t3znO4S8ZIGKIq64kwfSd3wRuI7gXDhRxuIUzsGCTAcKf4qOj-PFgn8ejb61sTBnp1FRxBcXfPdfXQ3nwNkYOvsX7u4qhRPwGZwOR3A7HK_k-FlTl6hOmcvKwTEqn0DXssfwqKLExMv6dUEKY9jG_ny-QulpVGhCwUSkHeqCkwpVXdsJZbmrrZbI0grT1uV2KHfdqh3YLBF7jSmTZEcbyl74sGPtNIVcCxMxtK17ytByKepzYTJ_NVVTiK1cTuZg2G1dv4EStcCIsa_afg7fNTeh7IkuYtNUButQbLURw_0Nd8AmNJtubeBNz3LSHbmPSpvT8IeOXCtEXB4UzP7EGn26w-eGB36FV0J-ZWRsftLcnmP9WD0s0PBlVHCNHLhRwOMxOZh9OFp8HITeMjPY2_u5QV70FMLfXPDXU6DBtObkDrlt1yN0ZnB0l4xkcY_cGqhU3ifVJURRjSjaIooCougAUdQgihpEUUAU1QVphyhaKmoRRTtE0R5RD8iXd0cnb987NlWHk3kuqx3peVJBc4VKofpRnDIVisyLlPCC3GcyzljqBjJjQcoFkhBCP51yBcNtmGWhl3sPybgoC_mI0CiPGBNpKHgKS3WVpyxMvVywqZ8zV_rikMRt6yWZ1bHHdCqnSUtYXCeDhk-w4RPT8IfE7Ux3RszlKkavWxcldlZqZpsJ4OvP5o__zfwJudn_KZ6ScV018hm5np3Vq3313KLxO3jiwKA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Autoencoder-based+dense+denoiser+and+block-based+wiener+filter+for+noise+reduction+of+optical+coherence+tomography&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Juneja%2C+Mamta&rft.au=Chhatwal%2C+Gurunameh+Singh&rft.au=Bhattacharya%2C+Shatabarto&rft.au=Thakur%2C+Niharika&rft.date=2023-05-01&rft.pub=Elsevier+Ltd&rft.issn=0045-7906&rft.volume=108&rft_id=info:doi/10.1016%2Fj.compeleceng.2023.108708&rft.externalDocID=S0045790623001325 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon |