OverSegNet: A convolutional encoder–decoder network for image over-segmentation

Efficient and differentiable image over-segmentation is key to superpixel-based research and applications but remains a challenging problem. The paper proposes a fully convolutional deep network, named OverSegNet, for image over-segmentation. OverSegNet consists of an encoder and a decoder, which ar...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & electrical engineering Ročník 107; s. 108610
Hlavní autoři: Li, Peng, Ma, Wei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.04.2023
Témata:
ISSN:0045-7906, 1879-0755
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Efficient and differentiable image over-segmentation is key to superpixel-based research and applications but remains a challenging problem. The paper proposes a fully convolutional deep network, named OverSegNet, for image over-segmentation. OverSegNet consists of an encoder and a decoder, which are designed for the two core parts of over-segmentation, i.e., feature representation and pixel–superpixel association, respectively. To obtain edge-sensitive and noise-insusceptible feature representation, the encoder is endowed with rich over-segmentation-specific convolutional kernels via over-parametrization followed by task-driven neural network search (NAS). The decoder adopts a multi-scale convolutional structure with cross-large-scale connections, to achieve pixel–superpixel association in a coarse-to-fine feed-forward manner while eliminating accumulation errors. We conduct rich ablation studies to verify the effectiveness of the specially designed encoder and decoder. Experiments on both the BSDS500 dataset and NYUv2 dataset show that the proposed OverSegNet is fast, obtains state-of-the-art accuracy and has good generalization ability. Using semantic segmentation and disparity estimation as examples, we also verify the proposed OverSegNet in downstream applications.
AbstractList Efficient and differentiable image over-segmentation is key to superpixel-based research and applications but remains a challenging problem. The paper proposes a fully convolutional deep network, named OverSegNet, for image over-segmentation. OverSegNet consists of an encoder and a decoder, which are designed for the two core parts of over-segmentation, i.e., feature representation and pixel–superpixel association, respectively. To obtain edge-sensitive and noise-insusceptible feature representation, the encoder is endowed with rich over-segmentation-specific convolutional kernels via over-parametrization followed by task-driven neural network search (NAS). The decoder adopts a multi-scale convolutional structure with cross-large-scale connections, to achieve pixel–superpixel association in a coarse-to-fine feed-forward manner while eliminating accumulation errors. We conduct rich ablation studies to verify the effectiveness of the specially designed encoder and decoder. Experiments on both the BSDS500 dataset and NYUv2 dataset show that the proposed OverSegNet is fast, obtains state-of-the-art accuracy and has good generalization ability. Using semantic segmentation and disparity estimation as examples, we also verify the proposed OverSegNet in downstream applications.
ArticleNumber 108610
Author Ma, Wei
Li, Peng
Author_xml – sequence: 1
  givenname: Peng
  surname: Li
  fullname: Li, Peng
– sequence: 2
  givenname: Wei
  orcidid: 0000-0001-9652-4260
  surname: Ma
  fullname: Ma, Wei
  email: mawei@bjut.edu.cn
BookMark eNqNkEtOwzAURS1UJNrCHsICUvypHYcJqiooSBUVAsZW4jxHLqldOaGIGXtgh6wElzBAjDp6P92rd88IDZx3gNA5wROCibhYT7TfbKEBDa6eUExZ3EtB8BEaEpnlKc44H6AhxlOeZjkWJ2jUtmscZ0HkED2sdhAeob6H7jKZJdq7nW9eO-td0STgtK8gfH18VvDTJQ66Nx9eEuNDYjdFDYmP-rSFegOuK_a6U3RsiqaFs986Rs8310_z23S5WtzNZ8tUM0q6tCq5KYuMVUJqZoAAYYIyKWieEWIkl4ayDMoKhMgJlzTejSymjJY542AyNkZXva8Ovm0DGKVt_0EXCtsogtWekFqrP4TUnpDqCUWH_J_DNsRQ4f0g7bzXQoy4sxBUq23kBZUNoDtVeXuAyzfnH4yT
CitedBy_id crossref_primary_10_1016_j_asoc_2024_111467
crossref_primary_10_1016_j_compeleceng_2025_110360
crossref_primary_10_1109_TIP_2023_3290523
crossref_primary_10_1007_s11042_023_17659_x
Cites_doi 10.1007/978-3-319-24574-4_28
10.1007/978-3-319-46448-0_36
10.1109/TPAMI.2016.2644615
10.1007/978-3-642-33715-4_54
10.1109/ICCV48922.2021.00699
10.1109/TPAMI.2012.120
10.1016/j.cviu.2017.03.007
10.1109/TIP.2022.3152004
10.1007/978-3-030-01234-2_22
10.1109/TPAMI.2010.161
10.1109/ICCV.2015.238
10.1016/j.inffus.2020.08.014
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compeleceng.2023.108610
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0755
ExternalDocumentID 10_1016_j_compeleceng_2023_108610
S0045790623000356
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
R2-
RIG
ROL
RPZ
RXW
SBC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
TAE
TN5
UHS
VOH
WH7
WUQ
XPP
ZMT
~G-
~S-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c321t-db5fba73d68c3fe1e136238629711f858f237ebde6691582e13f8a432b935ef73
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000931799500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0045-7906
IngestDate Tue Nov 18 21:27:31 EST 2025
Sat Nov 29 07:27:07 EST 2025
Fri Feb 23 02:38:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Non-iterative deep clustering
Image over-segmentation
Encoder–decoder architecture
Superpixel segmentation
NAS encoder
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-db5fba73d68c3fe1e136238629711f858f237ebde6691582e13f8a432b935ef73
ORCID 0000-0001-9652-4260
ParticipantIDs crossref_citationtrail_10_1016_j_compeleceng_2023_108610
crossref_primary_10_1016_j_compeleceng_2023_108610
elsevier_sciencedirect_doi_10_1016_j_compeleceng_2023_108610
PublicationCentury 2000
PublicationDate April 2023
2023-04-00
PublicationDateYYYYMMDD 2023-04-01
PublicationDate_xml – month: 04
  year: 2023
  text: April 2023
PublicationDecade 2020
PublicationTitle Computers & electrical engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jampani V, Sun D, Liu M-Y, Yang M-H, Kautz J. Superpixel sampling networks. In: European conference on computer vision. 2018, p. 352–68.
Chang, Chen (b22) 2018
Chen, Kundu, Zhu, Berneshawi, Ma, Fidler (b20) 2015; 28
Wang Y, Wei Y, Qian X, Zhu L, Yang Y. AINet: association implantation for superpixel segmentation. In: IEEE/CVF international conference on computer vision. 2021, p. 7058–67.
Arbelaez, Maire, Fowlkes, Malik (b17) 2010; 33
Achanta, Susstrunk (b3) 2017
Yao, Boben, Fidler, Urtasun (b8) 2015
Yang, Sun, Jin, Zhou (b14) 2020
Li, Chen (b2) 2015
Ma, Gong, Xu, Zhang (b6) 2020; 64
Ma, Xu, Ma, Zhang, Zha (b7) 2022; 31
Achanta, Shaji, Smith, Lucchi, Fua, Süsstrunk (b1) 2012; 34
Kingma, Ba (b16) 2014
Gadde R, Jampani V, Kiefel M, Kappler D, Gehler PV. Superpixel convolutional networks using bilateral inceptions. In: European conference on computer vision. 2016, p. 597–613.
Mayer, Ilg, Hausser, Fischer, Cremers, Dosovitskiy (b23) 2016
Yang, Sun, Jin, Zhou (b5) 2020
Badrinarayanan, Kendall, Cipolla (b12) 2017; 39
Zhang C, Li Z, Cheng Y, Cai R, Chao H, Rui Y. Meshstereo: A global stereo model with mesh alignment regularization for view interpolation. In: International conference on computer vision. 2015, p. 2057–65.
Liu, Tuzel, Ramalingam, Chellappa (b9) 2011
Silberman N, Hoiem D, Kohli P, Fergus R. Indoor segmentation and support inference from RGBD images. In: European conference on computer vision. 2012, p. 746–60.
Tu, Liu, Jampani, Sun, Chien, Yang (b10) 2018
Stutz, Hermans, Leibe (b15) 2018; 166
Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. 2015, p. 234–41.
Achanta (10.1016/j.compeleceng.2023.108610_b1) 2012; 34
10.1016/j.compeleceng.2023.108610_b4
Ma (10.1016/j.compeleceng.2023.108610_b7) 2022; 31
Kingma (10.1016/j.compeleceng.2023.108610_b16) 2014
Chang (10.1016/j.compeleceng.2023.108610_b22) 2018
10.1016/j.compeleceng.2023.108610_b19
10.1016/j.compeleceng.2023.108610_b18
Chen (10.1016/j.compeleceng.2023.108610_b20) 2015; 28
Yang (10.1016/j.compeleceng.2023.108610_b14) 2020
Liu (10.1016/j.compeleceng.2023.108610_b9) 2011
Stutz (10.1016/j.compeleceng.2023.108610_b15) 2018; 166
10.1016/j.compeleceng.2023.108610_b13
10.1016/j.compeleceng.2023.108610_b11
Li (10.1016/j.compeleceng.2023.108610_b2) 2015
Yao (10.1016/j.compeleceng.2023.108610_b8) 2015
10.1016/j.compeleceng.2023.108610_b21
Mayer (10.1016/j.compeleceng.2023.108610_b23) 2016
Badrinarayanan (10.1016/j.compeleceng.2023.108610_b12) 2017; 39
Yang (10.1016/j.compeleceng.2023.108610_b5) 2020
Achanta (10.1016/j.compeleceng.2023.108610_b3) 2017
Ma (10.1016/j.compeleceng.2023.108610_b6) 2020; 64
Arbelaez (10.1016/j.compeleceng.2023.108610_b17) 2010; 33
Tu (10.1016/j.compeleceng.2023.108610_b10) 2018
References_xml – start-page: 568
  year: 2018
  end-page: 576
  ident: b10
  article-title: Learning superpixels with segmentation-aware affinity loss
  publication-title: Computer vision and pattern recognition
– start-page: 1356
  year: 2015
  end-page: 1363
  ident: b2
  article-title: Superpixel segmentation using linear spectral clustering
  publication-title: Computer vision and pattern recognition
– volume: 34
  start-page: 2274
  year: 2012
  end-page: 2282
  ident: b1
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans Pattern Anal Mach Intell
– start-page: 13964
  year: 2020
  end-page: 13973
  ident: b5
  article-title: Superpixel segmentation with fully convolutional networks
  publication-title: Computer vision and pattern recognition
– year: 2014
  ident: b16
  article-title: Adam: A method for stochastic optimization
– volume: 166
  start-page: 1
  year: 2018
  end-page: 27
  ident: b15
  article-title: Superpixels: An evaluation of the state-of-the-art
  publication-title: Comput Vis Image Underst
– reference: Gadde R, Jampani V, Kiefel M, Kappler D, Gehler PV. Superpixel convolutional networks using bilateral inceptions. In: European conference on computer vision. 2016, p. 597–613.
– reference: Ronneberger O, Fischer P, Brox T. U-Net: Convolutional networks for biomedical image segmentation. In: International conference on medical image computing and computer-assisted intervention. 2015, p. 234–41.
– reference: Zhang C, Li Z, Cheng Y, Cai R, Chao H, Rui Y. Meshstereo: A global stereo model with mesh alignment regularization for view interpolation. In: International conference on computer vision. 2015, p. 2057–65.
– volume: 28
  start-page: 424
  year: 2015
  end-page: 432
  ident: b20
  article-title: 3d object proposals for accurate object class detection
  publication-title: Adv Neural Inf Process Syst
– volume: 39
  start-page: 2481
  year: 2017
  end-page: 2495
  ident: b12
  article-title: SegNet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– reference: Silberman N, Hoiem D, Kohli P, Fergus R. Indoor segmentation and support inference from RGBD images. In: European conference on computer vision. 2012, p. 746–60.
– start-page: 5410
  year: 2018
  end-page: 5418
  ident: b22
  article-title: Pyramid stereo matching network
  publication-title: Computer vision and pattern recognition
– year: 2020
  ident: b14
  article-title: Superpixel segmentation with fully convolutional networks
  publication-title: Computer vision and pattern recognition
– reference: Jampani V, Sun D, Liu M-Y, Yang M-H, Kautz J. Superpixel sampling networks. In: European conference on computer vision. 2018, p. 352–68.
– volume: 33
  start-page: 898
  year: 2010
  end-page: 916
  ident: b17
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
– reference: Wang Y, Wei Y, Qian X, Zhu L, Yang Y. AINet: association implantation for superpixel segmentation. In: IEEE/CVF international conference on computer vision. 2021, p. 7058–67.
– volume: 64
  start-page: 238
  year: 2020
  end-page: 251
  ident: b6
  article-title: Multi-scale spatial context-based semantic edge detection
  publication-title: Inf Fusion
– start-page: 2947
  year: 2015
  end-page: 2955
  ident: b8
  article-title: Real-time coarse-to-fine topologically preserving segmentation
  publication-title: Computer vision and pattern recognition
– start-page: 4040
  year: 2016
  end-page: 4048
  ident: b23
  article-title: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation
  publication-title: Computer vision and pattern recognition
– start-page: 4651
  year: 2017
  end-page: 4660
  ident: b3
  article-title: Superpixels and polygons using simple non-iterative clustering
  publication-title: Computer vision and pattern recognition
– start-page: 2097
  year: 2011
  end-page: 2104
  ident: b9
  article-title: Entropy rate superpixel segmentation
  publication-title: Computer vision and pattern recognition
– volume: 31
  start-page: 2081
  year: 2022
  end-page: 2093
  ident: b7
  article-title: Progressive feature learning for facade parsing with occlusions
  publication-title: IEEE Trans Image Process
– year: 2020
  ident: 10.1016/j.compeleceng.2023.108610_b14
  article-title: Superpixel segmentation with fully convolutional networks
– start-page: 2947
  year: 2015
  ident: 10.1016/j.compeleceng.2023.108610_b8
  article-title: Real-time coarse-to-fine topologically preserving segmentation
– ident: 10.1016/j.compeleceng.2023.108610_b13
  doi: 10.1007/978-3-319-24574-4_28
– ident: 10.1016/j.compeleceng.2023.108610_b19
  doi: 10.1007/978-3-319-46448-0_36
– start-page: 568
  year: 2018
  ident: 10.1016/j.compeleceng.2023.108610_b10
  article-title: Learning superpixels with segmentation-aware affinity loss
– volume: 39
  start-page: 2481
  issue: 12
  year: 2017
  ident: 10.1016/j.compeleceng.2023.108610_b12
  article-title: SegNet: A deep convolutional encoder-decoder architecture for image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2016.2644615
– start-page: 4040
  year: 2016
  ident: 10.1016/j.compeleceng.2023.108610_b23
  article-title: A large dataset to train convolutional networks for disparity, optical flow, and scene flow estimation
– ident: 10.1016/j.compeleceng.2023.108610_b18
  doi: 10.1007/978-3-642-33715-4_54
– start-page: 4651
  year: 2017
  ident: 10.1016/j.compeleceng.2023.108610_b3
  article-title: Superpixels and polygons using simple non-iterative clustering
– ident: 10.1016/j.compeleceng.2023.108610_b11
  doi: 10.1109/ICCV48922.2021.00699
– volume: 34
  start-page: 2274
  issue: 11
  year: 2012
  ident: 10.1016/j.compeleceng.2023.108610_b1
  article-title: SLIC superpixels compared to state-of-the-art superpixel methods
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2012.120
– volume: 166
  start-page: 1
  year: 2018
  ident: 10.1016/j.compeleceng.2023.108610_b15
  article-title: Superpixels: An evaluation of the state-of-the-art
  publication-title: Comput Vis Image Underst
  doi: 10.1016/j.cviu.2017.03.007
– volume: 31
  start-page: 2081
  year: 2022
  ident: 10.1016/j.compeleceng.2023.108610_b7
  article-title: Progressive feature learning for facade parsing with occlusions
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2022.3152004
– start-page: 13964
  year: 2020
  ident: 10.1016/j.compeleceng.2023.108610_b5
  article-title: Superpixel segmentation with fully convolutional networks
– start-page: 2097
  year: 2011
  ident: 10.1016/j.compeleceng.2023.108610_b9
  article-title: Entropy rate superpixel segmentation
– volume: 28
  start-page: 424
  year: 2015
  ident: 10.1016/j.compeleceng.2023.108610_b20
  article-title: 3d object proposals for accurate object class detection
  publication-title: Adv Neural Inf Process Syst
– ident: 10.1016/j.compeleceng.2023.108610_b4
  doi: 10.1007/978-3-030-01234-2_22
– start-page: 1356
  year: 2015
  ident: 10.1016/j.compeleceng.2023.108610_b2
  article-title: Superpixel segmentation using linear spectral clustering
– year: 2014
  ident: 10.1016/j.compeleceng.2023.108610_b16
– volume: 33
  start-page: 898
  issue: 5
  year: 2010
  ident: 10.1016/j.compeleceng.2023.108610_b17
  article-title: Contour detection and hierarchical image segmentation
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2010.161
– ident: 10.1016/j.compeleceng.2023.108610_b21
  doi: 10.1109/ICCV.2015.238
– volume: 64
  start-page: 238
  year: 2020
  ident: 10.1016/j.compeleceng.2023.108610_b6
  article-title: Multi-scale spatial context-based semantic edge detection
  publication-title: Inf Fusion
  doi: 10.1016/j.inffus.2020.08.014
– start-page: 5410
  year: 2018
  ident: 10.1016/j.compeleceng.2023.108610_b22
  article-title: Pyramid stereo matching network
SSID ssj0004618
Score 2.3488088
Snippet Efficient and differentiable image over-segmentation is key to superpixel-based research and applications but remains a challenging problem. The paper proposes...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108610
SubjectTerms Encoder–decoder architecture
Image over-segmentation
NAS encoder
Non-iterative deep clustering
Superpixel segmentation
Title OverSegNet: A convolutional encoder–decoder network for image over-segmentation
URI https://dx.doi.org/10.1016/j.compeleceng.2023.108610
Volume 107
WOSCitedRecordID wos000931799500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0755
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004618
  issn: 0045-7906
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1db9MwFL0aHULwgMbHxBhMRuINZVriJLanvVRoiE1QQAzRtyhOrqdOLFRrQXvcf9g_3C_h-qNNypg2kHiJWlfXdnJOnWvr3HsBXuKWqWh7rKNU14I2KFkaqczkUaJlrcpKG1O6QOF3YjCQw6H6GCKuJ66cgGgaeXqqxv8VamojsG3o7F_APe-UGugzgU5Xgp2uNwL-A834Mx4O0B_6OV15GJDgsHkrbc6QoHHgNbrvrxovB3eqw9GxFfJYbWc0wcPjEJ3UdP3YWTGIiaOOr6Xj4MY2v-Fc6zPyQuC25b3zWL_iqHvmkPCOVCWso6lNdLmVL6yjvnxtWAltBScvWL20SPvzgiP7jMd2gjT-ph1ls7VZTIz92wtrLiOcKdSOik5Xhe2q8F3dguVEZEr2YLm_tzvc70TMxv4dHe7jDrxolX9XzOvPnkvHGzlYgfthG8H6Hv4HsITNQ7jXSS75CD61RNhmfbZAAxZocHF2HgjAAgEYEYA5ArBLBHgMX97sHrx-G4UCGlHFk3ga1TozuhS8zmXFDcYYk7vCaQ-rRBwbmUmTcIG6xjxXcSYT-t3IMuWJVjxDI_gq9JrvDT4BVgqyr02NMs_TKkUlFGrBK8xSlRos10DOHk5RhezytsjJt-JakNYgmZuOfYqVmxjtzBAogq_ofcCCWHa9-dN_GXMd7rZ_hmfQm578wOdwu_o5HU1ONgLFfgGCcJNa
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=OverSegNet%3A+A+convolutional+encoder%E2%80%93decoder+network+for+image+over-segmentation&rft.jtitle=Computers+%26+electrical+engineering&rft.au=Li%2C+Peng&rft.au=Ma%2C+Wei&rft.date=2023-04-01&rft.issn=0045-7906&rft.volume=107&rft.spage=108610&rft_id=info:doi/10.1016%2Fj.compeleceng.2023.108610&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compeleceng_2023_108610
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0045-7906&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0045-7906&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0045-7906&client=summon