A boundary element method recursive procedure applied to Poisson's problems

This paper describes a simple procedure to increase the accuracy of the boundary element method (BEM) results in Poisson's problems using coarse meshes. Usually, BEM values at internal points are obtained by reusing the boundary integral equation, after having calculated all variables at the no...

Full description

Saved in:
Bibliographic Details
Published in:Engineering analysis with boundary elements Vol. 82; pp. 104 - 110
Main Authors: Ramos, V.E.S., Loeffler, C.F., Mansur, W.J.
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.09.2017
Subjects:
ISSN:0955-7997, 1873-197X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper describes a simple procedure to increase the accuracy of the boundary element method (BEM) results in Poisson's problems using coarse meshes. Usually, BEM values at internal points are obtained by reusing the boundary integral equation, after having calculated all variables at the nodal points on the boundary. Accuracy in results of these internal points is superior to that obtained at boundary nodes and the reason for that can be assigned to a new minimization of residuals performed. Therefore, this idea can be used to improve BEM results by means of choosing new source points on the boundary at positions different from those of the original nodes. Tests carried out with problems governed by Laplace's equation and Navier's equation were successful; thus, this procedure is now applied to Poisson's problems that allow a more comprehensive evaluation of the performance of proposed technique.
AbstractList This paper describes a simple procedure to increase the accuracy of the boundary element method (BEM) results in Poisson's problems using coarse meshes. Usually, BEM values at internal points are obtained by reusing the boundary integral equation, after having calculated all variables at the nodal points on the boundary. Accuracy in results of these internal points is superior to that obtained at boundary nodes and the reason for that can be assigned to a new minimization of residuals performed. Therefore, this idea can be used to improve BEM results by means of choosing new source points on the boundary at positions different from those of the original nodes. Tests carried out with problems governed by Laplace's equation and Navier's equation were successful; thus, this procedure is now applied to Poisson's problems that allow a more comprehensive evaluation of the performance of proposed technique.
Author Loeffler, C.F.
Mansur, W.J.
Ramos, V.E.S.
Author_xml – sequence: 1
  givenname: V.E.S.
  surname: Ramos
  fullname: Ramos, V.E.S.
  email: ves.sousa@gmail.com, vinicius.ramos@ifes.edu.br
  organization: Instituto Federal de Educação, Ciência e Tecnologia do Espírito Santo, São Mateus, ES, Brazil
– sequence: 2
  givenname: C.F.
  surname: Loeffler
  fullname: Loeffler, C.F.
  email: carlosloeffler@bol.com.br
  organization: Programa de Pós Graduação em Engenharia Mecânica, Universidade Federal do Espírito Santo, 29075-910 Vitória, ES, Brazil
– sequence: 3
  givenname: W.J.
  surname: Mansur
  fullname: Mansur, W.J.
  email: webe@coc.ufrj.br
  organization: LamemoLaboratory/PEC-COPPE/Universidade Federal do Rio de Janeiro, Av. Pedro Calmon s/n, Centro de Tecnologia, Ilha do Fundão, 21941-596 Rio de Janeiro, RJ, Brazil
BookMark eNqNkE1LAzEQQINUsK3-h_XkadfJZj9PUopfWNCDgreQTaaask2WJC34781aD-Kpp4EZ3oN5MzIx1iAhlxQyCrS63mRoPoQRnd0ZleVA6wyqDICdkCltapbStn6fkCm0ZZnWbVufkZn3GwDKAKopeVokP6hwXwn2uEUTki2GT6sSh3LnvN5jMjgrUe0cJmIYeo0qCTZ5sdp7a678eO4i6s_J6Vr0Hi9-55y83d2-Lh_S1fP943KxSiXLaUilbDpR1IKqnIFQtOzKPF5y7CQoVoqGliVturWqK6XGTSMYtqpRhaoKKCSbk5uDVzrrvcM1lzqIoK0JTuieU-BjG77hf9rwsQ2Hisc20dD-MwxOb2ODo9jlgcX44l6j415qNDGQjsUCV1YfYfkGzCyKqQ
CitedBy_id crossref_primary_10_3390_math13172776
crossref_primary_10_1016_j_enganabound_2022_12_016
crossref_primary_10_1088_1757_899X_456_1_012113
Cites_doi 10.1007/BF02123482
10.1016/j.enganabound.2010.05.012
ContentType Journal Article
Copyright 2017 Elsevier Ltd
Copyright_xml – notice: 2017 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.enganabound.2017.06.003
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-197X
EndPage 110
ExternalDocumentID 10_1016_j_enganabound_2017_06_003
S0955799716303344
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
AAYOK
ABAOU
ABBOA
ABEFU
ABFNM
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AI.
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
TN5
UHS
VH1
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c321t-cc8ba47a1d230ad15b52c322ebc0d35a815518bfd76dd0d358a3e9d8d4d6404c3
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000408296800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0955-7997
IngestDate Sat Nov 29 03:48:02 EST 2025
Tue Nov 18 22:14:00 EST 2025
Fri Feb 23 02:34:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Poisson's equation
Recursive procedure
Boundary element method
Weighted residual method
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-cc8ba47a1d230ad15b52c322ebc0d35a815518bfd76dd0d358a3e9d8d4d6404c3
PageCount 7
ParticipantIDs crossref_citationtrail_10_1016_j_enganabound_2017_06_003
crossref_primary_10_1016_j_enganabound_2017_06_003
elsevier_sciencedirect_doi_10_1016_j_enganabound_2017_06_003
PublicationCentury 2000
PublicationDate September 2017
2017-09-00
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: September 2017
PublicationDecade 2010
PublicationTitle Engineering analysis with boundary elements
PublicationYear 2017
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Telles, Prado (bib0012) 1993
Brebbia (bib0001) 1978
Potter (bib0003) 1980
Partridge, Brebbia, Wrobel (bib0007) 1992
Mansur, Fleury, Azevedo (bib0011) 1997; 8
Freitas, Loeffler (bib0005) 2015; 7
Pessolani (bib0015) 2002; XXIV
Buhmann (bib0008) 2003
Reddy (bib0002) 1993
Loeffler (bib0004) 2011; 35
Pessolani, Mansur (bib0014) 1997; XIX
Brebbia, Walker (bib0010) 1980
Loeffler, Peixoto (bib0013) 2013; 93
Brebbia, Telles, Wrobel (bib0006) 1984
Wendland (bib0009) 1995; 4
Pessolani (10.1016/j.enganabound.2017.06.003_bib0015) 2002; XXIV
Wendland (10.1016/j.enganabound.2017.06.003_bib0009) 1995; 4
Mansur (10.1016/j.enganabound.2017.06.003_bib0011) 1997; 8
Freitas (10.1016/j.enganabound.2017.06.003_bib0005) 2015; 7
Brebbia (10.1016/j.enganabound.2017.06.003_bib0010) 1980
Loeffler (10.1016/j.enganabound.2017.06.003_bib0013) 2013; 93
Brebbia (10.1016/j.enganabound.2017.06.003_bib0001) 1978
Potter (10.1016/j.enganabound.2017.06.003_bib0003) 1980
Brebbia (10.1016/j.enganabound.2017.06.003_bib0006) 1984
Telles (10.1016/j.enganabound.2017.06.003_bib0012) 1993
Loeffler (10.1016/j.enganabound.2017.06.003_bib0004) 2011; 35
Pessolani (10.1016/j.enganabound.2017.06.003_bib0014) 1997; XIX
Buhmann (10.1016/j.enganabound.2017.06.003_bib0008) 2003
Reddy (10.1016/j.enganabound.2017.06.003_bib0002) 1993
Partridge (10.1016/j.enganabound.2017.06.003_bib0007) 1992
References_xml – year: 1978
  ident: bib0001
  article-title: The boundary element method for engineers
– volume: 8
  start-page: 239
  year: 1997
  end-page: 250
  ident: bib0011
  article-title: A vector approach to the hyper-singular BEM formulation for Laplace´s equation in 2D
  publication-title: Int J BEM Commun
– volume: XIX
  start-page: 504
  year: 1997
  end-page: 517
  ident: bib0014
  article-title: Procedimento Adaptativo para Geometria definida por B-splines aplicado ao Método dos Elementos de Contorno
  publication-title: Rev Brasil Ciênc Mecân, Rio de Janeiro
– year: 1984
  ident: bib0006
  article-title: Boundary element techniques
– volume: 93
  start-page: 253
  year: 2013
  end-page: 276
  ident: bib0013
  article-title: Hyper-singular dual reciprocity formulation for potential problems
  publication-title: Comput Model Eng Sci
– year: 1992
  ident: bib0007
  article-title: The dual reciprocity, boundary element method
– year: 2003
  ident: bib0008
  article-title: Radial basis functions: theory and implementations
– year: 1980
  ident: bib0010
  article-title: Boundary element techniques in engineering
– year: 1993
  ident: bib0012
  article-title: Hyper-singular formulation for 2-D potential problems
  publication-title: Advanced formulations in boundary element method
– year: 1980
  ident: bib0003
  article-title: Computational physics
– volume: 4
  start-page: 389
  year: 1995
  end-page: 396
  ident: bib0009
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv Comput Math
– volume: 35
  start-page: 77
  year: 2011
  end-page: 84
  ident: bib0004
  article-title: A recursive application of the integral equation in the boundary element method
  publication-title: Eng Anal Boundary Elem
– year: 1993
  ident: bib0002
  article-title: An introduction to the finite element method
– volume: 7
  start-page: 1
  year: 2015
  end-page: 10
  ident: bib0005
  article-title: Performance evaluation of the boundary element recursive procedure in elastic problems
  publication-title: J Eng Math
– volume: XXIV
  start-page: 1
  year: 2002
  end-page: 9
  ident: bib0015
  article-title: An HP-adaptive hierarchical formulation for the boundary element method applied to elasticity in two dimensions
  publication-title: Rev Brasil Ciênc Mecân, Rio de Janeiro
– volume: XIX
  start-page: 504
  issue: 4
  year: 1997
  ident: 10.1016/j.enganabound.2017.06.003_bib0014
  article-title: Procedimento Adaptativo para Geometria definida por B-splines aplicado ao Método dos Elementos de Contorno
  publication-title: Rev Brasil Ciênc Mecân, Rio de Janeiro
– volume: 7
  start-page: 1
  year: 2015
  ident: 10.1016/j.enganabound.2017.06.003_bib0005
  article-title: Performance evaluation of the boundary element recursive procedure in elastic problems
  publication-title: J Eng Math
– year: 1984
  ident: 10.1016/j.enganabound.2017.06.003_bib0006
– year: 1992
  ident: 10.1016/j.enganabound.2017.06.003_bib0007
– year: 1993
  ident: 10.1016/j.enganabound.2017.06.003_bib0012
  article-title: Hyper-singular formulation for 2-D potential problems
– volume: 4
  start-page: 389
  year: 1995
  ident: 10.1016/j.enganabound.2017.06.003_bib0009
  article-title: Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree
  publication-title: Adv Comput Math
  doi: 10.1007/BF02123482
– year: 1978
  ident: 10.1016/j.enganabound.2017.06.003_bib0001
– year: 1993
  ident: 10.1016/j.enganabound.2017.06.003_bib0002
– year: 1980
  ident: 10.1016/j.enganabound.2017.06.003_bib0010
– year: 2003
  ident: 10.1016/j.enganabound.2017.06.003_bib0008
– volume: 93
  start-page: 253
  issue: 4
  year: 2013
  ident: 10.1016/j.enganabound.2017.06.003_bib0013
  article-title: Hyper-singular dual reciprocity formulation for potential problems
  publication-title: Comput Model Eng Sci
– volume: 8
  start-page: 239
  year: 1997
  ident: 10.1016/j.enganabound.2017.06.003_bib0011
  article-title: A vector approach to the hyper-singular BEM formulation for Laplace´s equation in 2D
  publication-title: Int J BEM Commun
– volume: 35
  start-page: 77
  year: 2011
  ident: 10.1016/j.enganabound.2017.06.003_bib0004
  article-title: A recursive application of the integral equation in the boundary element method
  publication-title: Eng Anal Boundary Elem
  doi: 10.1016/j.enganabound.2010.05.012
– volume: XXIV
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.enganabound.2017.06.003_bib0015
  article-title: An HP-adaptive hierarchical formulation for the boundary element method applied to elasticity in two dimensions
  publication-title: Rev Brasil Ciênc Mecân, Rio de Janeiro
– year: 1980
  ident: 10.1016/j.enganabound.2017.06.003_bib0003
SSID ssj0013006
Score 2.1538143
Snippet This paper describes a simple procedure to increase the accuracy of the boundary element method (BEM) results in Poisson's problems using coarse meshes....
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104
SubjectTerms Boundary element method
Poisson's equation
Recursive procedure
Weighted residual method
Title A boundary element method recursive procedure applied to Poisson's problems
URI https://dx.doi.org/10.1016/j.enganabound.2017.06.003
Volume 82
WOSCitedRecordID wos000408296800012&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-197X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0013006
  issn: 0955-7997
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS9xAEF_OD0QfpFWLWi0rFPpwJFyym0sW-nKUk9aiCLV6b2G_IhVN5O4UX_zfO9mP5LQtasGXEDbsJpvf7M7s7G9nEPpIE6kKBasTxXUWUCYJjDktAi5I1NepIHFamGQT6dFRNhqx407n3p-Fub1MyzK7u2PXrwo1lAHY9dHZF8DdNAoFcA-gwxVgh-uzgB90hUmVVJ-ytdxwlya6O65964aubtSWMnsHzgoFE_S4AhAqm2LF5ZmZPHDct6ELu9zHMjF-3McvbPnz_MrS-E7DYfgjbNg_lS4KfwQx3G_KD0Fv3pjSs_AgnHVIgJLzjKvWs1hHwbS0Wz_J2gxDbpZ0GYedwo0sr_WPudy6FS5CXZ5Dp0xPaipeauKt9kirwPym_SO91rANPZHtIp9pKq-byg2pj8yhhThNGMzrC4Nvw9FBuw3VM8lZmx4tob2WIPiP7_q7gTNjtJy8QatutYEHVkreoo4u19DKDJDr6PsAe_iwgw9becGNvOBGXrCTFzytsJOXTxPspWUD_dwfnnz5GrgMG4EkcTQNpMwEpymPFKxEuYoSkcTwJNZC9hRJeGYC9gkYzH2l6pKME81Upqjq0x6V5B2aL6tSbyJcEFbQPuMUVAAlkgiRcJLA8psVkomk2EKZ_y25dOHn6ywol_mT8GyhuKl6bWOwPKfSZ__vc2dMWiMxB_l6uvr2_7zzPVpuB8QOmp-Ob_QuWpS301-T8QcnXL8BidCfdA
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+boundary+element+method+recursive+procedure+applied+to+Poisson%27s+problems&rft.jtitle=Engineering+analysis+with+boundary+elements&rft.au=Ramos%2C+V.E.S.&rft.au=Loeffler%2C+C.F.&rft.au=Mansur%2C+W.J.&rft.date=2017-09-01&rft.issn=0955-7997&rft.volume=82&rft.spage=104&rft.epage=110&rft_id=info:doi/10.1016%2Fj.enganabound.2017.06.003&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enganabound_2017_06_003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-7997&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-7997&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-7997&client=summon