Bayesian optimization based extreme gradient boosting and GPR time-frequency features for the recognition of moisture damage in asphalt pavement

Moisture damage is one of the major defects in asphalt pavement, and will evolve into potholes in a short time which will affect traffic safety. Ground Penetrating Radar (GPR) is an effective non-destructive testing (NDT) method for detecting moisture damage but its data explanation replies on human...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Construction & building materials Ročník 434; s. 136675
Hlavní autori: Li, Hongwei, Zhang, Jun, Yang, Xiaokun, Ye, Min, Jiang, Wentao, Gong, Jing, Tian, Yaogang, Zhao, Liang, Wang, Weitian, Xu, Zhi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 05.07.2024
Predmet:
ISSN:0950-0618, 1879-0526
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Moisture damage is one of the major defects in asphalt pavement, and will evolve into potholes in a short time which will affect traffic safety. Ground Penetrating Radar (GPR) is an effective non-destructive testing (NDT) method for detecting moisture damage but its data explanation replies on human experience and subjects to labor intensive. To address this issue, an automatic detection method based on extreme gradient boosting (XGBoost) combined with Bayesian hyper-parameter optimization (BHPO) was proposed to detect moisture damage area from GPR traces. High frequency GPR antenna with 2.3 GHz was used to detect the moisture damage area from simulation, laboratory and field tests, and moisture damage dataset with 7960 traces was collected. Thirty time-frequency parameters were extracted from each GPR trace, normalized to unify the three data source, and then optimized into 12 sensitive parameters by feature importance method. These 12 parameters were used to build the recognition model with XGBoost, and the model tuning parameters were optimized by BHPO. To obtain optimization model, random forest (RF) and artificial neural network (ANN) were also trained with BHPO, and compared with XGBoost model. The results indicate that performance of XGBoost model with BHPO achieves the highest accuracy and lowest time cost both in moisture damage and normal trace classification, the accuracies for moisture damage are XGBoost (96.9%) > ANN (95.6%) > RF (95.4%), respectively, and normal are XGBoost (96.5%) > RF (96.1%) and ANN (96.0%), respectively. On this basis, field tests were conducted by core samples, which verified the correct result of XGBoost model. Our method provides a swift and accurate method to locate subsurface targets directly from GPR signals. •30 time-frequency features were extracted for representing moisture damage.•12 sensitive features were optimized by feature importance analysis.•XGBoost with BHPO was adopted to locate moisture damage from GPR signal.•Normalizing method was used to combine features from different data source.•BHPO-XGBoost model reaches high accuracy with 96.9%.
AbstractList Moisture damage is one of the major defects in asphalt pavement, and will evolve into potholes in a short time which will affect traffic safety. Ground Penetrating Radar (GPR) is an effective non-destructive testing (NDT) method for detecting moisture damage but its data explanation replies on human experience and subjects to labor intensive. To address this issue, an automatic detection method based on extreme gradient boosting (XGBoost) combined with Bayesian hyper-parameter optimization (BHPO) was proposed to detect moisture damage area from GPR traces. High frequency GPR antenna with 2.3 GHz was used to detect the moisture damage area from simulation, laboratory and field tests, and moisture damage dataset with 7960 traces was collected. Thirty time-frequency parameters were extracted from each GPR trace, normalized to unify the three data source, and then optimized into 12 sensitive parameters by feature importance method. These 12 parameters were used to build the recognition model with XGBoost, and the model tuning parameters were optimized by BHPO. To obtain optimization model, random forest (RF) and artificial neural network (ANN) were also trained with BHPO, and compared with XGBoost model. The results indicate that performance of XGBoost model with BHPO achieves the highest accuracy and lowest time cost both in moisture damage and normal trace classification, the accuracies for moisture damage are XGBoost (96.9%) > ANN (95.6%) > RF (95.4%), respectively, and normal are XGBoost (96.5%) > RF (96.1%) and ANN (96.0%), respectively. On this basis, field tests were conducted by core samples, which verified the correct result of XGBoost model. Our method provides a swift and accurate method to locate subsurface targets directly from GPR signals. •30 time-frequency features were extracted for representing moisture damage.•12 sensitive features were optimized by feature importance analysis.•XGBoost with BHPO was adopted to locate moisture damage from GPR signal.•Normalizing method was used to combine features from different data source.•BHPO-XGBoost model reaches high accuracy with 96.9%.
ArticleNumber 136675
Author Wang, Weitian
Yang, Xiaokun
Tian, Yaogang
Gong, Jing
Zhao, Liang
Li, Hongwei
Ye, Min
Xu, Zhi
Zhang, Jun
Jiang, Wentao
Author_xml – sequence: 1
  givenname: Hongwei
  surname: Li
  fullname: Li, Hongwei
  organization: Key Laboratory of Road Construction Technology and Equipment of MOE, Chang’an University, Xi’an, Shaanxi 710064, China
– sequence: 2
  givenname: Jun
  orcidid: 0000-0001-5594-9203
  surname: Zhang
  fullname: Zhang, Jun
  email: zhangjun@chd.edu.cn
  organization: Key Laboratory of Road Construction Technology and Equipment of MOE, Chang’an University, Xi’an, Shaanxi 710064, China
– sequence: 3
  givenname: Xiaokun
  surname: Yang
  fullname: Yang, Xiaokun
  organization: Key Laboratory of Road Construction Technology and Equipment of MOE, Chang’an University, Xi’an, Shaanxi 710064, China
– sequence: 4
  givenname: Min
  orcidid: 0000-0002-8301-5843
  surname: Ye
  fullname: Ye, Min
  email: mingye@chd.edu.cn
  organization: Key Laboratory of Road Construction Technology and Equipment of MOE, Chang’an University, Xi’an, Shaanxi 710064, China
– sequence: 5
  givenname: Wentao
  surname: Jiang
  fullname: Jiang, Wentao
  organization: National Key Laboratory of Strength and Structural Integrity, Aircraft Strength Research Institute of China, Xi’an, Shaanxi 710065, China
– sequence: 6
  givenname: Jing
  surname: Gong
  fullname: Gong, Jing
  organization: NingBo High-grade Maintenance Co Ltd., Ningbo, Zhejiang 31500, China
– sequence: 7
  givenname: Yaogang
  surname: Tian
  fullname: Tian, Yaogang
  organization: School of Materials Science and Engineering, Chang’an University, Xi’an 710061, China
– sequence: 8
  givenname: Liang
  surname: Zhao
  fullname: Zhao, Liang
  organization: School of Mechatronic Engineering, Xi’an Technological University, Xi’an 710021, China
– sequence: 9
  givenname: Weitian
  surname: Wang
  fullname: Wang, Weitian
  organization: Department of Computer Science, Montclair State University, NJ 07043, USA
– sequence: 10
  givenname: Zhi
  surname: Xu
  fullname: Xu, Zhi
  organization: Hangzhou Institute of Technology, Xidian University, Hangzhou, Zhejiang Province 311231, China
BookMark eNqNkMFuEzEURS1UJNLCPzw-YFLbM-MZr6oS0YJUiQrB2npjv0kdZexgOxXpV_DJTBoWqKuu3ubdc3XPOTsLMRBjHwVfCi7U5WZpYxj2fusmLEvJZbMUtVJd-4YtRN_pirdSnbEF1y2vuBL9O3ae84ZzrqSSC_bnEx4oewwQd8VP_gmLjwEGzOSAfpdEE8E6ofMUCgwx5uLDGjA4uL3_DnOEqjHRrz0Fe4CRsOwTZRhjgvJAkMjGdfDPzDjCFH0-PoDDCdcEPgDm3QNuC-zwca4K5T17O-I204d_94L9vPn8Y_Wluvt2-3V1fVfZWopSWd32XdeRHqh3rW6EJllj4-TQNbZRSlHj5omuJalq3mrXiX7gA5FWqhWdqC_Y1YlrU8w50WisL8_jS0K_NYKbo2CzMf8JNkfB5iR4JugXhF3yE6bDq7KrU5bmiY-eksl2NmzJ-VlZMS76V1D-Al9wo1U
CitedBy_id crossref_primary_10_3390_rs17142521
crossref_primary_10_1016_j_measurement_2025_118354
crossref_primary_10_1016_j_cscm_2025_e05196
crossref_primary_10_1038_s41598_025_88269_w
crossref_primary_10_1016_j_measurement_2025_117650
crossref_primary_10_1016_j_apenergy_2024_124497
crossref_primary_10_1016_j_conbuildmat_2025_142779
crossref_primary_10_1016_j_cscm_2025_e04359
crossref_primary_10_3390_buildings14113662
Cites_doi 10.1016/j.conbuildmat.2017.11.082
10.1016/j.sbspro.2013.11.095
10.1145/2939672.2939785
10.1016/j.jclepro.2015.03.028
10.1007/s11803-023-2179-7
10.1109/LGRS.2013.2261796
10.1016/j.jappgeo.2013.02.016
10.1016/j.autcon.2019.102839
10.1016/j.autcon.2023.104840
10.1016/j.conbuildmat.2019.01.167
10.1016/j.conbuildmat.2020.118295
10.1109/ICGPR.2012.6254919
10.1109/ICGPR.2012.6254922
10.1016/j.conbuildmat.2020.119356
10.1038/nature14541
10.1016/j.conbuildmat.2016.03.060
10.1007/s10971-009-1982-6
10.1016/j.ymssp.2014.05.034
10.1088/1742-2132/10/3/034002
10.3141/2304-15
10.1016/j.measurement.2021.110638
10.1016/j.gsf.2020.03.007
10.1016/j.conbuildmat.2017.04.097
10.4028/www.scientific.net/AMM.178-181.1117
10.1016/j.ndteint.2020.102290
10.1117/12.462228
10.1016/j.autcon.2022.104260
10.1016/j.conbuildmat.2022.130274
10.1016/j.autcon.2022.104689
10.1016/j.conbuildmat.2019.03.262
10.1016/j.cja.2019.02.013
10.1016/j.autcon.2023.104811
10.1016/j.conbuildmat.2012.06.023
10.1109/TGRS.2009.2012701
10.1016/j.conbuildmat.2017.11.103
10.1016/j.conbuildmat.2021.122250
10.1016/j.conbuildmat.2023.131564
10.1016/j.measurement.2022.112427
10.1016/j.scitotenv.2017.03.210
10.1016/j.ijadhadh.2017.03.016
10.1214/07-STS242
10.1016/j.ndteint.2019.102128
10.1016/j.ndteint.2024.103116
10.1109/TASL.2011.2118753
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conbuildmat.2024.136675
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0526
ExternalDocumentID 10_1016_j_conbuildmat_2024_136675
S0950061824018166
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAAKF
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IAO
IEA
IGG
IHE
IHM
IOF
ISM
J1W
JJJVA
KOM
M41
MAGPM
MO0
N95
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PV9
Q38
RIG
ROL
RPZ
RZL
SDF
SDG
SES
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
XI7
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AHDLI
AI.
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BAIFH
BBTPI
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
ITC
LY7
M24
R2-
RNS
SET
SMS
VH1
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c321t-c958777e9be8d59419e23a4d2b74c4666e4d062d5e263059d718b0bee96651713
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001286628500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-0618
IngestDate Sat Nov 29 02:16:46 EST 2025
Tue Nov 18 21:40:02 EST 2025
Tue Jun 18 08:50:45 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Time-frequency feature
Extreme gradient boosting (XGBoost)
Ground penetrating radar (GPR)
Moisture damage
Asphalt pavement
Bayesian optimization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-c958777e9be8d59419e23a4d2b74c4666e4d062d5e263059d718b0bee96651713
ORCID 0000-0001-5594-9203
0000-0002-8301-5843
ParticipantIDs crossref_citationtrail_10_1016_j_conbuildmat_2024_136675
crossref_primary_10_1016_j_conbuildmat_2024_136675
elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2024_136675
PublicationCentury 2000
PublicationDate 2024-07-05
PublicationDateYYYYMMDD 2024-07-05
PublicationDate_xml – month: 07
  year: 2024
  text: 2024-07-05
  day: 05
PublicationDecade 2020
PublicationTitle Construction & building materials
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Zhang, Li, Yang (bib40) 2024; 145
T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 2016, pp. 13-17.
Shihab, Waleed, Yi, Asger (bib32) 2002; 4758
Wang, Leng, Sui (bib18) 2024
Lin, Yu-Yu (bib14) 2009; 51
Wang, Leng, Sui (bib26) 2023; 208
Klewe, Strangfeld, Kruschwitz (bib7) 2021; 278
Lei, Hou, Xi (bib22) 2019; 106
Zhou, Wang, Wang (bib29) 2019; 32
Kakar, Hamzah, Valentin (bib1) 2015; 99
Zhan, Liu, Deng (bib38) 2022; 188
Liu, Yeoh, Gu (bib16) 2023; 146
Ghabchi, Singh, Zaman, Tian (bib8) 2013; 104
Zeng, Zhang, Xie (bib17) 2023; 150
Habal, Singh (bib6) 2016; 113
Wan, Qi, Zhao, Ren, Fu (bib28) 2023; 22
Zhang, Lu, Yang (bib23) 2022; 138
Ghoraani, Krishnan (bib45) 2011; 19
Chen, Li, Zhou (bib51) 2023; 387
.
R. Evans, M. Frost, R. Morrow, Assessing the influence of moisture on the dielectric properties of asphalt, 14th International Conference on Ground Penetrating Radar (GPR), 2012, pp. 536-541.
Wang, Wang, Xiong, Luo (bib4) 2019; 204
Pei, Sun, Yu (bib46) 2020; 256
Little, Allen, Bhasin (bib2) 2018
El-Mahallawy, Hashim (bib36) 2013
Ghahramani (bib49) 2015; 521
Ercoli, Di Matteo, Pauselli (bib13) 2018; 159
Zhang, Zhu, Wang, Chu (bib9) 2023; 369
Pasolli, Melgani, Donelli (bib33) 2009; 47
Artagan, Borecky (bib42) 2020; 115
Zhang, Jiang, Zhang (bib31) 2024; 52
P. Bühlmann, T. Hothorn, Boosting algorithms: regularization, prediction and model gitting, 2007.
Todkar, Le Bastard, Baltazart, Ihamouten, Dérobert (bib27) 2019; 107
Pang (bib5) 2012; 178-181
Xie, Wu, Lin (bib10) 2012; 36
Zhang, Wu, Zhong, Li, Wang (bib50) 2021; 12
Hamedi, Tahami (bib3) 2018; 81
Wang, Leng, Sui (bib19) 2023; 36
Solla, Lagüela, Riveiro, Lorenzo (bib12) 2013; 20
Attaran Dovom, Mohammadzadeh Moghaddam, Karrabi, Shahnavaz (bib24) 2019; 213
Agliata, Bogaard, Greco (bib11) 2018; 160
Leng, Al-Qadi, Shangguan, Son (bib25) 2012; 2304
Zhang, Zhang, Lu (bib30) 2020; 244
Li, Zhu, Jiang, Zhou, Chen (bib44) 2015; 50-51
Xing, Geng, Xue (bib47) 2016; 2016
Du, Zhong, Fang (bib15) 2023; 150
Paz, Alcalá, Carvalho, Ribeiro (bib41) 2017; 595
Xie, Li, Qin, Liu, Nobes (bib34) 2013; 10
Tong, Gao, Zhang (bib21) 2017; 146
Du, Du, Liu (bib39) 2020; 48
W. Müller, A. Schuermann and B. Reeves, Quantitative moisture measurement of road pavements using 3D noise-modulated GPR, 2012 14th International Conference on Ground Penetrating Radar (GPR), Shanghai, China, 2012, pp. 517-523. doi
Xie, Qin, Yu, Liu (bib35) 2013; 99
Wang (10.1016/j.conbuildmat.2024.136675_bib4) 2019; 204
Zhan (10.1016/j.conbuildmat.2024.136675_bib38) 2022; 188
Zhang (10.1016/j.conbuildmat.2024.136675_bib31) 2024; 52
Du (10.1016/j.conbuildmat.2024.136675_bib39) 2020; 48
Liu (10.1016/j.conbuildmat.2024.136675_bib16) 2023; 146
Ghoraani (10.1016/j.conbuildmat.2024.136675_bib45) 2011; 19
Du (10.1016/j.conbuildmat.2024.136675_bib15) 2023; 150
10.1016/j.conbuildmat.2024.136675_bib43
Wan (10.1016/j.conbuildmat.2024.136675_bib28) 2023; 22
Ghahramani (10.1016/j.conbuildmat.2024.136675_bib49) 2015; 521
Little (10.1016/j.conbuildmat.2024.136675_bib2) 2018
Pasolli (10.1016/j.conbuildmat.2024.136675_bib33) 2009; 47
Todkar (10.1016/j.conbuildmat.2024.136675_bib27) 2019; 107
Artagan (10.1016/j.conbuildmat.2024.136675_bib42) 2020; 115
Lei (10.1016/j.conbuildmat.2024.136675_bib22) 2019; 106
10.1016/j.conbuildmat.2024.136675_bib48
Pang (10.1016/j.conbuildmat.2024.136675_bib5) 2012; 178-181
Attaran Dovom (10.1016/j.conbuildmat.2024.136675_bib24) 2019; 213
Klewe (10.1016/j.conbuildmat.2024.136675_bib7) 2021; 278
Habal (10.1016/j.conbuildmat.2024.136675_bib6) 2016; 113
Tong (10.1016/j.conbuildmat.2024.136675_bib21) 2017; 146
Zhang (10.1016/j.conbuildmat.2024.136675_bib50) 2021; 12
Wang (10.1016/j.conbuildmat.2024.136675_bib18) 2024
Zhang (10.1016/j.conbuildmat.2024.136675_bib9) 2023; 369
Zhang (10.1016/j.conbuildmat.2024.136675_bib23) 2022; 138
Lin (10.1016/j.conbuildmat.2024.136675_bib14) 2009; 51
Hamedi (10.1016/j.conbuildmat.2024.136675_bib3) 2018; 81
Xie (10.1016/j.conbuildmat.2024.136675_bib10) 2012; 36
Leng (10.1016/j.conbuildmat.2024.136675_bib25) 2012; 2304
Xie (10.1016/j.conbuildmat.2024.136675_bib34) 2013; 10
Zhou (10.1016/j.conbuildmat.2024.136675_bib29) 2019; 32
10.1016/j.conbuildmat.2024.136675_bib37
10.1016/j.conbuildmat.2024.136675_bib20
Wang (10.1016/j.conbuildmat.2024.136675_bib26) 2023; 208
Li (10.1016/j.conbuildmat.2024.136675_bib44) 2015; 50-51
Solla (10.1016/j.conbuildmat.2024.136675_bib12) 2013; 20
Ghabchi (10.1016/j.conbuildmat.2024.136675_bib8) 2013; 104
El-Mahallawy (10.1016/j.conbuildmat.2024.136675_bib36) 2013
Pei (10.1016/j.conbuildmat.2024.136675_bib46) 2020; 256
Kakar (10.1016/j.conbuildmat.2024.136675_bib1) 2015; 99
Shihab (10.1016/j.conbuildmat.2024.136675_bib32) 2002; 4758
Xing (10.1016/j.conbuildmat.2024.136675_bib47) 2016; 2016
Paz (10.1016/j.conbuildmat.2024.136675_bib41) 2017; 595
Wang (10.1016/j.conbuildmat.2024.136675_bib19) 2023; 36
Zhang (10.1016/j.conbuildmat.2024.136675_bib40) 2024; 145
Agliata (10.1016/j.conbuildmat.2024.136675_bib11) 2018; 160
Zhang (10.1016/j.conbuildmat.2024.136675_bib30) 2020; 244
Xie (10.1016/j.conbuildmat.2024.136675_bib35) 2013; 99
Chen (10.1016/j.conbuildmat.2024.136675_bib51) 2023; 387
Ercoli (10.1016/j.conbuildmat.2024.136675_bib13) 2018; 159
Zeng (10.1016/j.conbuildmat.2024.136675_bib17) 2023; 150
References_xml – volume: 369
  year: 2023
  ident: bib9
  article-title: Experimental simulation for moisture damage of saturated asphalt mixture and evolution of mixture’s pore water pressure, accumulative strain
  publication-title: Constr. Build. Mater.
– volume: 51
  start-page: 215
  year: 2009
  end-page: 221
  ident: bib14
  article-title: Improvement of electrical properties of sol–gel derived ZnO:Ga films by infrared heating method
  publication-title: J. Sol. -Gel Sci. Technol.
– volume: 36
  start-page: 22
  year: 2023
  end-page: 33
  ident: bib19
  article-title: Rutting characterization of steel-bridge asphalt pavement based on layer-thickness profiling using Ground-Penetrating Radar
  publication-title: China J. Highw. Transp.
– volume: 178-181
  start-page: 1117
  year: 2012
  end-page: 1124
  ident: bib5
  article-title: Research on the moisture damage occurred on the asphalt pavement
  publication-title: Appl. Mech. Mater.
– volume: 20
  start-page: 1366
  year: 2013
  end-page: 1376
  ident: bib12
  article-title: Non-destructive testing for the analysis of moisture in the masonry arch bridge of Lubians (Spain)
  publication-title: Struct. Control Health Monit.
– volume: 32
  start-page: 1100
  year: 2019
  end-page: 1110
  ident: bib29
  article-title: Online condition diagnosis for a two-stage gearbox machinery of an aerospace utilization system using an ensemble multi-fault features indexing approach
  publication-title: Chin. J. Aeronaut.
– volume: 12
  start-page: 469
  year: 2021
  end-page: 477
  ident: bib50
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci. Front.
– volume: 113
  start-page: 351
  year: 2016
  end-page: 358
  ident: bib6
  article-title: Comparison of Wilhelmy plate and Sessile drop methods to rank moisture damage susceptibility of asphalt—aggregates combinations
  publication-title: Constr. Build. Mater.
– volume: 145
  year: 2024
  ident: bib40
  article-title: A novel moisture damage detection method for asphalt pavement from GPR signal with CWT and CNN
  publication-title: NDT E Int.
– volume: 278
  year: 2021
  ident: bib7
  article-title: Review of moisture measurements in civil engineering with ground penetrating radar—applied methods and signal features
  publication-title: Constr. Build. Mater.
– volume: 47
  start-page: 2206
  year: 2009
  end-page: 2217
  ident: bib33
  article-title: Automatic analysis of GPR images: a pattern-recognition approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 106
  year: 2019
  ident: bib22
  article-title: Automatic hyperbola detection and fitting in GPR B-scan image
  publication-title: Autom. Construct.
– volume: 2304
  start-page: 133
  year: 2012
  end-page: 141
  ident: bib25
  article-title: Field application of ground-penetrating radar for measurement of asphalt mixture density: case study of Illinois route 72 overlay
  publication-title: Transp. Res. Rec.
– volume: 2016
  start-page: 4489
  year: 2016
  end-page: 4497
  ident: bib47
  article-title: Logistic boosting regression for label distribution learning
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 146
  year: 2023
  ident: bib16
  article-title: Automatic pixel-level detection of vertical cracks in asphalt pavement based on GPR investigation and improved mask R-CNN
  publication-title: Autom. Construct.
– start-page: 123
  year: 2018
  end-page: 186
  ident: bib2
  article-title: Chemical and mechanical processes influencing adhesion and moisture damage in hot mix asphalt pavements
  publication-title: Modeling and Design of Flexible Pavements and Materials
– volume: 256
  year: 2020
  ident: bib46
  article-title: Pavement aggregate shape classification based on extreme gradient boosting
  publication-title: Construct. Build. Mater.
– volume: 81
  start-page: 90
  year: 2018
  ident: bib3
  article-title: The effect of using anti-stripping additives on moisture damage of hot mix asphalt
  publication-title: Int. J. Adhes. Adhes.
– volume: 104
  start-page: 29
  year: 2013
  end-page: 38
  ident: bib8
  article-title: Application of Asphalt-aggregates interfacial energies to evaluate moisture-induced damage of warm mix asphalt
  publication-title: Procedia—Soc. Behav. Sci.
– volume: 208
  year: 2023
  ident: bib26
  article-title: Detectability of concealed cracks in the asphalt pavement layer using air-coupled ground-penetrating radar
  publication-title: Measurement
– volume: 160
  start-page: 698
  year: 2018
  end-page: 706
  ident: bib11
  article-title: Non-invasive estimation of moisture content in tuff bricks by GPR
  publication-title: Constr. Build. Mater.
– volume: 22
  start-page: 481
  year: 2023
  end-page: 493
  ident: bib28
  article-title: Prediction of column failure modes based on artificial neural network
  publication-title: Earthq. Eng. Eng. Vib.
– volume: 10
  year: 2013
  ident: bib34
  article-title: GPR identification of voids inside concrete based on the support vector machine algorithm
  publication-title: J. Geophys. Eng.
– volume: 150
  year: 2023
  ident: bib17
  article-title: Measuring annular thickness of backfill grouting behind shield tunnel lining based on GPR monitoring and data mining
  publication-title: Autom. Construct.
– volume: 204
  start-page: 631
  year: 2019
  end-page: 642
  ident: bib4
  article-title: A review and perspective for research on moisture damage in asphalt pavement induced by dynamic pore water pressure
  publication-title: Constr. Build. Mater.
– volume: 36
  start-page: 467
  year: 2012
  end-page: 474
  ident: bib10
  article-title: Recycling of basic oxygen furnace slag in asphalt mixture: material characterization & moisture damage investigation
  publication-title: Constr. Build. Mater.
– volume: 244
  year: 2020
  ident: bib30
  article-title: In-situ recognition of moisture damage in bridge deck asphalt pavement with time-frequency features of GPR signal
  publication-title: Construct. Build. Mater.
– reference: R. Evans, M. Frost, R. Morrow, Assessing the influence of moisture on the dielectric properties of asphalt, 14th International Conference on Ground Penetrating Radar (GPR), 2012, pp. 536-541.
– volume: 387
  year: 2023
  ident: bib51
  article-title: Bayesian optimization based random forest and extreme gradient boosting for the pavement density prediction in GPR detection
  publication-title: Construction and Building Materials
– volume: 19
  start-page: 2197
  year: 2011
  end-page: 2209
  ident: bib45
  article-title: Time–frequency matrix feature extraction and classification of environmental audio signals
  publication-title: IEEE Trans. Audio Speech, Lang. Process.
– volume: 115
  year: 2020
  ident: bib42
  article-title: Advances in the nondestructive condition assessment of railway ballast: a focus on GPR
  publication-title: NDT E Int.
– volume: 213
  start-page: 131
  year: 2019
  end-page: 141
  ident: bib24
  article-title: Improving the resistance to moisture damage of cold mix asphalt modified by eco-friendly Microbial Carbonate Precipitation (MCP)
  publication-title: Construct. Build. Mater.
– start-page: 1
  year: 2024
  end-page: 13
  ident: bib18
  article-title: Real-time asphalt pavement layer thickness prediction using Ground-Penetrating Radar based on a modified Extended Common Mid-Point (XCMP) approach
  publication-title: IEEE Trans. Intell. Transp. Syst
– volume: 107
  year: 2019
  ident: bib27
  article-title: Performance assessment of SVM-based classification techniques for the detection of artificial debondings within pavement structures from stepped-frequency A-scan radar data
  publication-title: NDT E Int.
– year: 2013
  ident: bib36
  article-title: Material classification of underground utilities from GPR images using DCT-based SVM approach
  publication-title: IEEE Geosci. Remote Sens. Lett.
– reference: T. Chen, C. Guestrin, XGBoost: A scalable tree boosting system, In Proceedings of the 22nd ACM Sigkdd International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 2016, pp. 13-17.
– volume: 595
  start-page: 868
  year: 2017
  end-page: 885
  ident: bib41
  article-title: Current uses of ground penetrating radar in groundwater-dependent ecosystems research
  publication-title: Sci. Total Environ.
– volume: 150
  year: 2023
  ident: bib15
  article-title: Modeling automatic pavement crack object detection and pixel-level segmentation
  publication-title: Autom. Construct.
– volume: 146
  start-page: 775
  year: 2017
  end-page: 787
  ident: bib21
  article-title: Recognition, location, measurement, and 3D reconstruction of concealed cracks using convolutional neural networks
  publication-title: Construct. Build. Mater.
– volume: 159
  start-page: 734
  year: 2018
  end-page: 744
  ident: bib13
  article-title: Integrated GPR and laboratory water content measures of sandy soils: from laboratory to field scale
  publication-title: Constr. Build. Mater.
– volume: 138
  year: 2022
  ident: bib23
  article-title: Recognition of void defects in airport runways using ground-penetrating radar and shallow CNN
  publication-title: Autom. Construct.
– volume: 99
  start-page: 39
  year: 2015
  end-page: 58
  ident: bib1
  article-title: A review on moisture damages of hot and warm mix asphalt and related investigations
  publication-title: J. Clean. Prod.
– volume: 521
  start-page: 452
  year: 2015
  end-page: 459
  ident: bib49
  article-title: Probabilistic machine learning and artificial intelligence
  publication-title: Nature
– reference: P. Bühlmann, T. Hothorn, Boosting algorithms: regularization, prediction and model gitting, 2007.
– volume: 48
  start-page: 1742
  year: 2020
  end-page: 1750
  ident: bib39
  article-title: Road diseases recognition of ground penetrating radar based on extreme gradient boosting
  publication-title: J. Tongji Univ.
– volume: 52
  start-page: 104
  year: 2024
  end-page: 114
  ident: bib31
  article-title: Cement pavement void identification based on XGBoost and GPR time frequency features
  publication-title: J. Tongji Univ.
– reference: .
– volume: 4758
  start-page: 135
  year: 2002
  end-page: 138
  ident: bib32
  article-title: Neural network target identifier based on statistical features of GPR signals
  publication-title: Proc. SPIE
– volume: 50-51
  start-page: 414
  year: 2015
  end-page: 426
  ident: bib44
  article-title: Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method
  publication-title: Mech. Syst. Signal Process.
– volume: 99
  start-page: 125
  year: 2013
  end-page: 134
  ident: bib35
  article-title: An automatic recognition algorithm for GPR images of RC structure voids
  publication-title: J. Appl. Geophys.
– volume: 188
  year: 2022
  ident: bib38
  article-title: Integrated FFT and XGBoost framework to predict pavement skid resistance using automatic 3D texture measurement
  publication-title: Measurement
– reference: W. Müller, A. Schuermann and B. Reeves, Quantitative moisture measurement of road pavements using 3D noise-modulated GPR, 2012 14th International Conference on Ground Penetrating Radar (GPR), Shanghai, China, 2012, pp. 517-523. doi:
– volume: 159
  start-page: 734
  year: 2018
  ident: 10.1016/j.conbuildmat.2024.136675_bib13
  article-title: Integrated GPR and laboratory water content measures of sandy soils: from laboratory to field scale
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.11.082
– volume: 104
  start-page: 29
  year: 2013
  ident: 10.1016/j.conbuildmat.2024.136675_bib8
  article-title: Application of Asphalt-aggregates interfacial energies to evaluate moisture-induced damage of warm mix asphalt
  publication-title: Procedia—Soc. Behav. Sci.
  doi: 10.1016/j.sbspro.2013.11.095
– volume: 36
  start-page: 22
  issue: 12
  year: 2023
  ident: 10.1016/j.conbuildmat.2024.136675_bib19
  article-title: Rutting characterization of steel-bridge asphalt pavement based on layer-thickness profiling using Ground-Penetrating Radar
  publication-title: China J. Highw. Transp.
– ident: 10.1016/j.conbuildmat.2024.136675_bib37
  doi: 10.1145/2939672.2939785
– volume: 99
  start-page: 39
  year: 2015
  ident: 10.1016/j.conbuildmat.2024.136675_bib1
  article-title: A review on moisture damages of hot and warm mix asphalt and related investigations
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2015.03.028
– volume: 22
  start-page: 481
  issue: 2
  year: 2023
  ident: 10.1016/j.conbuildmat.2024.136675_bib28
  article-title: Prediction of column failure modes based on artificial neural network
  publication-title: Earthq. Eng. Eng. Vib.
  doi: 10.1007/s11803-023-2179-7
– year: 2013
  ident: 10.1016/j.conbuildmat.2024.136675_bib36
  article-title: Material classification of underground utilities from GPR images using DCT-based SVM approach
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2013.2261796
– volume: 99
  start-page: 125
  year: 2013
  ident: 10.1016/j.conbuildmat.2024.136675_bib35
  article-title: An automatic recognition algorithm for GPR images of RC structure voids
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2013.02.016
– volume: 106
  year: 2019
  ident: 10.1016/j.conbuildmat.2024.136675_bib22
  article-title: Automatic hyperbola detection and fitting in GPR B-scan image
  publication-title: Autom. Construct.
  doi: 10.1016/j.autcon.2019.102839
– volume: 150
  year: 2023
  ident: 10.1016/j.conbuildmat.2024.136675_bib15
  article-title: Modeling automatic pavement crack object detection and pixel-level segmentation
  publication-title: Autom. Construct.
  doi: 10.1016/j.autcon.2023.104840
– volume: 204
  start-page: 631
  year: 2019
  ident: 10.1016/j.conbuildmat.2024.136675_bib4
  article-title: A review and perspective for research on moisture damage in asphalt pavement induced by dynamic pore water pressure
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.01.167
– volume: 244
  year: 2020
  ident: 10.1016/j.conbuildmat.2024.136675_bib30
  article-title: In-situ recognition of moisture damage in bridge deck asphalt pavement with time-frequency features of GPR signal
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118295
– ident: 10.1016/j.conbuildmat.2024.136675_bib43
  doi: 10.1109/ICGPR.2012.6254919
– ident: 10.1016/j.conbuildmat.2024.136675_bib20
  doi: 10.1109/ICGPR.2012.6254922
– volume: 256
  year: 2020
  ident: 10.1016/j.conbuildmat.2024.136675_bib46
  article-title: Pavement aggregate shape classification based on extreme gradient boosting
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.119356
– volume: 521
  start-page: 452
  issue: 7553
  year: 2015
  ident: 10.1016/j.conbuildmat.2024.136675_bib49
  article-title: Probabilistic machine learning and artificial intelligence
  publication-title: Nature
  doi: 10.1038/nature14541
– volume: 113
  start-page: 351
  year: 2016
  ident: 10.1016/j.conbuildmat.2024.136675_bib6
  article-title: Comparison of Wilhelmy plate and Sessile drop methods to rank moisture damage susceptibility of asphalt—aggregates combinations
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2016.03.060
– volume: 51
  start-page: 215
  issue: 2
  year: 2009
  ident: 10.1016/j.conbuildmat.2024.136675_bib14
  article-title: Improvement of electrical properties of sol–gel derived ZnO:Ga films by infrared heating method
  publication-title: J. Sol. -Gel Sci. Technol.
  doi: 10.1007/s10971-009-1982-6
– volume: 50-51
  start-page: 414
  year: 2015
  ident: 10.1016/j.conbuildmat.2024.136675_bib44
  article-title: Fault diagnosis of rotating machinery with a novel statistical feature extraction and evaluation method
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2014.05.034
– volume: 10
  issue: 3
  year: 2013
  ident: 10.1016/j.conbuildmat.2024.136675_bib34
  article-title: GPR identification of voids inside concrete based on the support vector machine algorithm
  publication-title: J. Geophys. Eng.
  doi: 10.1088/1742-2132/10/3/034002
– volume: 2304
  start-page: 133
  issue: 1
  year: 2012
  ident: 10.1016/j.conbuildmat.2024.136675_bib25
  article-title: Field application of ground-penetrating radar for measurement of asphalt mixture density: case study of Illinois route 72 overlay
  publication-title: Transp. Res. Rec.
  doi: 10.3141/2304-15
– volume: 188
  year: 2022
  ident: 10.1016/j.conbuildmat.2024.136675_bib38
  article-title: Integrated FFT and XGBoost framework to predict pavement skid resistance using automatic 3D texture measurement
  publication-title: Measurement
  doi: 10.1016/j.measurement.2021.110638
– start-page: 1
  year: 2024
  ident: 10.1016/j.conbuildmat.2024.136675_bib18
  article-title: Real-time asphalt pavement layer thickness prediction using Ground-Penetrating Radar based on a modified Extended Common Mid-Point (XCMP) approach
  publication-title: IEEE Trans. Intell. Transp. Syst
– volume: 12
  start-page: 469
  issue: 1
  year: 2021
  ident: 10.1016/j.conbuildmat.2024.136675_bib50
  article-title: Prediction of undrained shear strength using extreme gradient boosting and random forest based on Bayesian optimization
  publication-title: Geosci. Front.
  doi: 10.1016/j.gsf.2020.03.007
– volume: 146
  start-page: 775
  year: 2017
  ident: 10.1016/j.conbuildmat.2024.136675_bib21
  article-title: Recognition, location, measurement, and 3D reconstruction of concealed cracks using convolutional neural networks
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.04.097
– volume: 178-181
  start-page: 1117
  year: 2012
  ident: 10.1016/j.conbuildmat.2024.136675_bib5
  article-title: Research on the moisture damage occurred on the asphalt pavement
  publication-title: Appl. Mech. Mater.
  doi: 10.4028/www.scientific.net/AMM.178-181.1117
– start-page: 123
  year: 2018
  ident: 10.1016/j.conbuildmat.2024.136675_bib2
  article-title: Chemical and mechanical processes influencing adhesion and moisture damage in hot mix asphalt pavements
– volume: 115
  year: 2020
  ident: 10.1016/j.conbuildmat.2024.136675_bib42
  article-title: Advances in the nondestructive condition assessment of railway ballast: a focus on GPR
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2020.102290
– volume: 4758
  start-page: 135
  year: 2002
  ident: 10.1016/j.conbuildmat.2024.136675_bib32
  article-title: Neural network target identifier based on statistical features of GPR signals
  publication-title: Proc. SPIE
  doi: 10.1117/12.462228
– volume: 138
  year: 2022
  ident: 10.1016/j.conbuildmat.2024.136675_bib23
  article-title: Recognition of void defects in airport runways using ground-penetrating radar and shallow CNN
  publication-title: Autom. Construct.
  doi: 10.1016/j.autcon.2022.104260
– volume: 369
  year: 2023
  ident: 10.1016/j.conbuildmat.2024.136675_bib9
  article-title: Experimental simulation for moisture damage of saturated asphalt mixture and evolution of mixture’s pore water pressure, accumulative strain
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.130274
– volume: 146
  year: 2023
  ident: 10.1016/j.conbuildmat.2024.136675_bib16
  article-title: Automatic pixel-level detection of vertical cracks in asphalt pavement based on GPR investigation and improved mask R-CNN
  publication-title: Autom. Construct.
  doi: 10.1016/j.autcon.2022.104689
– volume: 52
  start-page: 104
  issue: 01
  year: 2024
  ident: 10.1016/j.conbuildmat.2024.136675_bib31
  article-title: Cement pavement void identification based on XGBoost and GPR time frequency features
  publication-title: J. Tongji Univ.
– volume: 48
  start-page: 1742
  year: 2020
  ident: 10.1016/j.conbuildmat.2024.136675_bib39
  article-title: Road diseases recognition of ground penetrating radar based on extreme gradient boosting
  publication-title: J. Tongji Univ.
– volume: 20
  start-page: 1366
  issue: 11
  year: 2013
  ident: 10.1016/j.conbuildmat.2024.136675_bib12
  article-title: Non-destructive testing for the analysis of moisture in the masonry arch bridge of Lubians (Spain)
  publication-title: Struct. Control Health Monit.
– volume: 213
  start-page: 131
  year: 2019
  ident: 10.1016/j.conbuildmat.2024.136675_bib24
  article-title: Improving the resistance to moisture damage of cold mix asphalt modified by eco-friendly Microbial Carbonate Precipitation (MCP)
  publication-title: Construct. Build. Mater.
  doi: 10.1016/j.conbuildmat.2019.03.262
– volume: 32
  start-page: 1100
  issue: 5
  year: 2019
  ident: 10.1016/j.conbuildmat.2024.136675_bib29
  article-title: Online condition diagnosis for a two-stage gearbox machinery of an aerospace utilization system using an ensemble multi-fault features indexing approach
  publication-title: Chin. J. Aeronaut.
  doi: 10.1016/j.cja.2019.02.013
– volume: 150
  year: 2023
  ident: 10.1016/j.conbuildmat.2024.136675_bib17
  article-title: Measuring annular thickness of backfill grouting behind shield tunnel lining based on GPR monitoring and data mining
  publication-title: Autom. Construct.
  doi: 10.1016/j.autcon.2023.104811
– volume: 36
  start-page: 467
  year: 2012
  ident: 10.1016/j.conbuildmat.2024.136675_bib10
  article-title: Recycling of basic oxygen furnace slag in asphalt mixture: material characterization & moisture damage investigation
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2012.06.023
– volume: 47
  start-page: 2206
  issue: 7
  year: 2009
  ident: 10.1016/j.conbuildmat.2024.136675_bib33
  article-title: Automatic analysis of GPR images: a pattern-recognition approach
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2009.2012701
– volume: 160
  start-page: 698
  year: 2018
  ident: 10.1016/j.conbuildmat.2024.136675_bib11
  article-title: Non-invasive estimation of moisture content in tuff bricks by GPR
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.11.103
– volume: 278
  year: 2021
  ident: 10.1016/j.conbuildmat.2024.136675_bib7
  article-title: Review of moisture measurements in civil engineering with ground penetrating radar—applied methods and signal features
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.122250
– volume: 387
  year: 2023
  ident: 10.1016/j.conbuildmat.2024.136675_bib51
  article-title: Bayesian optimization based random forest and extreme gradient boosting for the pavement density prediction in GPR detection
  publication-title: Construction and Building Materials
  doi: 10.1016/j.conbuildmat.2023.131564
– volume: 208
  year: 2023
  ident: 10.1016/j.conbuildmat.2024.136675_bib26
  article-title: Detectability of concealed cracks in the asphalt pavement layer using air-coupled ground-penetrating radar
  publication-title: Measurement
  doi: 10.1016/j.measurement.2022.112427
– volume: 595
  start-page: 868
  year: 2017
  ident: 10.1016/j.conbuildmat.2024.136675_bib41
  article-title: Current uses of ground penetrating radar in groundwater-dependent ecosystems research
  publication-title: Sci. Total Environ.
  doi: 10.1016/j.scitotenv.2017.03.210
– volume: 81
  start-page: 90
  year: 2018
  ident: 10.1016/j.conbuildmat.2024.136675_bib3
  article-title: The effect of using anti-stripping additives on moisture damage of hot mix asphalt
  publication-title: Int. J. Adhes. Adhes.
  doi: 10.1016/j.ijadhadh.2017.03.016
– ident: 10.1016/j.conbuildmat.2024.136675_bib48
  doi: 10.1214/07-STS242
– volume: 2016
  start-page: 4489
  year: 2016
  ident: 10.1016/j.conbuildmat.2024.136675_bib47
  article-title: Logistic boosting regression for label distribution learning
  publication-title: IEEE Conf. Comput. Vis. Pattern Recognit.
– volume: 107
  year: 2019
  ident: 10.1016/j.conbuildmat.2024.136675_bib27
  article-title: Performance assessment of SVM-based classification techniques for the detection of artificial debondings within pavement structures from stepped-frequency A-scan radar data
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2019.102128
– volume: 145
  year: 2024
  ident: 10.1016/j.conbuildmat.2024.136675_bib40
  article-title: A novel moisture damage detection method for asphalt pavement from GPR signal with CWT and CNN
  publication-title: NDT E Int.
  doi: 10.1016/j.ndteint.2024.103116
– volume: 19
  start-page: 2197
  issue: 7
  year: 2011
  ident: 10.1016/j.conbuildmat.2024.136675_bib45
  article-title: Time–frequency matrix feature extraction and classification of environmental audio signals
  publication-title: IEEE Trans. Audio Speech, Lang. Process.
  doi: 10.1109/TASL.2011.2118753
SSID ssj0006262
Score 2.4688213
Snippet Moisture damage is one of the major defects in asphalt pavement, and will evolve into potholes in a short time which will affect traffic safety. Ground...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 136675
SubjectTerms Asphalt pavement
Bayesian optimization
Extreme gradient boosting (XGBoost)
Ground penetrating radar (GPR)
Moisture damage
Time-frequency feature
Title Bayesian optimization based extreme gradient boosting and GPR time-frequency features for the recognition of moisture damage in asphalt pavement
URI https://dx.doi.org/10.1016/j.conbuildmat.2024.136675
Volume 434
WOSCitedRecordID wos001286628500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006262
  issn: 0950-0618
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3datswFMdF1o6xXpR9lbXrxhnszrjUshRb0JtudB9llDI6yK6MLcvFXWOHJEvbt9jz7Ol2ZEm2s260G-zGBIHkyOdn6Ug--h9CXg0FLhqUFrqNY-azoWJ-JrPUjwNeBKHW3zMirh-jo6N4NBLHg8EPdxZmcR5VVXx5KSb_1dRYhsbWR2f_wtxto1iAv9HoeEWz4_VWhn-dXqnmZGSNo8HYHrP09GyVezgS6_1A73TaRHrNPfSxZ3N3TvHd8acm17xfTE2A9ZVXqEb4c9ZFI7qAI-NnjmvERH-DyNOxjv4pKy-dTfQ3eG-SLrqwGqeFUHeCtQ10mc3K7aHjbB5OGyFk0mnX1emFKq9tbx9-a6H-YotGZVp_7RWbLXcrLG73NShrYmD50galToljR2c7VjO782lG2wBJMnlXrk0EZk_iDO1YNT3BXuzou-x0dZbFt3-ZFNtQRRcFd5b0mkp0U4lp6g5ZpREXOCms7n84GB22fgAuFalRejT9uEdedtGFf_hfv_eOeh7PyQOybpcqsG8Qe0gGqnpE1noClo_Jdwcb9GGDBjawsIGDDRxsgLABwgbLsIGDDRA2QNigBxvUBTjYwMAGZQUWNnCwPSGf3x6cvHnv2xwfvgxpMPel4FqRUolMxTkXLBCKhinLaRYxyXBtrViOTzLnig5xahI5-lLZbqYULtN5EAXhBlmp6ko9JaCYxCYkF2GKlXKR0V3JI6moSBktuNwksXu2ibQC-DoPy3lyo403CW2rTowKzG0q7TkDJtadNW5qgpDeXH3rX-75jNzv3qVtsoKvtHpO7srFvJxNX1hCfwJuqc-M
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Bayesian+optimization+based+extreme+gradient+boosting+and+GPR+time-frequency+features+for+the+recognition+of+moisture+damage+in+asphalt+pavement&rft.jtitle=Construction+%26+building+materials&rft.au=Li%2C+Hongwei&rft.au=Zhang%2C+Jun&rft.au=Yang%2C+Xiaokun&rft.au=Ye%2C+Min&rft.date=2024-07-05&rft.issn=0950-0618&rft.volume=434&rft.spage=136675&rft_id=info:doi/10.1016%2Fj.conbuildmat.2024.136675&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conbuildmat_2024_136675
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon