Optimization of dividing wall columns based on online Kriging model and improved particle swarm optimization algorithm

Dividing wall columns (DWCs) can effectively improve the thermodynamic efficiency of traditional distillation columns. However, DWCs have intricate structures and strong internal interactions. Numerous structural and operational variables are interrelated. This work presents an improved cellular par...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & chemical engineering Ročník 166; s. 107978
Hlavní autoři: Liang, Mengkun, Song, Jiayin, Zhao, Kefan, Jia, Shengkun, Qian, Xing, Yuan, Xigang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2022
Témata:
ISSN:0098-1354
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Dividing wall columns (DWCs) can effectively improve the thermodynamic efficiency of traditional distillation columns. However, DWCs have intricate structures and strong internal interactions. Numerous structural and operational variables are interrelated. This work presents an improved cellular particle swarm optimization based on the online Kriging model (KCPSO) algorithm, and applies it to the optimization of DWC with the objective of minimizing the total annual cost. The algorithm uses the information of particle swarm search to act on the online Kriging model, and reacts on the particle search through the information of the online Kriging model. Calculations demonstrate that the KCPSO algorithm is superior to standard particle swarm optimization (PSO) and cellular PSO (CPSO) algorithms due to its higher quality of iteration. The KCPSO algorithm can effectively overcome the difficulty of early convergence of the CPSO algorithm and the problem that the PSO algorithm is prone to falling into local optimal solutions.
ISSN:0098-1354
DOI:10.1016/j.compchemeng.2022.107978