Characterization of chicken bone waste-derived hydroxyapatite and its functionality on chitosan membrane for guided bone regeneration
The objective of this research is to prepare asymmetric resorbable membrane based on the hybrid of chitosan (CS) and natural hydroxyapatite (HA) for guided bone regeneration. Briefly, HA with optimum compositional, structural and morphological properties was initially prepared from chicken bone wast...
Uloženo v:
| Vydáno v: | Composites. Part B, Engineering Ročník 163; s. 562 - 573 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
15.04.2019
|
| Témata: | |
| ISSN: | 1359-8368, 1879-1069 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The objective of this research is to prepare asymmetric resorbable membrane based on the hybrid of chitosan (CS) and natural hydroxyapatite (HA) for guided bone regeneration. Briefly, HA with optimum compositional, structural and morphological properties was initially prepared from chicken bone waste via simple calcination. Thereafter, the prepared HA was incorporated into CS to form composite membrane, where the impact of filler loading on the characteristics of resulting membranes were further evaluated. SEM revealed that all composite membranes displayed an asymmetric smooth-rough surface, in which the coarseness of the rough surface increased when the HA content increased. Furthermore, the HA-impregnated membrane exceeding 10 phr loading exhibited improved bioactivity in comparison with pristine sample, being able of developing apatitic layer after 4 weeks of soaking in simulated body fluid. Overall, all membranes degraded less than 22% of the initial weight after 2 months of incubation period, where their degradation rate decrease further as HA loading increase. These findings significantly demonstrate the feasibility of chicken bone-derived HA to be employed as osteogenic filler to augment and tailor the biological characteristics and degradation behaviour of CS membrane for guided bone regeneration.
[Display omitted] |
|---|---|
| AbstractList | The objective of this research is to prepare asymmetric resorbable membrane based on the hybrid of chitosan (CS) and natural hydroxyapatite (HA) for guided bone regeneration. Briefly, HA with optimum compositional, structural and morphological properties was initially prepared from chicken bone waste via simple calcination. Thereafter, the prepared HA was incorporated into CS to form composite membrane, where the impact of filler loading on the characteristics of resulting membranes were further evaluated. SEM revealed that all composite membranes displayed an asymmetric smooth-rough surface, in which the coarseness of the rough surface increased when the HA content increased. Furthermore, the HA-impregnated membrane exceeding 10 phr loading exhibited improved bioactivity in comparison with pristine sample, being able of developing apatitic layer after 4 weeks of soaking in simulated body fluid. Overall, all membranes degraded less than 22% of the initial weight after 2 months of incubation period, where their degradation rate decrease further as HA loading increase. These findings significantly demonstrate the feasibility of chicken bone-derived HA to be employed as osteogenic filler to augment and tailor the biological characteristics and degradation behaviour of CS membrane for guided bone regeneration.
[Display omitted] |
| Author | Hamid, Z.A. Abdul Bee, Soo-Ling |
| Author_xml | – sequence: 1 givenname: Soo-Ling surname: Bee fullname: Bee, Soo-Ling email: sooling0427@gmail.com – sequence: 2 givenname: Z.A. Abdul surname: Hamid fullname: Hamid, Z.A. Abdul email: srzuratulain@usm.my |
| BookMark | eNqNkEFPGzEQhS0EEhD4D-4P2K3tze7Gp6qKSkFC6qU9W7PjWeI0sSPbSQn3_m-cwAFxymnm8N73Zt41O_fBE2NfpKilkN3XZY1hvQnJZUpDrYTUtZC1aLozdiVnva6k6PR52ZtWV7Omm12y65SWQohp26gr9n--gAiYKboXyC54HkaOC4d_yfOhZPF_kDJVtgh2ZPlib2N43sOmiDNx8Ja7nPi49Xhww8rlPS-UgsghgedrWg8RCmcMkT9tnS2QIzfSE3mKx9AbdjHCKtHt-5ywP3c_fs_vq8dfPx_m3x8rbJTMFU47hXpodW_1bKqwHwSNoAbVq5Z6xB6JUCqwpEEAFIFWPUzlOA5Dqyw0E_btjYsxpBRpNOjy8YIcwa2MFObQqlmaD62aQ6tGSFNaLQT9ibCJbg1xf5J3_ual8uLOUTQJHXkk6yJhNja4EyivXd6ijA |
| CitedBy_id | crossref_primary_10_3390_foods10061222 crossref_primary_10_1016_j_nxsust_2025_100099 crossref_primary_10_1016_j_foodchem_2024_139915 crossref_primary_10_1016_j_matchemphys_2021_125455 crossref_primary_10_1016_j_matpr_2021_09_217 crossref_primary_10_1016_j_compositesb_2020_108183 crossref_primary_10_1007_s11356_024_35649_w crossref_primary_10_1016_j_compositesb_2020_107928 crossref_primary_10_1007_s13233_022_0014_z crossref_primary_10_1016_j_compositesb_2019_107031 crossref_primary_10_1007_s10570_022_04850_w crossref_primary_10_4028_p_84f7mj crossref_primary_10_1016_j_compositesb_2021_109429 crossref_primary_10_1038_s41598_023_50929_0 crossref_primary_10_1016_j_jddst_2024_105601 crossref_primary_10_1002_ceat_202300019 crossref_primary_10_1016_j_compositesb_2022_109668 crossref_primary_10_1155_2022_2489399 crossref_primary_10_1016_j_matpr_2023_04_388 crossref_primary_10_1007_s10971_023_06137_3 crossref_primary_10_1016_j_compositesb_2020_108138 crossref_primary_10_1002_slct_202303514 crossref_primary_10_1007_s40883_020_00187_7 crossref_primary_10_1016_j_compositesb_2022_109620 crossref_primary_10_1016_j_ijbiomac_2024_132953 crossref_primary_10_1088_2053_1591_ae0417 crossref_primary_10_1002_mabi_202000393 crossref_primary_10_1016_j_matpr_2023_04_669 crossref_primary_10_1016_j_jclepro_2021_125792 crossref_primary_10_1111_jace_17525 crossref_primary_10_1016_j_compositesb_2021_108790 crossref_primary_10_1016_j_ceramint_2022_05_207 crossref_primary_10_1002_smll_202301426 crossref_primary_10_1016_j_compscitech_2020_108138 crossref_primary_10_1016_j_hybadv_2023_100031 crossref_primary_10_1111_ijfs_15861 crossref_primary_10_1016_j_ijbiomac_2024_136839 crossref_primary_10_1007_s10856_021_06590_y crossref_primary_10_1016_j_indcrop_2024_118633 crossref_primary_10_1016_j_compositesb_2022_109614 crossref_primary_10_1088_2057_1976_ad1e75 crossref_primary_10_3390_pr12020358 crossref_primary_10_1088_1742_6596_1842_1_012048 crossref_primary_10_1007_s13399_023_04361_z crossref_primary_10_1007_s41779_023_00924_5 crossref_primary_10_1007_s12046_023_02149_5 crossref_primary_10_1016_j_jmbbm_2021_104642 crossref_primary_10_1007_s12633_022_02207_3 crossref_primary_10_1007_s41779_023_00948_x crossref_primary_10_1007_s41779_024_01005_x crossref_primary_10_1016_j_compscitech_2020_108406 crossref_primary_10_1016_j_compositesb_2020_107986 crossref_primary_10_3390_app142411815 crossref_primary_10_1016_j_enconman_2024_119281 crossref_primary_10_1039_D4RE00160E crossref_primary_10_1177_08839115211043279 crossref_primary_10_3390_polym14061089 crossref_primary_10_1016_j_ceramint_2020_04_103 crossref_primary_10_1016_j_compositesb_2020_108158 crossref_primary_10_1016_j_biteb_2024_101796 crossref_primary_10_1177_17436753231219539 crossref_primary_10_3390_pr13051559 crossref_primary_10_1016_j_matchemphys_2023_127707 crossref_primary_10_1016_j_solidstatesciences_2023_107193 crossref_primary_10_1002_admt_202001012 crossref_primary_10_1038_s41598_025_06015_8 crossref_primary_10_3390_polym14050871 crossref_primary_10_1002_jbm_b_35060 crossref_primary_10_1088_1757_899X_864_1_012161 crossref_primary_10_5004_dwt_2021_26899 crossref_primary_10_1016_j_mtbio_2025_101863 |
| Cites_doi | 10.1016/j.jaap.2015.09.009 10.1016/j.msec.2015.08.032 10.1002/jbm.a.31897 10.1016/j.biomaterials.2003.08.068 10.1016/j.msec.2011.11.021 10.1016/j.carbpol.2016.10.016 10.1016/j.msec.2017.04.084 10.1016/j.biomaterials.2008.10.025 10.1016/j.ceramint.2017.06.062 10.1016/j.ceramint.2014.10.138 10.1016/j.actbio.2015.05.001 10.3390/polym8040115 10.1002/jbm.a.30534 10.1016/j.actbio.2012.06.040 10.1016/j.eurpolymj.2006.08.009 10.1016/S0162-0134(98)10058-2 10.1016/j.ijbiomac.2013.11.020 10.1016/j.jallcom.2018.03.162 10.1016/j.jmatprotec.2008.07.040 10.1016/j.foodres.2009.02.026 10.1016/j.msec.2017.12.023 10.1002/1097-4636(200104)55:1<20::AID-JBM30>3.0.CO;2-F 10.1016/j.biotechadv.2014.07.007 10.1016/j.ijbiomac.2018.04.176 10.1016/j.jiec.2018.05.030 10.1002/(SICI)1097-4636(20000605)50:3<353::AID-JBM9>3.0.CO;2-C 10.1007/s10973-011-1877-y 10.1016/j.dental.2012.04.022 10.1002/jbm.b.32662 10.1016/j.saa.2009.09.021 10.1016/j.carbpol.2018.05.086 10.1016/j.msec.2017.05.066 10.1016/j.matlet.2016.09.039 10.1016/j.bbagen.2007.07.008 10.1016/j.actbio.2007.10.003 10.1016/j.ceramint.2010.07.016 10.1016/j.anaerobe.2012.04.009 10.1002/term.1648 10.1016/j.ceramint.2006.04.001 10.1016/j.msec.2016.05.026 10.1016/j.compscitech.2014.03.004 10.1016/j.msec.2017.05.069 10.1039/C5TB02091C 10.1016/j.clay.2017.03.008 10.1016/j.msec.2013.04.026 10.1039/C7PY00223H 10.1016/j.ceramint.2018.05.180 10.1016/j.carres.2009.09.001 10.1016/j.msec.2008.05.008 10.1016/j.msec.2016.04.039 10.1016/j.biomaterials.2006.01.017 10.1016/j.ceramint.2017.03.046 10.1016/j.matdes.2015.08.069 10.3390/md13041819 10.1016/j.msec.2012.02.029 |
| ContentType | Journal Article |
| Copyright | 2019 Elsevier Ltd |
| Copyright_xml | – notice: 2019 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.compositesb.2019.01.036 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-1069 |
| EndPage | 573 |
| ExternalDocumentID | 10_1016_j_compositesb_2019_01_036 S1359836818320249 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABMAC ABXRA ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AEZYN AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHJVU AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JJJVA KOM M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 PC. Q38 RIG RNS ROL RPZ SDF SDG SDP SES SPC SPCBC SSM SST SSZ T5K ZMT ~02 ~G- 29F 6TJ 9DU AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABJNI ABWVN ABXDB ACLOT ACNNM ACRPL ADMUD ADNMO AEIPS AFJKZ AGQPQ AI. AIIUN ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FGOYB HZ~ R2- SEW VH1 ~HD |
| ID | FETCH-LOGICAL-c321t-c462c9b597d9842c7b0efa2b2725e7cc7ceec12ade9a0aa2c7927a41ffbb52da3 |
| ISICitedReferencesCount | 77 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461262500057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1359-8368 |
| IngestDate | Tue Nov 18 21:56:31 EST 2025 Sat Nov 29 07:06:19 EST 2025 Fri Feb 23 02:46:30 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Polymer-matrix composites Guided bone regeneration Chitosan Chicken bone waste Natural hydroxyapatite |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c321t-c462c9b597d9842c7b0efa2b2725e7cc7ceec12ade9a0aa2c7927a41ffbb52da3 |
| PageCount | 12 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_compositesb_2019_01_036 crossref_primary_10_1016_j_compositesb_2019_01_036 elsevier_sciencedirect_doi_10_1016_j_compositesb_2019_01_036 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-15 |
| PublicationDateYYYYMMDD | 2019-04-15 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Composites. Part B, Engineering |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Ahmed, Sheikh, Ali (bib11) 2018; 116 Lima, Resende, de Almeida Soares, Anselme, Almeida (bib47) 2013; 33 Prabakaran, Rajeswari (bib34) 2009; 74 Zhou, Xu, Zhang, Zhao, Wei, Zhai (bib20) 2012; 32 Dong, Liang, Cui, Xu, Zhao (bib28) 2018; 197 Tamburaci, Tihminlioglu (bib49) 2018; 29 Sobierajska, Dorotkiewicz-Jach, Zawisza, Okal, Olszak, Drulis-Kawa, Wiglusz (bib43) 2018; 748 Lee, Shin, Kim, Kim, Koh, Jang (bib23) 2009; 30 Yang, Wang, Wang, Wang, Wang, Chen (bib10) 2014; 32 Zhang, Zhao, Cai, Wang, Sun, Hu (bib44) 2010; 28 Lowry, Han, Meenan, Boyd (bib41) 2017; 43 Szymańska, Winnicka (bib18) 2015; 13 Yang, Si, Zeng, Zhang, Dai (bib56) 2008; 4 Bertoni, Bigi, Cojazzi, Gandolfi, Panzavolta, Roveri (bib38) 1998; 72 Teng, Lee, Yoon, Shin, Kim, Oh (bib4) 2009; 88 Ooi, Hamdi, Ramesh (bib31) 2007; 33 Norowski, Fujiwara, Clem, Adatrow, Eckstein, Haggard, Bumgardner (bib8) 2015; 9 Ren, Wang, Sun, Yue, Zhang (bib45) 2017; 78 Kuo, Chang, Chen, Kuan (bib57) 2006; 76 Zhang, Zhu, Yang, Sun, Zhang, Li, Wang, Sun, Yao (bib1) 2016; 58 Costa, Silva, Pina, Tavaria, Pintado (bib17) 2012; 18 Heidari, Razavi, Bahrololoom, Bazargan-Lari, Vashaee, Kotturi, Tayebi (bib25) 2016; 65 Rekik, Gassara, Bouaziz, Deratani, Baklouti (bib48) 2017; 143 Hurt, Getti, Coleman (bib51) 2014; 64 Kong, Gao, Lu, Gong, Zhao, Zhang X (bib29) 2016; 42 Sheikh, Khan, Roohpour, Glogauer, Rehman u (bib2) 2016; 68 Tzoneva, Faucheux, Groth (bib46) 2007; 1770 Kolmas, Velard, Jaguszewska, Lemaire, Kerdjoudj, Gangloff, Kaflak (bib40) 2017; 79 Tonsuaadu, Gross, Plūduma, Veiderma (bib39) 2011; 110 Wei, Sun, Qian, Ye, Ma (bib13) 2009; 344 Niakan, Ramesh, Ganesan, Tan, Purbolaksono, Chandran, Teng (bib27) 2015; 41 Seo, Kim, Kim, Lee, Shin, Lee, Kim (bib55) 2014; 96 Xianmiao, Yubao, Yi, Li, Jidong, Huanan (bib9) 2009; 29 Tamburaci, Tihminlioglu (bib22) 2017; 80 Barakat, Khil, Omran, Sheikh, Kim (bib24) 2009; 209 Bang, Ramesh, Purbolaksono, Ching, Long, Chandran, Othman (bib54) 2015; 87 Tu, Yu, Chen, Shi, Zhou, Deng, Du (bib12) 2017; 8 Qasim, Delaine-Smith, Fey, Rawlinson, Rehman (bib6) 2015; 23 Vásconez, Flores, Campos, Alvarado, Gerschenson (bib50) 2009; 42 Mota, Yu, Caridade, Luz, Gomes, Reis, Jansen, Walboomers, Mano (bib21) 2012; 8 Krzesińska, Majewska (bib26) 2015; 116 Bayrak, Demirtaş, Gümüşderelioğlu (bib52) 2017; 157 Bottino, Thomas, Schmidt, Vohra, Chu, Kowolik, Janowski (bib7) 2012; 28 Baino (bib35) 2018; 44 Fakhry, Schneider, Zaharias, Şenel (bib14) 2004; 25 Wang, Wang, Zhou, Lai, Xu, Liao, Wei (bib3) 2016; 8 Redey, Nardin, Bernache–Assolant, Rey, Delannoy, Sedel, Marie (bib36) 2000; 50 Xu, Lei, Meng, Wang, Song (bib15) 2012; 100 Hu, Zhu, Zhou, Ruan, Pan, Catchmark (bib53) 2016; 4 Kokubo, Takadama (bib30) 2006; 27 Ramirez-Gutierrez, Londoño-Restrepo, del Real, Mondragón, Rodriguez-García (bib32) 2017; 43 Lee, Lee, Moon, Kim, Heo, Bang, Lim, Kwon (bib16) 2018; 66 Yamaguchi, Tokuchi, Fukuzaki, Koyama, Takakuda, Monma, Tanaka (bib19) 2001; 55 Castro, Diba, Kersten, Jansen, van den Beucken, Yang (bib5) 2018; 85 Boutinguiza, Pou, Comesaña, Lusquiños, De Carlos, León (bib37) 2012; 32 Sunil, Jagannatham (bib42) 2016; 185 Figueiredo, Fernando, Martins, Freitas, Judas, Figueiredo (bib33) 2010; 36 Yang (10.1016/j.compositesb.2019.01.036_bib10) 2014; 32 Seo (10.1016/j.compositesb.2019.01.036_bib55) 2014; 96 Xianmiao (10.1016/j.compositesb.2019.01.036_bib9) 2009; 29 Ooi (10.1016/j.compositesb.2019.01.036_bib31) 2007; 33 Vásconez (10.1016/j.compositesb.2019.01.036_bib50) 2009; 42 Sheikh (10.1016/j.compositesb.2019.01.036_bib2) 2016; 68 Bang (10.1016/j.compositesb.2019.01.036_bib54) 2015; 87 Bottino (10.1016/j.compositesb.2019.01.036_bib7) 2012; 28 Bayrak (10.1016/j.compositesb.2019.01.036_bib52) 2017; 157 Szymańska (10.1016/j.compositesb.2019.01.036_bib18) 2015; 13 Castro (10.1016/j.compositesb.2019.01.036_bib5) 2018; 85 Teng (10.1016/j.compositesb.2019.01.036_bib4) 2009; 88 Fakhry (10.1016/j.compositesb.2019.01.036_bib14) 2004; 25 Zhou (10.1016/j.compositesb.2019.01.036_bib20) 2012; 32 Redey (10.1016/j.compositesb.2019.01.036_bib36) 2000; 50 Zhang (10.1016/j.compositesb.2019.01.036_bib1) 2016; 58 Tamburaci (10.1016/j.compositesb.2019.01.036_bib49) 2018; 29 Yamaguchi (10.1016/j.compositesb.2019.01.036_bib19) 2001; 55 Sunil (10.1016/j.compositesb.2019.01.036_bib42) 2016; 185 Krzesińska (10.1016/j.compositesb.2019.01.036_bib26) 2015; 116 Wang (10.1016/j.compositesb.2019.01.036_bib3) 2016; 8 Tamburaci (10.1016/j.compositesb.2019.01.036_bib22) 2017; 80 Baino (10.1016/j.compositesb.2019.01.036_bib35) 2018; 44 Lee (10.1016/j.compositesb.2019.01.036_bib16) 2018; 66 Zhang (10.1016/j.compositesb.2019.01.036_bib44) 2010; 28 Kuo (10.1016/j.compositesb.2019.01.036_bib57) 2006; 76 Heidari (10.1016/j.compositesb.2019.01.036_bib25) 2016; 65 Lima (10.1016/j.compositesb.2019.01.036_bib47) 2013; 33 Tzoneva (10.1016/j.compositesb.2019.01.036_bib46) 2007; 1770 Dong (10.1016/j.compositesb.2019.01.036_bib28) 2018; 197 Qasim (10.1016/j.compositesb.2019.01.036_bib6) 2015; 23 Niakan (10.1016/j.compositesb.2019.01.036_bib27) 2015; 41 Xu (10.1016/j.compositesb.2019.01.036_bib15) 2012; 100 Prabakaran (10.1016/j.compositesb.2019.01.036_bib34) 2009; 74 Figueiredo (10.1016/j.compositesb.2019.01.036_bib33) 2010; 36 Ramirez-Gutierrez (10.1016/j.compositesb.2019.01.036_bib32) 2017; 43 Bertoni (10.1016/j.compositesb.2019.01.036_bib38) 1998; 72 Mota (10.1016/j.compositesb.2019.01.036_bib21) 2012; 8 Barakat (10.1016/j.compositesb.2019.01.036_bib24) 2009; 209 Lowry (10.1016/j.compositesb.2019.01.036_bib41) 2017; 43 Sobierajska (10.1016/j.compositesb.2019.01.036_bib43) 2018; 748 Kokubo (10.1016/j.compositesb.2019.01.036_bib30) 2006; 27 Costa (10.1016/j.compositesb.2019.01.036_bib17) 2012; 18 Yang (10.1016/j.compositesb.2019.01.036_bib56) 2008; 4 Rekik (10.1016/j.compositesb.2019.01.036_bib48) 2017; 143 Ahmed (10.1016/j.compositesb.2019.01.036_bib11) 2018; 116 Boutinguiza (10.1016/j.compositesb.2019.01.036_bib37) 2012; 32 Tonsuaadu (10.1016/j.compositesb.2019.01.036_bib39) 2011; 110 Kong (10.1016/j.compositesb.2019.01.036_bib29) 2016; 42 Norowski (10.1016/j.compositesb.2019.01.036_bib8) 2015; 9 Hurt (10.1016/j.compositesb.2019.01.036_bib51) 2014; 64 Wei (10.1016/j.compositesb.2019.01.036_bib13) 2009; 344 Kolmas (10.1016/j.compositesb.2019.01.036_bib40) 2017; 79 Ren (10.1016/j.compositesb.2019.01.036_bib45) 2017; 78 Tu (10.1016/j.compositesb.2019.01.036_bib12) 2017; 8 Hu (10.1016/j.compositesb.2019.01.036_bib53) 2016; 4 Lee (10.1016/j.compositesb.2019.01.036_bib23) 2009; 30 |
| References_xml | – volume: 65 start-page: 338 year: 2016 end-page: 344 ident: bib25 article-title: Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications publication-title: Mater Sci Eng C – volume: 197 start-page: 183 year: 2018 end-page: 193 ident: bib28 article-title: Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: combined the sol-gel method with 3D plotting technique publication-title: Carbohydr Polym – volume: 76 start-page: 408 year: 2006 end-page: 415 ident: bib57 article-title: Guided tissue regeneration for using a chitosan membrane: an experimental study in rats publication-title: J Biomed Mater Res A – volume: 157 start-page: 803 year: 2017 end-page: 813 ident: bib52 article-title: Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds publication-title: Carbohydr Polym – volume: 143 start-page: 1 year: 2017 end-page: 9 ident: bib48 article-title: Development and characterization of porous membranes based on kaolin/chitosan composite publication-title: Appl Clay Sci – volume: 29 start-page: 29 year: 2009 end-page: 35 ident: bib9 article-title: Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration publication-title: Mater Sci Eng C – volume: 58 start-page: 278 year: 2016 end-page: 285 ident: bib1 article-title: Electrospun PDLLA/PLGA composite membranes for potential application in guided tissue regeneration publication-title: Mater Sci Eng C – volume: 100 start-page: 1435 year: 2012 end-page: 1443 ident: bib15 article-title: Chitosan as a barrier membrane material in periodontal tissue regeneration publication-title: J Biomed Mater Res B: Appl Biomater – volume: 42 start-page: 3171 year: 2016 end-page: 3179 ident: bib29 article-title: A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering publication-title: Eur Polym J – volume: 30 start-page: 743 year: 2009 end-page: 750 ident: bib23 article-title: Membrane of hybrid chitosan–silica xerogel for guided bone regeneration publication-title: Biomaterials – volume: 4 start-page: 560 year: 2008 end-page: 568 ident: bib56 article-title: Mechanism and kinetics of apatite formation on nanocrystalline TiO publication-title: Acta Biomater – volume: 50 start-page: 353 year: 2000 end-page: 364 ident: bib36 article-title: Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy publication-title: J Biomed Mater Res – volume: 8 start-page: 2913 year: 2017 end-page: 2921 ident: bib12 article-title: Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: chitosan and cellulose publication-title: Polym Chem – volume: 72 start-page: 29 year: 1998 end-page: 35 ident: bib38 article-title: Nanocrystals of magnesium and fluoride substituted hydroxyapatite publication-title: J Inorg Biochem – volume: 66 start-page: 196 year: 2018 end-page: 202 ident: bib16 article-title: Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications publication-title: J Ind Eng Chem – volume: 8 start-page: 4173 year: 2012 end-page: 4180 ident: bib21 article-title: Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration publication-title: Acta Biomater – volume: 344 start-page: 2375 year: 2009 end-page: 2382 ident: bib13 article-title: The synthesis of chitosan-based silver nanoparticles and their antibacterial activity publication-title: Carbohydr Res – volume: 44 start-page: 14953 year: 2018 end-page: 14966 ident: bib35 article-title: Bioactive glasses–when glass science and technology meet regenerative medicine publication-title: Ceram Int – volume: 116 start-page: 202 year: 2015 end-page: 214 ident: bib26 article-title: Physical properties of continuous matrix of porous natural hydroxyapatite related to the pyrolysis temperature of animal bones precursors publication-title: J Anal Appl Pyrolysis – volume: 23 start-page: 317 year: 2015 end-page: 328 ident: bib6 article-title: Freeze gelated porous membranes for periodontal tissue regeneration publication-title: Acta Biomater – volume: 33 start-page: 1171 year: 2007 end-page: 1177 ident: bib31 article-title: Properties of hydroxyapatite produced by annealing of bovine bone publication-title: Ceram Int – volume: 110 start-page: 647 year: 2011 end-page: 659 ident: bib39 article-title: A review on the thermal stability of calcium apatites publication-title: J Therm Anal Calorim – volume: 748 start-page: 179 year: 2018 end-page: 187 ident: bib43 article-title: Preparation and antimicrobial activity of the porous hydroxyapatite nanoceramics publication-title: J Alloy Comp – volume: 41 start-page: 3024 year: 2015 end-page: 3029 ident: bib27 article-title: Sintering behaviour of natural porous hydroxyapatite derived from bovine bone publication-title: Ceram Int – volume: 9 start-page: 577 year: 2015 end-page: 583 ident: bib8 article-title: Novel naturally crosslinked electrospun nanofibrous chitosan mats for guided bone regeneration membranes: material characterization and cytocompatibility publication-title: J Tissue Eng Regenerat Med – volume: 32 start-page: 478 year: 2012 end-page: 486 ident: bib37 article-title: Biological hydroxyapatite obtained from fish bones publication-title: Mater Sci Eng C – volume: 28 start-page: 703 year: 2012 end-page: 721 ident: bib7 article-title: Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective publication-title: Dent Mater – volume: 32 start-page: 994 year: 2012 end-page: 1000 ident: bib20 article-title: Radiation synthesis of gelatin/CM-chitosan/β-tricalcium phosphate composite scaffold for bone tissue engineering publication-title: Mater Sci Eng C – volume: 96 start-page: 31 year: 2014 end-page: 37 ident: bib55 article-title: Enhanced mechanical properties and bone bioactivity of chitosan/silica membrane by functionalized-carbon nanotube incorporation publication-title: Compos Sci Technol – volume: 32 start-page: 1301 year: 2014 end-page: 1316 ident: bib10 article-title: Advances in self-assembled chitosan nanomaterials for drug delivery publication-title: Biotechnol Adv – volume: 116 start-page: 849 year: 2018 end-page: 862 ident: bib11 article-title: A review on chitosan centred scaffolds and their applications in tissue engineering publication-title: Int. J. Biol. Macromol. – volume: 64 start-page: 11 year: 2014 end-page: 16 ident: bib51 article-title: Bioactivity and biocompatibility of a chitosan-tobermorite composite membrane for guided tissue regeneration publication-title: Int. J. Biol. Macromol. – volume: 18 start-page: 305 year: 2012 end-page: 309 ident: bib17 article-title: Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens publication-title: Anaerobe – volume: 25 start-page: 2075 year: 2004 end-page: 2079 ident: bib14 article-title: Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts publication-title: Biomaterials – volume: 87 start-page: 788 year: 2015 end-page: 796 ident: bib54 article-title: Effects of silicate and carbonate substitution on the properties of hydroxyapatite prepared by aqueous co-precipitation method publication-title: Mater Des – volume: 55 start-page: 20 year: 2001 end-page: 27 ident: bib19 article-title: Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites publication-title: J. Biomed. Mater. Res. A – volume: 36 start-page: 2383 year: 2010 end-page: 2393 ident: bib33 article-title: Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone publication-title: Ceram Int – volume: 29 start-page: 1 year: 2018 end-page: 14 ident: bib49 article-title: Novel poss reinforced chitosan composite membranes for guided bone tissue regeneration publication-title: J Mater Sci: Mater Med – volume: 80 start-page: 222 year: 2017 end-page: 231 ident: bib22 article-title: Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration publication-title: Mater Sci Eng C – volume: 185 start-page: 411 year: 2016 end-page: 414 ident: bib42 article-title: Producing hydroxyapatite from fish bones by heat treatment publication-title: Mater Lett – volume: 68 start-page: 267 year: 2016 end-page: 275 ident: bib2 article-title: Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications publication-title: Mater Sci Eng C – volume: 4 start-page: 1235 year: 2016 end-page: 1246 ident: bib53 article-title: Bioabsorbable cellulose composites prepared by an improved mineral-binding process for bone defect repair publication-title: J. Mater. Chem. B – volume: 209 start-page: 3408 year: 2009 end-page: 3415 ident: bib24 article-title: Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods publication-title: J Mater Process Technol – volume: 74 start-page: 1127 year: 2009 end-page: 1134 ident: bib34 article-title: Spectroscopic investigations on the synthesis of nano-hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template publication-title: Spectrochim Acta Mol Biomol Spectrosc – volume: 13 start-page: 1819 year: 2015 end-page: 1846 ident: bib18 article-title: Stability of chitosan—a challenge for pharmaceutical and biomedical applications publication-title: Mar Drugs – volume: 43 start-page: 12070 year: 2017 end-page: 12078 ident: bib41 article-title: Strontium and zinc co-substituted nanophase hydroxyapatite publication-title: Ceram Int – volume: 78 start-page: 324 year: 2017 end-page: 332 ident: bib45 article-title: Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes publication-title: Mater Sci Eng C – volume: 79 start-page: 638 year: 2017 end-page: 646 ident: bib40 article-title: Substitution of strontium and boron into hydroxyapatite crystals: effect on physicochemical properties and biocompatibility with human Wharton-Jelly stem cells publication-title: Mater Sci Eng C – volume: 85 start-page: 154 year: 2018 end-page: 161 ident: bib5 article-title: Development of a PCL-silica nanoparticles composite membrane for guided bone regeneration publication-title: Mater Sci Eng C – volume: 33 start-page: 3389 year: 2013 end-page: 3395 ident: bib47 article-title: Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering publication-title: Mater Sci Eng C – volume: 42 start-page: 762 year: 2009 end-page: 769 ident: bib50 article-title: Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings publication-title: Food Res Int – volume: 1770 start-page: 1538 year: 2007 end-page: 1547 ident: bib46 article-title: Wettability of substrata controls cell–substrate and cell–cell adhesions publication-title: Biochim Biophys Acta – volume: 88 start-page: 569 year: 2009 end-page: 580 ident: bib4 article-title: Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration publication-title: J Biomed Mater Res A – volume: 27 start-page: 2907 year: 2006 end-page: 2915 ident: bib30 article-title: How useful is SBF in predicting in vivo bone bioactivity? publication-title: Biomaterials – volume: 43 start-page: 7552 year: 2017 end-page: 7559 ident: bib32 article-title: Effect of the temperature and sintering time on the thermal, structural, morphological, and vibrational properties of hydroxyapatite derived from pig bone publication-title: Ceram Int – volume: 8 start-page: 115 year: 2016 ident: bib3 article-title: Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review publication-title: Polymers – volume: 28 start-page: 555 year: 2010 end-page: 561 ident: bib44 article-title: Preparation of chitosan/hydroxyapatite guided membrane used for periodontal tissue regeneration, Chin publication-title: J Polym Sci – volume: 116 start-page: 202 year: 2015 ident: 10.1016/j.compositesb.2019.01.036_bib26 article-title: Physical properties of continuous matrix of porous natural hydroxyapatite related to the pyrolysis temperature of animal bones precursors publication-title: J Anal Appl Pyrolysis doi: 10.1016/j.jaap.2015.09.009 – volume: 58 start-page: 278 year: 2016 ident: 10.1016/j.compositesb.2019.01.036_bib1 article-title: Electrospun PDLLA/PLGA composite membranes for potential application in guided tissue regeneration publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2015.08.032 – volume: 88 start-page: 569 year: 2009 ident: 10.1016/j.compositesb.2019.01.036_bib4 article-title: Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.31897 – volume: 25 start-page: 2075 year: 2004 ident: 10.1016/j.compositesb.2019.01.036_bib14 article-title: Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts publication-title: Biomaterials doi: 10.1016/j.biomaterials.2003.08.068 – volume: 32 start-page: 478 year: 2012 ident: 10.1016/j.compositesb.2019.01.036_bib37 article-title: Biological hydroxyapatite obtained from fish bones publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2011.11.021 – volume: 157 start-page: 803 year: 2017 ident: 10.1016/j.compositesb.2019.01.036_bib52 article-title: Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2016.10.016 – volume: 78 start-page: 324 year: 2017 ident: 10.1016/j.compositesb.2019.01.036_bib45 article-title: Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2017.04.084 – volume: 30 start-page: 743 year: 2009 ident: 10.1016/j.compositesb.2019.01.036_bib23 article-title: Membrane of hybrid chitosan–silica xerogel for guided bone regeneration publication-title: Biomaterials doi: 10.1016/j.biomaterials.2008.10.025 – volume: 43 start-page: 12070 year: 2017 ident: 10.1016/j.compositesb.2019.01.036_bib41 article-title: Strontium and zinc co-substituted nanophase hydroxyapatite publication-title: Ceram Int doi: 10.1016/j.ceramint.2017.06.062 – volume: 41 start-page: 3024 year: 2015 ident: 10.1016/j.compositesb.2019.01.036_bib27 article-title: Sintering behaviour of natural porous hydroxyapatite derived from bovine bone publication-title: Ceram Int doi: 10.1016/j.ceramint.2014.10.138 – volume: 23 start-page: 317 year: 2015 ident: 10.1016/j.compositesb.2019.01.036_bib6 article-title: Freeze gelated porous membranes for periodontal tissue regeneration publication-title: Acta Biomater doi: 10.1016/j.actbio.2015.05.001 – volume: 8 start-page: 115 year: 2016 ident: 10.1016/j.compositesb.2019.01.036_bib3 article-title: Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review publication-title: Polymers doi: 10.3390/polym8040115 – volume: 29 start-page: 1 year: 2018 ident: 10.1016/j.compositesb.2019.01.036_bib49 article-title: Novel poss reinforced chitosan composite membranes for guided bone tissue regeneration publication-title: J Mater Sci: Mater Med – volume: 76 start-page: 408 year: 2006 ident: 10.1016/j.compositesb.2019.01.036_bib57 article-title: Guided tissue regeneration for using a chitosan membrane: an experimental study in rats publication-title: J Biomed Mater Res A doi: 10.1002/jbm.a.30534 – volume: 8 start-page: 4173 year: 2012 ident: 10.1016/j.compositesb.2019.01.036_bib21 article-title: Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration publication-title: Acta Biomater doi: 10.1016/j.actbio.2012.06.040 – volume: 42 start-page: 3171 year: 2016 ident: 10.1016/j.compositesb.2019.01.036_bib29 article-title: A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering publication-title: Eur Polym J doi: 10.1016/j.eurpolymj.2006.08.009 – volume: 72 start-page: 29 year: 1998 ident: 10.1016/j.compositesb.2019.01.036_bib38 article-title: Nanocrystals of magnesium and fluoride substituted hydroxyapatite publication-title: J Inorg Biochem doi: 10.1016/S0162-0134(98)10058-2 – volume: 64 start-page: 11 year: 2014 ident: 10.1016/j.compositesb.2019.01.036_bib51 article-title: Bioactivity and biocompatibility of a chitosan-tobermorite composite membrane for guided tissue regeneration publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2013.11.020 – volume: 748 start-page: 179 year: 2018 ident: 10.1016/j.compositesb.2019.01.036_bib43 article-title: Preparation and antimicrobial activity of the porous hydroxyapatite nanoceramics publication-title: J Alloy Comp doi: 10.1016/j.jallcom.2018.03.162 – volume: 209 start-page: 3408 year: 2009 ident: 10.1016/j.compositesb.2019.01.036_bib24 article-title: Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods publication-title: J Mater Process Technol doi: 10.1016/j.jmatprotec.2008.07.040 – volume: 42 start-page: 762 year: 2009 ident: 10.1016/j.compositesb.2019.01.036_bib50 article-title: Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings publication-title: Food Res Int doi: 10.1016/j.foodres.2009.02.026 – volume: 85 start-page: 154 year: 2018 ident: 10.1016/j.compositesb.2019.01.036_bib5 article-title: Development of a PCL-silica nanoparticles composite membrane for guided bone regeneration publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2017.12.023 – volume: 55 start-page: 20 year: 2001 ident: 10.1016/j.compositesb.2019.01.036_bib19 article-title: Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites publication-title: J. Biomed. Mater. Res. A doi: 10.1002/1097-4636(200104)55:1<20::AID-JBM30>3.0.CO;2-F – volume: 28 start-page: 555 year: 2010 ident: 10.1016/j.compositesb.2019.01.036_bib44 article-title: Preparation of chitosan/hydroxyapatite guided membrane used for periodontal tissue regeneration, Chin publication-title: J Polym Sci – volume: 32 start-page: 1301 year: 2014 ident: 10.1016/j.compositesb.2019.01.036_bib10 article-title: Advances in self-assembled chitosan nanomaterials for drug delivery publication-title: Biotechnol Adv doi: 10.1016/j.biotechadv.2014.07.007 – volume: 116 start-page: 849 year: 2018 ident: 10.1016/j.compositesb.2019.01.036_bib11 article-title: A review on chitosan centred scaffolds and their applications in tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2018.04.176 – volume: 66 start-page: 196 year: 2018 ident: 10.1016/j.compositesb.2019.01.036_bib16 article-title: Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications publication-title: J Ind Eng Chem doi: 10.1016/j.jiec.2018.05.030 – volume: 50 start-page: 353 year: 2000 ident: 10.1016/j.compositesb.2019.01.036_bib36 article-title: Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy publication-title: J Biomed Mater Res doi: 10.1002/(SICI)1097-4636(20000605)50:3<353::AID-JBM9>3.0.CO;2-C – volume: 110 start-page: 647 year: 2011 ident: 10.1016/j.compositesb.2019.01.036_bib39 article-title: A review on the thermal stability of calcium apatites publication-title: J Therm Anal Calorim doi: 10.1007/s10973-011-1877-y – volume: 28 start-page: 703 year: 2012 ident: 10.1016/j.compositesb.2019.01.036_bib7 article-title: Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective publication-title: Dent Mater doi: 10.1016/j.dental.2012.04.022 – volume: 100 start-page: 1435 year: 2012 ident: 10.1016/j.compositesb.2019.01.036_bib15 article-title: Chitosan as a barrier membrane material in periodontal tissue regeneration publication-title: J Biomed Mater Res B: Appl Biomater doi: 10.1002/jbm.b.32662 – volume: 74 start-page: 1127 year: 2009 ident: 10.1016/j.compositesb.2019.01.036_bib34 article-title: Spectroscopic investigations on the synthesis of nano-hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template publication-title: Spectrochim Acta Mol Biomol Spectrosc doi: 10.1016/j.saa.2009.09.021 – volume: 197 start-page: 183 year: 2018 ident: 10.1016/j.compositesb.2019.01.036_bib28 article-title: Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: combined the sol-gel method with 3D plotting technique publication-title: Carbohydr Polym doi: 10.1016/j.carbpol.2018.05.086 – volume: 79 start-page: 638 year: 2017 ident: 10.1016/j.compositesb.2019.01.036_bib40 article-title: Substitution of strontium and boron into hydroxyapatite crystals: effect on physicochemical properties and biocompatibility with human Wharton-Jelly stem cells publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2017.05.066 – volume: 185 start-page: 411 year: 2016 ident: 10.1016/j.compositesb.2019.01.036_bib42 article-title: Producing hydroxyapatite from fish bones by heat treatment publication-title: Mater Lett doi: 10.1016/j.matlet.2016.09.039 – volume: 1770 start-page: 1538 year: 2007 ident: 10.1016/j.compositesb.2019.01.036_bib46 article-title: Wettability of substrata controls cell–substrate and cell–cell adhesions publication-title: Biochim Biophys Acta doi: 10.1016/j.bbagen.2007.07.008 – volume: 4 start-page: 560 year: 2008 ident: 10.1016/j.compositesb.2019.01.036_bib56 article-title: Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: a quartz crystal microbalance study publication-title: Acta Biomater doi: 10.1016/j.actbio.2007.10.003 – volume: 36 start-page: 2383 year: 2010 ident: 10.1016/j.compositesb.2019.01.036_bib33 article-title: Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone publication-title: Ceram Int doi: 10.1016/j.ceramint.2010.07.016 – volume: 18 start-page: 305 year: 2012 ident: 10.1016/j.compositesb.2019.01.036_bib17 article-title: Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens publication-title: Anaerobe doi: 10.1016/j.anaerobe.2012.04.009 – volume: 9 start-page: 577 year: 2015 ident: 10.1016/j.compositesb.2019.01.036_bib8 article-title: Novel naturally crosslinked electrospun nanofibrous chitosan mats for guided bone regeneration membranes: material characterization and cytocompatibility publication-title: J Tissue Eng Regenerat Med doi: 10.1002/term.1648 – volume: 33 start-page: 1171 year: 2007 ident: 10.1016/j.compositesb.2019.01.036_bib31 article-title: Properties of hydroxyapatite produced by annealing of bovine bone publication-title: Ceram Int doi: 10.1016/j.ceramint.2006.04.001 – volume: 68 start-page: 267 year: 2016 ident: 10.1016/j.compositesb.2019.01.036_bib2 article-title: Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2016.05.026 – volume: 96 start-page: 31 year: 2014 ident: 10.1016/j.compositesb.2019.01.036_bib55 article-title: Enhanced mechanical properties and bone bioactivity of chitosan/silica membrane by functionalized-carbon nanotube incorporation publication-title: Compos Sci Technol doi: 10.1016/j.compscitech.2014.03.004 – volume: 80 start-page: 222 year: 2017 ident: 10.1016/j.compositesb.2019.01.036_bib22 article-title: Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2017.05.069 – volume: 4 start-page: 1235 year: 2016 ident: 10.1016/j.compositesb.2019.01.036_bib53 article-title: Bioabsorbable cellulose composites prepared by an improved mineral-binding process for bone defect repair publication-title: J. Mater. Chem. B doi: 10.1039/C5TB02091C – volume: 143 start-page: 1 year: 2017 ident: 10.1016/j.compositesb.2019.01.036_bib48 article-title: Development and characterization of porous membranes based on kaolin/chitosan composite publication-title: Appl Clay Sci doi: 10.1016/j.clay.2017.03.008 – volume: 33 start-page: 3389 year: 2013 ident: 10.1016/j.compositesb.2019.01.036_bib47 article-title: Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2013.04.026 – volume: 8 start-page: 2913 year: 2017 ident: 10.1016/j.compositesb.2019.01.036_bib12 article-title: Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: chitosan and cellulose publication-title: Polym Chem doi: 10.1039/C7PY00223H – volume: 44 start-page: 14953 year: 2018 ident: 10.1016/j.compositesb.2019.01.036_bib35 article-title: Bioactive glasses–when glass science and technology meet regenerative medicine publication-title: Ceram Int doi: 10.1016/j.ceramint.2018.05.180 – volume: 344 start-page: 2375 year: 2009 ident: 10.1016/j.compositesb.2019.01.036_bib13 article-title: The synthesis of chitosan-based silver nanoparticles and their antibacterial activity publication-title: Carbohydr Res doi: 10.1016/j.carres.2009.09.001 – volume: 29 start-page: 29 year: 2009 ident: 10.1016/j.compositesb.2019.01.036_bib9 article-title: Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2008.05.008 – volume: 65 start-page: 338 year: 2016 ident: 10.1016/j.compositesb.2019.01.036_bib25 article-title: Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2016.04.039 – volume: 27 start-page: 2907 year: 2006 ident: 10.1016/j.compositesb.2019.01.036_bib30 article-title: How useful is SBF in predicting in vivo bone bioactivity? publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.017 – volume: 43 start-page: 7552 year: 2017 ident: 10.1016/j.compositesb.2019.01.036_bib32 article-title: Effect of the temperature and sintering time on the thermal, structural, morphological, and vibrational properties of hydroxyapatite derived from pig bone publication-title: Ceram Int doi: 10.1016/j.ceramint.2017.03.046 – volume: 87 start-page: 788 year: 2015 ident: 10.1016/j.compositesb.2019.01.036_bib54 article-title: Effects of silicate and carbonate substitution on the properties of hydroxyapatite prepared by aqueous co-precipitation method publication-title: Mater Des doi: 10.1016/j.matdes.2015.08.069 – volume: 13 start-page: 1819 year: 2015 ident: 10.1016/j.compositesb.2019.01.036_bib18 article-title: Stability of chitosan—a challenge for pharmaceutical and biomedical applications publication-title: Mar Drugs doi: 10.3390/md13041819 – volume: 32 start-page: 994 year: 2012 ident: 10.1016/j.compositesb.2019.01.036_bib20 article-title: Radiation synthesis of gelatin/CM-chitosan/β-tricalcium phosphate composite scaffold for bone tissue engineering publication-title: Mater Sci Eng C doi: 10.1016/j.msec.2012.02.029 |
| SSID | ssj0004532 |
| Score | 2.5117497 |
| Snippet | The objective of this research is to prepare asymmetric resorbable membrane based on the hybrid of chitosan (CS) and natural hydroxyapatite (HA) for guided... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 562 |
| SubjectTerms | Chicken bone waste Chitosan Guided bone regeneration Natural hydroxyapatite Polymer-matrix composites |
| Title | Characterization of chicken bone waste-derived hydroxyapatite and its functionality on chitosan membrane for guided bone regeneration |
| URI | https://dx.doi.org/10.1016/j.compositesb.2019.01.036 |
| Volume | 163 |
| WOSCitedRecordID | wos000461262500057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1879-1069 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004532 issn: 1359-8368 databaseCode: AIEXJ dateStart: 19960101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhhA8IK5i4yIj8ValSpxktiVeyjQ0EJqQGFLFS2Q7ztaxplOXdYN3fgV_lnNi59IBYgjxElVW7Lj9vh4fnxx_h5AXFmgAnrwObBSaIBEKNSA1bFyLIuaJ2oqt0HWxCb63JyYT-X4w-N6chVke87IUFxfy5L9CDW0ANh6d_Qu420GhAT4D6HAF2OF6JeC3Wwnmr607iAVPPttyqOfgU54rQDbI4YYleJuHX3LMZFGYWV117xJwvXNhwjpno8QhqvkpWIOZncEOu3Ri4Qdn0xx9WBx3YQ9qDesW6kYAAUwOpobBlhwc1kU1fFUb4E4IsQ0JeNH--Tx412veVbNpzcNPo_FoONa5z2X0sYqofu3iTmu6AFpziKbLWEKbG2MkMnbVdUbWtQkuYYVwVVxaQ-1NoTO1qbfibtVOXUGUnxYEF5s4Qjz9V9WYzydrrdb4kgh3vax_wPngdNDYoaDiNbLOeCrBZK6P3-xM3vbE6Ov6d-38b5DnXfrgbx74a_en59Ls3yG3_V6Ejh2H7pKBLe-RWz1g7pNvl9lE5wX1bKKIOl1hE11lEwU2UWATXWEThVEaNtGGTRTYRB2b3Lh9Nj0gH1_v7G_vBr5yR2BiFlWBSbaYkRo2q7kUCTNch7ZQTDPOUsuN4eCamYip3EoVKgU3SMZVEhWF1inLVfyQrJXwrEeExkUswhT8KDAbCSwvOikEN0LoUKuk4HKDiOYHzYyXtcfqKsdZk794lPWwyBCLLIwywGKDsLbridN2uUqnlw1qmXdSnfOZAeX-3H3z37o_Jje7_9UTslYtzuxTct0sq-np4pkn6A_KRsWa |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+chicken+bone+waste-derived+hydroxyapatite+and+its+functionality+on+chitosan+membrane+for+guided+bone+regeneration&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Bee%2C+Soo-Ling&rft.au=Hamid%2C+Z.A.+Abdul&rft.date=2019-04-15&rft.pub=Elsevier+Ltd&rft.issn=1359-8368&rft.eissn=1879-1069&rft.volume=163&rft.spage=562&rft.epage=573&rft_id=info:doi/10.1016%2Fj.compositesb.2019.01.036&rft.externalDocID=S1359836818320249 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon |