Characterization of chicken bone waste-derived hydroxyapatite and its functionality on chitosan membrane for guided bone regeneration

The objective of this research is to prepare asymmetric resorbable membrane based on the hybrid of chitosan (CS) and natural hydroxyapatite (HA) for guided bone regeneration. Briefly, HA with optimum compositional, structural and morphological properties was initially prepared from chicken bone wast...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Composites. Part B, Engineering Ročník 163; s. 562 - 573
Hlavní autori: Bee, Soo-Ling, Hamid, Z.A. Abdul
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 15.04.2019
Predmet:
ISSN:1359-8368, 1879-1069
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The objective of this research is to prepare asymmetric resorbable membrane based on the hybrid of chitosan (CS) and natural hydroxyapatite (HA) for guided bone regeneration. Briefly, HA with optimum compositional, structural and morphological properties was initially prepared from chicken bone waste via simple calcination. Thereafter, the prepared HA was incorporated into CS to form composite membrane, where the impact of filler loading on the characteristics of resulting membranes were further evaluated. SEM revealed that all composite membranes displayed an asymmetric smooth-rough surface, in which the coarseness of the rough surface increased when the HA content increased. Furthermore, the HA-impregnated membrane exceeding 10 phr loading exhibited improved bioactivity in comparison with pristine sample, being able of developing apatitic layer after 4 weeks of soaking in simulated body fluid. Overall, all membranes degraded less than 22% of the initial weight after 2 months of incubation period, where their degradation rate decrease further as HA loading increase. These findings significantly demonstrate the feasibility of chicken bone-derived HA to be employed as osteogenic filler to augment and tailor the biological characteristics and degradation behaviour of CS membrane for guided bone regeneration. [Display omitted]
AbstractList The objective of this research is to prepare asymmetric resorbable membrane based on the hybrid of chitosan (CS) and natural hydroxyapatite (HA) for guided bone regeneration. Briefly, HA with optimum compositional, structural and morphological properties was initially prepared from chicken bone waste via simple calcination. Thereafter, the prepared HA was incorporated into CS to form composite membrane, where the impact of filler loading on the characteristics of resulting membranes were further evaluated. SEM revealed that all composite membranes displayed an asymmetric smooth-rough surface, in which the coarseness of the rough surface increased when the HA content increased. Furthermore, the HA-impregnated membrane exceeding 10 phr loading exhibited improved bioactivity in comparison with pristine sample, being able of developing apatitic layer after 4 weeks of soaking in simulated body fluid. Overall, all membranes degraded less than 22% of the initial weight after 2 months of incubation period, where their degradation rate decrease further as HA loading increase. These findings significantly demonstrate the feasibility of chicken bone-derived HA to be employed as osteogenic filler to augment and tailor the biological characteristics and degradation behaviour of CS membrane for guided bone regeneration. [Display omitted]
Author Hamid, Z.A. Abdul
Bee, Soo-Ling
Author_xml – sequence: 1
  givenname: Soo-Ling
  surname: Bee
  fullname: Bee, Soo-Ling
  email: sooling0427@gmail.com
– sequence: 2
  givenname: Z.A. Abdul
  surname: Hamid
  fullname: Hamid, Z.A. Abdul
  email: srzuratulain@usm.my
BookMark eNqNkEFPGzEQhS0EEhD4D-4P2K3tze7Gp6qKSkFC6qU9W7PjWeI0sSPbSQn3_m-cwAFxymnm8N73Zt41O_fBE2NfpKilkN3XZY1hvQnJZUpDrYTUtZC1aLozdiVnva6k6PR52ZtWV7Omm12y65SWQohp26gr9n--gAiYKboXyC54HkaOC4d_yfOhZPF_kDJVtgh2ZPlib2N43sOmiDNx8Ja7nPi49Xhww8rlPS-UgsghgedrWg8RCmcMkT9tnS2QIzfSE3mKx9AbdjHCKtHt-5ywP3c_fs_vq8dfPx_m3x8rbJTMFU47hXpodW_1bKqwHwSNoAbVq5Z6xB6JUCqwpEEAFIFWPUzlOA5Dqyw0E_btjYsxpBRpNOjy8YIcwa2MFObQqlmaD62aQ6tGSFNaLQT9ibCJbg1xf5J3_ual8uLOUTQJHXkk6yJhNja4EyivXd6ijA
CitedBy_id crossref_primary_10_3390_foods10061222
crossref_primary_10_1016_j_nxsust_2025_100099
crossref_primary_10_1016_j_foodchem_2024_139915
crossref_primary_10_1016_j_matchemphys_2021_125455
crossref_primary_10_1016_j_matpr_2021_09_217
crossref_primary_10_1016_j_compositesb_2020_108183
crossref_primary_10_1007_s11356_024_35649_w
crossref_primary_10_1016_j_compositesb_2020_107928
crossref_primary_10_1007_s13233_022_0014_z
crossref_primary_10_1016_j_compositesb_2019_107031
crossref_primary_10_1007_s10570_022_04850_w
crossref_primary_10_4028_p_84f7mj
crossref_primary_10_1016_j_compositesb_2021_109429
crossref_primary_10_1038_s41598_023_50929_0
crossref_primary_10_1016_j_jddst_2024_105601
crossref_primary_10_1002_ceat_202300019
crossref_primary_10_1016_j_compositesb_2022_109668
crossref_primary_10_1155_2022_2489399
crossref_primary_10_1016_j_matpr_2023_04_388
crossref_primary_10_1007_s10971_023_06137_3
crossref_primary_10_1016_j_compositesb_2020_108138
crossref_primary_10_1002_slct_202303514
crossref_primary_10_1007_s40883_020_00187_7
crossref_primary_10_1016_j_compositesb_2022_109620
crossref_primary_10_1016_j_ijbiomac_2024_132953
crossref_primary_10_1088_2053_1591_ae0417
crossref_primary_10_1002_mabi_202000393
crossref_primary_10_1016_j_matpr_2023_04_669
crossref_primary_10_1016_j_jclepro_2021_125792
crossref_primary_10_1111_jace_17525
crossref_primary_10_1016_j_compositesb_2021_108790
crossref_primary_10_1016_j_ceramint_2022_05_207
crossref_primary_10_1002_smll_202301426
crossref_primary_10_1016_j_compscitech_2020_108138
crossref_primary_10_1016_j_hybadv_2023_100031
crossref_primary_10_1111_ijfs_15861
crossref_primary_10_1016_j_ijbiomac_2024_136839
crossref_primary_10_1007_s10856_021_06590_y
crossref_primary_10_1016_j_indcrop_2024_118633
crossref_primary_10_1016_j_compositesb_2022_109614
crossref_primary_10_1088_2057_1976_ad1e75
crossref_primary_10_3390_pr12020358
crossref_primary_10_1088_1742_6596_1842_1_012048
crossref_primary_10_1007_s13399_023_04361_z
crossref_primary_10_1007_s41779_023_00924_5
crossref_primary_10_1007_s12046_023_02149_5
crossref_primary_10_1016_j_jmbbm_2021_104642
crossref_primary_10_1007_s12633_022_02207_3
crossref_primary_10_1007_s41779_023_00948_x
crossref_primary_10_1007_s41779_024_01005_x
crossref_primary_10_1016_j_compscitech_2020_108406
crossref_primary_10_1016_j_compositesb_2020_107986
crossref_primary_10_3390_app142411815
crossref_primary_10_1016_j_enconman_2024_119281
crossref_primary_10_1039_D4RE00160E
crossref_primary_10_1177_08839115211043279
crossref_primary_10_3390_polym14061089
crossref_primary_10_1016_j_ceramint_2020_04_103
crossref_primary_10_1016_j_compositesb_2020_108158
crossref_primary_10_1016_j_biteb_2024_101796
crossref_primary_10_1177_17436753231219539
crossref_primary_10_3390_pr13051559
crossref_primary_10_1016_j_matchemphys_2023_127707
crossref_primary_10_1016_j_solidstatesciences_2023_107193
crossref_primary_10_1002_admt_202001012
crossref_primary_10_1038_s41598_025_06015_8
crossref_primary_10_3390_polym14050871
crossref_primary_10_1002_jbm_b_35060
crossref_primary_10_1088_1757_899X_864_1_012161
crossref_primary_10_5004_dwt_2021_26899
crossref_primary_10_1016_j_mtbio_2025_101863
Cites_doi 10.1016/j.jaap.2015.09.009
10.1016/j.msec.2015.08.032
10.1002/jbm.a.31897
10.1016/j.biomaterials.2003.08.068
10.1016/j.msec.2011.11.021
10.1016/j.carbpol.2016.10.016
10.1016/j.msec.2017.04.084
10.1016/j.biomaterials.2008.10.025
10.1016/j.ceramint.2017.06.062
10.1016/j.ceramint.2014.10.138
10.1016/j.actbio.2015.05.001
10.3390/polym8040115
10.1002/jbm.a.30534
10.1016/j.actbio.2012.06.040
10.1016/j.eurpolymj.2006.08.009
10.1016/S0162-0134(98)10058-2
10.1016/j.ijbiomac.2013.11.020
10.1016/j.jallcom.2018.03.162
10.1016/j.jmatprotec.2008.07.040
10.1016/j.foodres.2009.02.026
10.1016/j.msec.2017.12.023
10.1002/1097-4636(200104)55:1<20::AID-JBM30>3.0.CO;2-F
10.1016/j.biotechadv.2014.07.007
10.1016/j.ijbiomac.2018.04.176
10.1016/j.jiec.2018.05.030
10.1002/(SICI)1097-4636(20000605)50:3<353::AID-JBM9>3.0.CO;2-C
10.1007/s10973-011-1877-y
10.1016/j.dental.2012.04.022
10.1002/jbm.b.32662
10.1016/j.saa.2009.09.021
10.1016/j.carbpol.2018.05.086
10.1016/j.msec.2017.05.066
10.1016/j.matlet.2016.09.039
10.1016/j.bbagen.2007.07.008
10.1016/j.actbio.2007.10.003
10.1016/j.ceramint.2010.07.016
10.1016/j.anaerobe.2012.04.009
10.1002/term.1648
10.1016/j.ceramint.2006.04.001
10.1016/j.msec.2016.05.026
10.1016/j.compscitech.2014.03.004
10.1016/j.msec.2017.05.069
10.1039/C5TB02091C
10.1016/j.clay.2017.03.008
10.1016/j.msec.2013.04.026
10.1039/C7PY00223H
10.1016/j.ceramint.2018.05.180
10.1016/j.carres.2009.09.001
10.1016/j.msec.2008.05.008
10.1016/j.msec.2016.04.039
10.1016/j.biomaterials.2006.01.017
10.1016/j.ceramint.2017.03.046
10.1016/j.matdes.2015.08.069
10.3390/md13041819
10.1016/j.msec.2012.02.029
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright_xml – notice: 2019 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compositesb.2019.01.036
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-1069
EndPage 573
ExternalDocumentID 10_1016_j_compositesb_2019_01_036
S1359836818320249
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JJJVA
KOM
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
ZMT
~02
~G-
29F
6TJ
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABJNI
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ADMUD
ADNMO
AEIPS
AFJKZ
AGQPQ
AI.
AIIUN
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
FGOYB
HZ~
R2-
SEW
VH1
~HD
ID FETCH-LOGICAL-c321t-c462c9b597d9842c7b0efa2b2725e7cc7ceec12ade9a0aa2c7927a41ffbb52da3
ISICitedReferencesCount 77
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000461262500057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-8368
IngestDate Tue Nov 18 21:56:31 EST 2025
Sat Nov 29 07:06:19 EST 2025
Fri Feb 23 02:46:30 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Polymer-matrix composites
Guided bone regeneration
Chitosan
Chicken bone waste
Natural hydroxyapatite
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-c462c9b597d9842c7b0efa2b2725e7cc7ceec12ade9a0aa2c7927a41ffbb52da3
PageCount 12
ParticipantIDs crossref_citationtrail_10_1016_j_compositesb_2019_01_036
crossref_primary_10_1016_j_compositesb_2019_01_036
elsevier_sciencedirect_doi_10_1016_j_compositesb_2019_01_036
PublicationCentury 2000
PublicationDate 2019-04-15
PublicationDateYYYYMMDD 2019-04-15
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-15
  day: 15
PublicationDecade 2010
PublicationTitle Composites. Part B, Engineering
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Ahmed, Sheikh, Ali (bib11) 2018; 116
Lima, Resende, de Almeida Soares, Anselme, Almeida (bib47) 2013; 33
Prabakaran, Rajeswari (bib34) 2009; 74
Zhou, Xu, Zhang, Zhao, Wei, Zhai (bib20) 2012; 32
Dong, Liang, Cui, Xu, Zhao (bib28) 2018; 197
Tamburaci, Tihminlioglu (bib49) 2018; 29
Sobierajska, Dorotkiewicz-Jach, Zawisza, Okal, Olszak, Drulis-Kawa, Wiglusz (bib43) 2018; 748
Lee, Shin, Kim, Kim, Koh, Jang (bib23) 2009; 30
Yang, Wang, Wang, Wang, Wang, Chen (bib10) 2014; 32
Zhang, Zhao, Cai, Wang, Sun, Hu (bib44) 2010; 28
Lowry, Han, Meenan, Boyd (bib41) 2017; 43
Szymańska, Winnicka (bib18) 2015; 13
Yang, Si, Zeng, Zhang, Dai (bib56) 2008; 4
Bertoni, Bigi, Cojazzi, Gandolfi, Panzavolta, Roveri (bib38) 1998; 72
Teng, Lee, Yoon, Shin, Kim, Oh (bib4) 2009; 88
Ooi, Hamdi, Ramesh (bib31) 2007; 33
Norowski, Fujiwara, Clem, Adatrow, Eckstein, Haggard, Bumgardner (bib8) 2015; 9
Ren, Wang, Sun, Yue, Zhang (bib45) 2017; 78
Kuo, Chang, Chen, Kuan (bib57) 2006; 76
Zhang, Zhu, Yang, Sun, Zhang, Li, Wang, Sun, Yao (bib1) 2016; 58
Costa, Silva, Pina, Tavaria, Pintado (bib17) 2012; 18
Heidari, Razavi, Bahrololoom, Bazargan-Lari, Vashaee, Kotturi, Tayebi (bib25) 2016; 65
Rekik, Gassara, Bouaziz, Deratani, Baklouti (bib48) 2017; 143
Hurt, Getti, Coleman (bib51) 2014; 64
Kong, Gao, Lu, Gong, Zhao, Zhang X (bib29) 2016; 42
Sheikh, Khan, Roohpour, Glogauer, Rehman u (bib2) 2016; 68
Tzoneva, Faucheux, Groth (bib46) 2007; 1770
Kolmas, Velard, Jaguszewska, Lemaire, Kerdjoudj, Gangloff, Kaflak (bib40) 2017; 79
Tonsuaadu, Gross, Plūduma, Veiderma (bib39) 2011; 110
Wei, Sun, Qian, Ye, Ma (bib13) 2009; 344
Niakan, Ramesh, Ganesan, Tan, Purbolaksono, Chandran, Teng (bib27) 2015; 41
Seo, Kim, Kim, Lee, Shin, Lee, Kim (bib55) 2014; 96
Xianmiao, Yubao, Yi, Li, Jidong, Huanan (bib9) 2009; 29
Tamburaci, Tihminlioglu (bib22) 2017; 80
Barakat, Khil, Omran, Sheikh, Kim (bib24) 2009; 209
Bang, Ramesh, Purbolaksono, Ching, Long, Chandran, Othman (bib54) 2015; 87
Tu, Yu, Chen, Shi, Zhou, Deng, Du (bib12) 2017; 8
Qasim, Delaine-Smith, Fey, Rawlinson, Rehman (bib6) 2015; 23
Vásconez, Flores, Campos, Alvarado, Gerschenson (bib50) 2009; 42
Mota, Yu, Caridade, Luz, Gomes, Reis, Jansen, Walboomers, Mano (bib21) 2012; 8
Krzesińska, Majewska (bib26) 2015; 116
Bayrak, Demirtaş, Gümüşderelioğlu (bib52) 2017; 157
Bottino, Thomas, Schmidt, Vohra, Chu, Kowolik, Janowski (bib7) 2012; 28
Baino (bib35) 2018; 44
Fakhry, Schneider, Zaharias, Şenel (bib14) 2004; 25
Wang, Wang, Zhou, Lai, Xu, Liao, Wei (bib3) 2016; 8
Redey, Nardin, Bernache–Assolant, Rey, Delannoy, Sedel, Marie (bib36) 2000; 50
Xu, Lei, Meng, Wang, Song (bib15) 2012; 100
Hu, Zhu, Zhou, Ruan, Pan, Catchmark (bib53) 2016; 4
Kokubo, Takadama (bib30) 2006; 27
Ramirez-Gutierrez, Londoño-Restrepo, del Real, Mondragón, Rodriguez-García (bib32) 2017; 43
Lee, Lee, Moon, Kim, Heo, Bang, Lim, Kwon (bib16) 2018; 66
Yamaguchi, Tokuchi, Fukuzaki, Koyama, Takakuda, Monma, Tanaka (bib19) 2001; 55
Castro, Diba, Kersten, Jansen, van den Beucken, Yang (bib5) 2018; 85
Boutinguiza, Pou, Comesaña, Lusquiños, De Carlos, León (bib37) 2012; 32
Sunil, Jagannatham (bib42) 2016; 185
Figueiredo, Fernando, Martins, Freitas, Judas, Figueiredo (bib33) 2010; 36
Yang (10.1016/j.compositesb.2019.01.036_bib10) 2014; 32
Seo (10.1016/j.compositesb.2019.01.036_bib55) 2014; 96
Xianmiao (10.1016/j.compositesb.2019.01.036_bib9) 2009; 29
Ooi (10.1016/j.compositesb.2019.01.036_bib31) 2007; 33
Vásconez (10.1016/j.compositesb.2019.01.036_bib50) 2009; 42
Sheikh (10.1016/j.compositesb.2019.01.036_bib2) 2016; 68
Bang (10.1016/j.compositesb.2019.01.036_bib54) 2015; 87
Bottino (10.1016/j.compositesb.2019.01.036_bib7) 2012; 28
Bayrak (10.1016/j.compositesb.2019.01.036_bib52) 2017; 157
Szymańska (10.1016/j.compositesb.2019.01.036_bib18) 2015; 13
Castro (10.1016/j.compositesb.2019.01.036_bib5) 2018; 85
Teng (10.1016/j.compositesb.2019.01.036_bib4) 2009; 88
Fakhry (10.1016/j.compositesb.2019.01.036_bib14) 2004; 25
Zhou (10.1016/j.compositesb.2019.01.036_bib20) 2012; 32
Redey (10.1016/j.compositesb.2019.01.036_bib36) 2000; 50
Zhang (10.1016/j.compositesb.2019.01.036_bib1) 2016; 58
Tamburaci (10.1016/j.compositesb.2019.01.036_bib49) 2018; 29
Yamaguchi (10.1016/j.compositesb.2019.01.036_bib19) 2001; 55
Sunil (10.1016/j.compositesb.2019.01.036_bib42) 2016; 185
Krzesińska (10.1016/j.compositesb.2019.01.036_bib26) 2015; 116
Wang (10.1016/j.compositesb.2019.01.036_bib3) 2016; 8
Tamburaci (10.1016/j.compositesb.2019.01.036_bib22) 2017; 80
Baino (10.1016/j.compositesb.2019.01.036_bib35) 2018; 44
Lee (10.1016/j.compositesb.2019.01.036_bib16) 2018; 66
Zhang (10.1016/j.compositesb.2019.01.036_bib44) 2010; 28
Kuo (10.1016/j.compositesb.2019.01.036_bib57) 2006; 76
Heidari (10.1016/j.compositesb.2019.01.036_bib25) 2016; 65
Lima (10.1016/j.compositesb.2019.01.036_bib47) 2013; 33
Tzoneva (10.1016/j.compositesb.2019.01.036_bib46) 2007; 1770
Dong (10.1016/j.compositesb.2019.01.036_bib28) 2018; 197
Qasim (10.1016/j.compositesb.2019.01.036_bib6) 2015; 23
Niakan (10.1016/j.compositesb.2019.01.036_bib27) 2015; 41
Xu (10.1016/j.compositesb.2019.01.036_bib15) 2012; 100
Prabakaran (10.1016/j.compositesb.2019.01.036_bib34) 2009; 74
Figueiredo (10.1016/j.compositesb.2019.01.036_bib33) 2010; 36
Ramirez-Gutierrez (10.1016/j.compositesb.2019.01.036_bib32) 2017; 43
Bertoni (10.1016/j.compositesb.2019.01.036_bib38) 1998; 72
Mota (10.1016/j.compositesb.2019.01.036_bib21) 2012; 8
Barakat (10.1016/j.compositesb.2019.01.036_bib24) 2009; 209
Lowry (10.1016/j.compositesb.2019.01.036_bib41) 2017; 43
Sobierajska (10.1016/j.compositesb.2019.01.036_bib43) 2018; 748
Kokubo (10.1016/j.compositesb.2019.01.036_bib30) 2006; 27
Costa (10.1016/j.compositesb.2019.01.036_bib17) 2012; 18
Yang (10.1016/j.compositesb.2019.01.036_bib56) 2008; 4
Rekik (10.1016/j.compositesb.2019.01.036_bib48) 2017; 143
Ahmed (10.1016/j.compositesb.2019.01.036_bib11) 2018; 116
Boutinguiza (10.1016/j.compositesb.2019.01.036_bib37) 2012; 32
Tonsuaadu (10.1016/j.compositesb.2019.01.036_bib39) 2011; 110
Kong (10.1016/j.compositesb.2019.01.036_bib29) 2016; 42
Norowski (10.1016/j.compositesb.2019.01.036_bib8) 2015; 9
Hurt (10.1016/j.compositesb.2019.01.036_bib51) 2014; 64
Wei (10.1016/j.compositesb.2019.01.036_bib13) 2009; 344
Kolmas (10.1016/j.compositesb.2019.01.036_bib40) 2017; 79
Ren (10.1016/j.compositesb.2019.01.036_bib45) 2017; 78
Tu (10.1016/j.compositesb.2019.01.036_bib12) 2017; 8
Hu (10.1016/j.compositesb.2019.01.036_bib53) 2016; 4
Lee (10.1016/j.compositesb.2019.01.036_bib23) 2009; 30
References_xml – volume: 65
  start-page: 338
  year: 2016
  end-page: 344
  ident: bib25
  article-title: Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications
  publication-title: Mater Sci Eng C
– volume: 197
  start-page: 183
  year: 2018
  end-page: 193
  ident: bib28
  article-title: Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: combined the sol-gel method with 3D plotting technique
  publication-title: Carbohydr Polym
– volume: 76
  start-page: 408
  year: 2006
  end-page: 415
  ident: bib57
  article-title: Guided tissue regeneration for using a chitosan membrane: an experimental study in rats
  publication-title: J Biomed Mater Res A
– volume: 157
  start-page: 803
  year: 2017
  end-page: 813
  ident: bib52
  article-title: Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds
  publication-title: Carbohydr Polym
– volume: 143
  start-page: 1
  year: 2017
  end-page: 9
  ident: bib48
  article-title: Development and characterization of porous membranes based on kaolin/chitosan composite
  publication-title: Appl Clay Sci
– volume: 29
  start-page: 29
  year: 2009
  end-page: 35
  ident: bib9
  article-title: Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration
  publication-title: Mater Sci Eng C
– volume: 58
  start-page: 278
  year: 2016
  end-page: 285
  ident: bib1
  article-title: Electrospun PDLLA/PLGA composite membranes for potential application in guided tissue regeneration
  publication-title: Mater Sci Eng C
– volume: 100
  start-page: 1435
  year: 2012
  end-page: 1443
  ident: bib15
  article-title: Chitosan as a barrier membrane material in periodontal tissue regeneration
  publication-title: J Biomed Mater Res B: Appl Biomater
– volume: 42
  start-page: 3171
  year: 2016
  end-page: 3179
  ident: bib29
  article-title: A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering
  publication-title: Eur Polym J
– volume: 30
  start-page: 743
  year: 2009
  end-page: 750
  ident: bib23
  article-title: Membrane of hybrid chitosan–silica xerogel for guided bone regeneration
  publication-title: Biomaterials
– volume: 4
  start-page: 560
  year: 2008
  end-page: 568
  ident: bib56
  article-title: Mechanism and kinetics of apatite formation on nanocrystalline TiO
  publication-title: Acta Biomater
– volume: 50
  start-page: 353
  year: 2000
  end-page: 364
  ident: bib36
  article-title: Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy
  publication-title: J Biomed Mater Res
– volume: 8
  start-page: 2913
  year: 2017
  end-page: 2921
  ident: bib12
  article-title: Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: chitosan and cellulose
  publication-title: Polym Chem
– volume: 72
  start-page: 29
  year: 1998
  end-page: 35
  ident: bib38
  article-title: Nanocrystals of magnesium and fluoride substituted hydroxyapatite
  publication-title: J Inorg Biochem
– volume: 66
  start-page: 196
  year: 2018
  end-page: 202
  ident: bib16
  article-title: Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications
  publication-title: J Ind Eng Chem
– volume: 8
  start-page: 4173
  year: 2012
  end-page: 4180
  ident: bib21
  article-title: Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration
  publication-title: Acta Biomater
– volume: 344
  start-page: 2375
  year: 2009
  end-page: 2382
  ident: bib13
  article-title: The synthesis of chitosan-based silver nanoparticles and their antibacterial activity
  publication-title: Carbohydr Res
– volume: 44
  start-page: 14953
  year: 2018
  end-page: 14966
  ident: bib35
  article-title: Bioactive glasses–when glass science and technology meet regenerative medicine
  publication-title: Ceram Int
– volume: 116
  start-page: 202
  year: 2015
  end-page: 214
  ident: bib26
  article-title: Physical properties of continuous matrix of porous natural hydroxyapatite related to the pyrolysis temperature of animal bones precursors
  publication-title: J Anal Appl Pyrolysis
– volume: 23
  start-page: 317
  year: 2015
  end-page: 328
  ident: bib6
  article-title: Freeze gelated porous membranes for periodontal tissue regeneration
  publication-title: Acta Biomater
– volume: 33
  start-page: 1171
  year: 2007
  end-page: 1177
  ident: bib31
  article-title: Properties of hydroxyapatite produced by annealing of bovine bone
  publication-title: Ceram Int
– volume: 110
  start-page: 647
  year: 2011
  end-page: 659
  ident: bib39
  article-title: A review on the thermal stability of calcium apatites
  publication-title: J Therm Anal Calorim
– volume: 748
  start-page: 179
  year: 2018
  end-page: 187
  ident: bib43
  article-title: Preparation and antimicrobial activity of the porous hydroxyapatite nanoceramics
  publication-title: J Alloy Comp
– volume: 41
  start-page: 3024
  year: 2015
  end-page: 3029
  ident: bib27
  article-title: Sintering behaviour of natural porous hydroxyapatite derived from bovine bone
  publication-title: Ceram Int
– volume: 9
  start-page: 577
  year: 2015
  end-page: 583
  ident: bib8
  article-title: Novel naturally crosslinked electrospun nanofibrous chitosan mats for guided bone regeneration membranes: material characterization and cytocompatibility
  publication-title: J Tissue Eng Regenerat Med
– volume: 32
  start-page: 478
  year: 2012
  end-page: 486
  ident: bib37
  article-title: Biological hydroxyapatite obtained from fish bones
  publication-title: Mater Sci Eng C
– volume: 28
  start-page: 703
  year: 2012
  end-page: 721
  ident: bib7
  article-title: Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective
  publication-title: Dent Mater
– volume: 32
  start-page: 994
  year: 2012
  end-page: 1000
  ident: bib20
  article-title: Radiation synthesis of gelatin/CM-chitosan/β-tricalcium phosphate composite scaffold for bone tissue engineering
  publication-title: Mater Sci Eng C
– volume: 96
  start-page: 31
  year: 2014
  end-page: 37
  ident: bib55
  article-title: Enhanced mechanical properties and bone bioactivity of chitosan/silica membrane by functionalized-carbon nanotube incorporation
  publication-title: Compos Sci Technol
– volume: 32
  start-page: 1301
  year: 2014
  end-page: 1316
  ident: bib10
  article-title: Advances in self-assembled chitosan nanomaterials for drug delivery
  publication-title: Biotechnol Adv
– volume: 116
  start-page: 849
  year: 2018
  end-page: 862
  ident: bib11
  article-title: A review on chitosan centred scaffolds and their applications in tissue engineering
  publication-title: Int. J. Biol. Macromol.
– volume: 64
  start-page: 11
  year: 2014
  end-page: 16
  ident: bib51
  article-title: Bioactivity and biocompatibility of a chitosan-tobermorite composite membrane for guided tissue regeneration
  publication-title: Int. J. Biol. Macromol.
– volume: 18
  start-page: 305
  year: 2012
  end-page: 309
  ident: bib17
  article-title: Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens
  publication-title: Anaerobe
– volume: 25
  start-page: 2075
  year: 2004
  end-page: 2079
  ident: bib14
  article-title: Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts
  publication-title: Biomaterials
– volume: 87
  start-page: 788
  year: 2015
  end-page: 796
  ident: bib54
  article-title: Effects of silicate and carbonate substitution on the properties of hydroxyapatite prepared by aqueous co-precipitation method
  publication-title: Mater Des
– volume: 55
  start-page: 20
  year: 2001
  end-page: 27
  ident: bib19
  article-title: Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites
  publication-title: J. Biomed. Mater. Res. A
– volume: 36
  start-page: 2383
  year: 2010
  end-page: 2393
  ident: bib33
  article-title: Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone
  publication-title: Ceram Int
– volume: 29
  start-page: 1
  year: 2018
  end-page: 14
  ident: bib49
  article-title: Novel poss reinforced chitosan composite membranes for guided bone tissue regeneration
  publication-title: J Mater Sci: Mater Med
– volume: 80
  start-page: 222
  year: 2017
  end-page: 231
  ident: bib22
  article-title: Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration
  publication-title: Mater Sci Eng C
– volume: 185
  start-page: 411
  year: 2016
  end-page: 414
  ident: bib42
  article-title: Producing hydroxyapatite from fish bones by heat treatment
  publication-title: Mater Lett
– volume: 68
  start-page: 267
  year: 2016
  end-page: 275
  ident: bib2
  article-title: Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications
  publication-title: Mater Sci Eng C
– volume: 4
  start-page: 1235
  year: 2016
  end-page: 1246
  ident: bib53
  article-title: Bioabsorbable cellulose composites prepared by an improved mineral-binding process for bone defect repair
  publication-title: J. Mater. Chem. B
– volume: 209
  start-page: 3408
  year: 2009
  end-page: 3415
  ident: bib24
  article-title: Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods
  publication-title: J Mater Process Technol
– volume: 74
  start-page: 1127
  year: 2009
  end-page: 1134
  ident: bib34
  article-title: Spectroscopic investigations on the synthesis of nano-hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template
  publication-title: Spectrochim Acta Mol Biomol Spectrosc
– volume: 13
  start-page: 1819
  year: 2015
  end-page: 1846
  ident: bib18
  article-title: Stability of chitosan—a challenge for pharmaceutical and biomedical applications
  publication-title: Mar Drugs
– volume: 43
  start-page: 12070
  year: 2017
  end-page: 12078
  ident: bib41
  article-title: Strontium and zinc co-substituted nanophase hydroxyapatite
  publication-title: Ceram Int
– volume: 78
  start-page: 324
  year: 2017
  end-page: 332
  ident: bib45
  article-title: Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes
  publication-title: Mater Sci Eng C
– volume: 79
  start-page: 638
  year: 2017
  end-page: 646
  ident: bib40
  article-title: Substitution of strontium and boron into hydroxyapatite crystals: effect on physicochemical properties and biocompatibility with human Wharton-Jelly stem cells
  publication-title: Mater Sci Eng C
– volume: 85
  start-page: 154
  year: 2018
  end-page: 161
  ident: bib5
  article-title: Development of a PCL-silica nanoparticles composite membrane for guided bone regeneration
  publication-title: Mater Sci Eng C
– volume: 33
  start-page: 3389
  year: 2013
  end-page: 3395
  ident: bib47
  article-title: Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering
  publication-title: Mater Sci Eng C
– volume: 42
  start-page: 762
  year: 2009
  end-page: 769
  ident: bib50
  article-title: Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings
  publication-title: Food Res Int
– volume: 1770
  start-page: 1538
  year: 2007
  end-page: 1547
  ident: bib46
  article-title: Wettability of substrata controls cell–substrate and cell–cell adhesions
  publication-title: Biochim Biophys Acta
– volume: 88
  start-page: 569
  year: 2009
  end-page: 580
  ident: bib4
  article-title: Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration
  publication-title: J Biomed Mater Res A
– volume: 27
  start-page: 2907
  year: 2006
  end-page: 2915
  ident: bib30
  article-title: How useful is SBF in predicting in vivo bone bioactivity?
  publication-title: Biomaterials
– volume: 43
  start-page: 7552
  year: 2017
  end-page: 7559
  ident: bib32
  article-title: Effect of the temperature and sintering time on the thermal, structural, morphological, and vibrational properties of hydroxyapatite derived from pig bone
  publication-title: Ceram Int
– volume: 8
  start-page: 115
  year: 2016
  ident: bib3
  article-title: Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review
  publication-title: Polymers
– volume: 28
  start-page: 555
  year: 2010
  end-page: 561
  ident: bib44
  article-title: Preparation of chitosan/hydroxyapatite guided membrane used for periodontal tissue regeneration, Chin
  publication-title: J Polym Sci
– volume: 116
  start-page: 202
  year: 2015
  ident: 10.1016/j.compositesb.2019.01.036_bib26
  article-title: Physical properties of continuous matrix of porous natural hydroxyapatite related to the pyrolysis temperature of animal bones precursors
  publication-title: J Anal Appl Pyrolysis
  doi: 10.1016/j.jaap.2015.09.009
– volume: 58
  start-page: 278
  year: 2016
  ident: 10.1016/j.compositesb.2019.01.036_bib1
  article-title: Electrospun PDLLA/PLGA composite membranes for potential application in guided tissue regeneration
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2015.08.032
– volume: 88
  start-page: 569
  year: 2009
  ident: 10.1016/j.compositesb.2019.01.036_bib4
  article-title: Chitosan/nanohydroxyapatite composite membranes via dynamic filtration for guided bone regeneration
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.31897
– volume: 25
  start-page: 2075
  year: 2004
  ident: 10.1016/j.compositesb.2019.01.036_bib14
  article-title: Chitosan supports the initial attachment and spreading of osteoblasts preferentially over fibroblasts
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2003.08.068
– volume: 32
  start-page: 478
  year: 2012
  ident: 10.1016/j.compositesb.2019.01.036_bib37
  article-title: Biological hydroxyapatite obtained from fish bones
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2011.11.021
– volume: 157
  start-page: 803
  year: 2017
  ident: 10.1016/j.compositesb.2019.01.036_bib52
  article-title: Microwave-induced biomimetic approach for hydroxyapatite coatings of chitosan scaffolds
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2016.10.016
– volume: 78
  start-page: 324
  year: 2017
  ident: 10.1016/j.compositesb.2019.01.036_bib45
  article-title: Electrospun PCL/gelatin composite nanofiber structures for effective guided bone regeneration membranes
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2017.04.084
– volume: 30
  start-page: 743
  year: 2009
  ident: 10.1016/j.compositesb.2019.01.036_bib23
  article-title: Membrane of hybrid chitosan–silica xerogel for guided bone regeneration
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2008.10.025
– volume: 43
  start-page: 12070
  year: 2017
  ident: 10.1016/j.compositesb.2019.01.036_bib41
  article-title: Strontium and zinc co-substituted nanophase hydroxyapatite
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2017.06.062
– volume: 41
  start-page: 3024
  year: 2015
  ident: 10.1016/j.compositesb.2019.01.036_bib27
  article-title: Sintering behaviour of natural porous hydroxyapatite derived from bovine bone
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2014.10.138
– volume: 23
  start-page: 317
  year: 2015
  ident: 10.1016/j.compositesb.2019.01.036_bib6
  article-title: Freeze gelated porous membranes for periodontal tissue regeneration
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2015.05.001
– volume: 8
  start-page: 115
  year: 2016
  ident: 10.1016/j.compositesb.2019.01.036_bib3
  article-title: Biodegradable polymer membranes applied in guided bone/tissue regeneration: a review
  publication-title: Polymers
  doi: 10.3390/polym8040115
– volume: 29
  start-page: 1
  year: 2018
  ident: 10.1016/j.compositesb.2019.01.036_bib49
  article-title: Novel poss reinforced chitosan composite membranes for guided bone tissue regeneration
  publication-title: J Mater Sci: Mater Med
– volume: 76
  start-page: 408
  year: 2006
  ident: 10.1016/j.compositesb.2019.01.036_bib57
  article-title: Guided tissue regeneration for using a chitosan membrane: an experimental study in rats
  publication-title: J Biomed Mater Res A
  doi: 10.1002/jbm.a.30534
– volume: 8
  start-page: 4173
  year: 2012
  ident: 10.1016/j.compositesb.2019.01.036_bib21
  article-title: Chitosan/bioactive glass nanoparticle composite membranes for periodontal regeneration
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2012.06.040
– volume: 42
  start-page: 3171
  year: 2016
  ident: 10.1016/j.compositesb.2019.01.036_bib29
  article-title: A study on the bioactivity of chitosan/nano-hydroxyapatite composite scaffolds for bone tissue engineering
  publication-title: Eur Polym J
  doi: 10.1016/j.eurpolymj.2006.08.009
– volume: 72
  start-page: 29
  year: 1998
  ident: 10.1016/j.compositesb.2019.01.036_bib38
  article-title: Nanocrystals of magnesium and fluoride substituted hydroxyapatite
  publication-title: J Inorg Biochem
  doi: 10.1016/S0162-0134(98)10058-2
– volume: 64
  start-page: 11
  year: 2014
  ident: 10.1016/j.compositesb.2019.01.036_bib51
  article-title: Bioactivity and biocompatibility of a chitosan-tobermorite composite membrane for guided tissue regeneration
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2013.11.020
– volume: 748
  start-page: 179
  year: 2018
  ident: 10.1016/j.compositesb.2019.01.036_bib43
  article-title: Preparation and antimicrobial activity of the porous hydroxyapatite nanoceramics
  publication-title: J Alloy Comp
  doi: 10.1016/j.jallcom.2018.03.162
– volume: 209
  start-page: 3408
  year: 2009
  ident: 10.1016/j.compositesb.2019.01.036_bib24
  article-title: Extraction of pure natural hydroxyapatite from the bovine bones bio waste by three different methods
  publication-title: J Mater Process Technol
  doi: 10.1016/j.jmatprotec.2008.07.040
– volume: 42
  start-page: 762
  year: 2009
  ident: 10.1016/j.compositesb.2019.01.036_bib50
  article-title: Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings
  publication-title: Food Res Int
  doi: 10.1016/j.foodres.2009.02.026
– volume: 85
  start-page: 154
  year: 2018
  ident: 10.1016/j.compositesb.2019.01.036_bib5
  article-title: Development of a PCL-silica nanoparticles composite membrane for guided bone regeneration
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2017.12.023
– volume: 55
  start-page: 20
  year: 2001
  ident: 10.1016/j.compositesb.2019.01.036_bib19
  article-title: Preparation and microstructure analysis of chitosan/hydroxyapatite nanocomposites
  publication-title: J. Biomed. Mater. Res. A
  doi: 10.1002/1097-4636(200104)55:1<20::AID-JBM30>3.0.CO;2-F
– volume: 28
  start-page: 555
  year: 2010
  ident: 10.1016/j.compositesb.2019.01.036_bib44
  article-title: Preparation of chitosan/hydroxyapatite guided membrane used for periodontal tissue regeneration, Chin
  publication-title: J Polym Sci
– volume: 32
  start-page: 1301
  year: 2014
  ident: 10.1016/j.compositesb.2019.01.036_bib10
  article-title: Advances in self-assembled chitosan nanomaterials for drug delivery
  publication-title: Biotechnol Adv
  doi: 10.1016/j.biotechadv.2014.07.007
– volume: 116
  start-page: 849
  year: 2018
  ident: 10.1016/j.compositesb.2019.01.036_bib11
  article-title: A review on chitosan centred scaffolds and their applications in tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2018.04.176
– volume: 66
  start-page: 196
  year: 2018
  ident: 10.1016/j.compositesb.2019.01.036_bib16
  article-title: Preparation of antibacterial chitosan membranes containing silver nanoparticles for dental barrier membrane applications
  publication-title: J Ind Eng Chem
  doi: 10.1016/j.jiec.2018.05.030
– volume: 50
  start-page: 353
  year: 2000
  ident: 10.1016/j.compositesb.2019.01.036_bib36
  article-title: Behavior of human osteoblastic cells on stoichiometric hydroxyapatite and type A carbonate apatite: role of surface energy
  publication-title: J Biomed Mater Res
  doi: 10.1002/(SICI)1097-4636(20000605)50:3<353::AID-JBM9>3.0.CO;2-C
– volume: 110
  start-page: 647
  year: 2011
  ident: 10.1016/j.compositesb.2019.01.036_bib39
  article-title: A review on the thermal stability of calcium apatites
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-011-1877-y
– volume: 28
  start-page: 703
  year: 2012
  ident: 10.1016/j.compositesb.2019.01.036_bib7
  article-title: Recent advances in the development of GTR/GBR membranes for periodontal regeneration—a materials perspective
  publication-title: Dent Mater
  doi: 10.1016/j.dental.2012.04.022
– volume: 100
  start-page: 1435
  year: 2012
  ident: 10.1016/j.compositesb.2019.01.036_bib15
  article-title: Chitosan as a barrier membrane material in periodontal tissue regeneration
  publication-title: J Biomed Mater Res B: Appl Biomater
  doi: 10.1002/jbm.b.32662
– volume: 74
  start-page: 1127
  year: 2009
  ident: 10.1016/j.compositesb.2019.01.036_bib34
  article-title: Spectroscopic investigations on the synthesis of nano-hydroxyapatite from calcined eggshell by hydrothermal method using cationic surfactant as template
  publication-title: Spectrochim Acta Mol Biomol Spectrosc
  doi: 10.1016/j.saa.2009.09.021
– volume: 197
  start-page: 183
  year: 2018
  ident: 10.1016/j.compositesb.2019.01.036_bib28
  article-title: Fabrication of novel bioactive hydroxyapatite-chitosan-silica hybrid scaffolds: combined the sol-gel method with 3D plotting technique
  publication-title: Carbohydr Polym
  doi: 10.1016/j.carbpol.2018.05.086
– volume: 79
  start-page: 638
  year: 2017
  ident: 10.1016/j.compositesb.2019.01.036_bib40
  article-title: Substitution of strontium and boron into hydroxyapatite crystals: effect on physicochemical properties and biocompatibility with human Wharton-Jelly stem cells
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2017.05.066
– volume: 185
  start-page: 411
  year: 2016
  ident: 10.1016/j.compositesb.2019.01.036_bib42
  article-title: Producing hydroxyapatite from fish bones by heat treatment
  publication-title: Mater Lett
  doi: 10.1016/j.matlet.2016.09.039
– volume: 1770
  start-page: 1538
  year: 2007
  ident: 10.1016/j.compositesb.2019.01.036_bib46
  article-title: Wettability of substrata controls cell–substrate and cell–cell adhesions
  publication-title: Biochim Biophys Acta
  doi: 10.1016/j.bbagen.2007.07.008
– volume: 4
  start-page: 560
  year: 2008
  ident: 10.1016/j.compositesb.2019.01.036_bib56
  article-title: Mechanism and kinetics of apatite formation on nanocrystalline TiO2 coatings: a quartz crystal microbalance study
  publication-title: Acta Biomater
  doi: 10.1016/j.actbio.2007.10.003
– volume: 36
  start-page: 2383
  year: 2010
  ident: 10.1016/j.compositesb.2019.01.036_bib33
  article-title: Effect of the calcination temperature on the composition and microstructure of hydroxyapatite derived from human and animal bone
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2010.07.016
– volume: 18
  start-page: 305
  year: 2012
  ident: 10.1016/j.compositesb.2019.01.036_bib17
  article-title: Evaluation and insights into chitosan antimicrobial activity against anaerobic oral pathogens
  publication-title: Anaerobe
  doi: 10.1016/j.anaerobe.2012.04.009
– volume: 9
  start-page: 577
  year: 2015
  ident: 10.1016/j.compositesb.2019.01.036_bib8
  article-title: Novel naturally crosslinked electrospun nanofibrous chitosan mats for guided bone regeneration membranes: material characterization and cytocompatibility
  publication-title: J Tissue Eng Regenerat Med
  doi: 10.1002/term.1648
– volume: 33
  start-page: 1171
  year: 2007
  ident: 10.1016/j.compositesb.2019.01.036_bib31
  article-title: Properties of hydroxyapatite produced by annealing of bovine bone
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2006.04.001
– volume: 68
  start-page: 267
  year: 2016
  ident: 10.1016/j.compositesb.2019.01.036_bib2
  article-title: Protein adsorption capability on polyurethane and modified-polyurethane membrane for periodontal guided tissue regeneration applications
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2016.05.026
– volume: 96
  start-page: 31
  year: 2014
  ident: 10.1016/j.compositesb.2019.01.036_bib55
  article-title: Enhanced mechanical properties and bone bioactivity of chitosan/silica membrane by functionalized-carbon nanotube incorporation
  publication-title: Compos Sci Technol
  doi: 10.1016/j.compscitech.2014.03.004
– volume: 80
  start-page: 222
  year: 2017
  ident: 10.1016/j.compositesb.2019.01.036_bib22
  article-title: Diatomite reinforced chitosan composite membrane as potential scaffold for guided bone regeneration
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2017.05.069
– volume: 4
  start-page: 1235
  year: 2016
  ident: 10.1016/j.compositesb.2019.01.036_bib53
  article-title: Bioabsorbable cellulose composites prepared by an improved mineral-binding process for bone defect repair
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB02091C
– volume: 143
  start-page: 1
  year: 2017
  ident: 10.1016/j.compositesb.2019.01.036_bib48
  article-title: Development and characterization of porous membranes based on kaolin/chitosan composite
  publication-title: Appl Clay Sci
  doi: 10.1016/j.clay.2017.03.008
– volume: 33
  start-page: 3389
  year: 2013
  ident: 10.1016/j.compositesb.2019.01.036_bib47
  article-title: Preparation, characterization and biological test of 3D-scaffolds based on chitosan, fibroin and hydroxyapatite for bone tissue engineering
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2013.04.026
– volume: 8
  start-page: 2913
  year: 2017
  ident: 10.1016/j.compositesb.2019.01.036_bib12
  article-title: Highly cost-effective and high-strength hydrogels as dye adsorbents from natural polymers: chitosan and cellulose
  publication-title: Polym Chem
  doi: 10.1039/C7PY00223H
– volume: 44
  start-page: 14953
  year: 2018
  ident: 10.1016/j.compositesb.2019.01.036_bib35
  article-title: Bioactive glasses–when glass science and technology meet regenerative medicine
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2018.05.180
– volume: 344
  start-page: 2375
  year: 2009
  ident: 10.1016/j.compositesb.2019.01.036_bib13
  article-title: The synthesis of chitosan-based silver nanoparticles and their antibacterial activity
  publication-title: Carbohydr Res
  doi: 10.1016/j.carres.2009.09.001
– volume: 29
  start-page: 29
  year: 2009
  ident: 10.1016/j.compositesb.2019.01.036_bib9
  article-title: Properties and in vitro biological evaluation of nano-hydroxyapatite/chitosan membranes for bone guided regeneration
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2008.05.008
– volume: 65
  start-page: 338
  year: 2016
  ident: 10.1016/j.compositesb.2019.01.036_bib25
  article-title: Mechanical properties of natural chitosan/hydroxyapatite/magnetite nanocomposites for tissue engineering applications
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2016.04.039
– volume: 27
  start-page: 2907
  year: 2006
  ident: 10.1016/j.compositesb.2019.01.036_bib30
  article-title: How useful is SBF in predicting in vivo bone bioactivity?
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.017
– volume: 43
  start-page: 7552
  year: 2017
  ident: 10.1016/j.compositesb.2019.01.036_bib32
  article-title: Effect of the temperature and sintering time on the thermal, structural, morphological, and vibrational properties of hydroxyapatite derived from pig bone
  publication-title: Ceram Int
  doi: 10.1016/j.ceramint.2017.03.046
– volume: 87
  start-page: 788
  year: 2015
  ident: 10.1016/j.compositesb.2019.01.036_bib54
  article-title: Effects of silicate and carbonate substitution on the properties of hydroxyapatite prepared by aqueous co-precipitation method
  publication-title: Mater Des
  doi: 10.1016/j.matdes.2015.08.069
– volume: 13
  start-page: 1819
  year: 2015
  ident: 10.1016/j.compositesb.2019.01.036_bib18
  article-title: Stability of chitosan—a challenge for pharmaceutical and biomedical applications
  publication-title: Mar Drugs
  doi: 10.3390/md13041819
– volume: 32
  start-page: 994
  year: 2012
  ident: 10.1016/j.compositesb.2019.01.036_bib20
  article-title: Radiation synthesis of gelatin/CM-chitosan/β-tricalcium phosphate composite scaffold for bone tissue engineering
  publication-title: Mater Sci Eng C
  doi: 10.1016/j.msec.2012.02.029
SSID ssj0004532
Score 2.5117497
Snippet The objective of this research is to prepare asymmetric resorbable membrane based on the hybrid of chitosan (CS) and natural hydroxyapatite (HA) for guided...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 562
SubjectTerms Chicken bone waste
Chitosan
Guided bone regeneration
Natural hydroxyapatite
Polymer-matrix composites
Title Characterization of chicken bone waste-derived hydroxyapatite and its functionality on chitosan membrane for guided bone regeneration
URI https://dx.doi.org/10.1016/j.compositesb.2019.01.036
Volume 163
WOSCitedRecordID wos000461262500057&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-1069
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004532
  issn: 1359-8368
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhhA8IK5iDJCReKtSNU4zx9JeyjQ00DQhMaSKl8i3bB1rMnVZt_HOr9if5ZzYuXSAGEK8RJUVO26_r-ccO8ffIeSNCE2WgZsLJFOwQEmMDVRoZCDAn1tUAFOmEnHd5Xt7yWQiPvZ6V_VZmMUxz_Pk4kKc_FeooQ3AxqOzfwF3Myg0wGcAHa4AO1xvBPxWI8H8rQkHseDJV5v3VQEx5bkEZAMDNywg2jy8NJjJIjGzumzfJaC_c9uEVc5GjkOUxSlYg5mdwQo7d2LhB2dTgzEsjju3B5WGdQN1LYAAJgdTw2BJDgHrvOy_rQxwK4TYbAl40f6iCHY7zTtyNq14-GUwHvTHyvhcRr9XEVavXdxpTbeBVh-iaTOW0OZGuBMZueo6A-vaEi7AQ7gqLo2h9qbQmdrYW3HntWNXEOUnh-D2Jo4QT_9VFebziUqrNbomwl259U84H5wOGjsUVLxFVhmPBZjM1fH77cmHjhh9Vf-umf8d8rpNH_zNA38d_nRCmv0H5L5fi9Cx49BD0rP5I3KvA8xj8v06m2iRUc8miqjTJTbRZTZRYBMFNtElNlEYpWYTrdlEgU3UscmN22XTE_L53fb-1k7gK3cEOmJhGejRBtNCwWLViGTENFdDm4E1YJzFlmvNITTTIZPGCjmUEm4QjMtRmGVKxczI6ClZyeFZzwjNtEIJSZPZ2I4g_FUilMNMGyyjYBLN10hS_6Cp9rL2WF3lOK3zF4_SDhYpYpEOwxSwWCOs6XritF1u0mmzRi31QaoLPlOg3J-7P_-37uvkbvu_ekFWyvmZfUlu60U5PZ2_8gT9Abicxsc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Characterization+of+chicken+bone+waste-derived+hydroxyapatite+and+its+functionality+on+chitosan+membrane+for+guided+bone+regeneration&rft.jtitle=Composites.+Part+B%2C+Engineering&rft.au=Bee%2C+Soo-Ling&rft.au=Hamid%2C+Z.A.+Abdul&rft.date=2019-04-15&rft.pub=Elsevier+Ltd&rft.issn=1359-8368&rft.eissn=1879-1069&rft.volume=163&rft.spage=562&rft.epage=573&rft_id=info:doi/10.1016%2Fj.compositesb.2019.01.036&rft.externalDocID=S1359836818320249
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-8368&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-8368&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-8368&client=summon