Iterative Vessel Segmentation of Fundus Images

This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on biomedical engineering Ročník 62; číslo 7; s. 1738 - 1749
Hlavní autoři: Roychowdhury, Sohini, Koozekanani, Dara D., Parhi, Keshab K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.07.2015
Témata:
ISSN:0018-9294, 1558-2531, 1558-2531
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets.
AbstractList This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets.
This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets.This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets.
Author Koozekanani, Dara D.
Parhi, Keshab K.
Roychowdhury, Sohini
Author_xml – sequence: 1
  givenname: Sohini
  surname: Roychowdhury
  fullname: Roychowdhury, Sohini
  email: roych@uw.edu
  organization: Department of Electrical and Computer Engineering, University of Washington, Bothell, WA, USA
– sequence: 2
  givenname: Dara D.
  surname: Koozekanani
  fullname: Koozekanani, Dara D.
  email: dkoozeka@umn.edu
  organization: Department of Ophthalmology, University of Minnesota, Minneapolis, MN, USA
– sequence: 3
  givenname: Keshab K.
  surname: Parhi
  fullname: Parhi, Keshab K.
  email: parhi@umn.edu
  organization: Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, MN, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25700436$$D View this record in MEDLINE/PubMed
BookMark eNp9kE1PwzAMhiMEYh_wAxAS6pFLS5w0TXKEaYNJQxwYXKssdaaifoymReLf06ljBw6cLFvPa8vPhJxWdYWEXAGNAKi-Wz88zyNGQUQsppxpcULGIIQKmeBwSsaUggo10_GITLz_6NtYxck5GTEhKY15MibRssXGtPkXBu_oPRbBK25LrNp-VldB7YJFV2WdD5al2aK_IGfOFB4vD3VK3hbz9ewpXL08Lmf3q9ByBm1oQWhUoBLOrVQ6E0w5o5VCiB3NMmfRZsxmBoFzzqjbJJBZo6gUTjpQik_J7bB319SfHfo2LXNvsShMhXXnU0g0ZVRqLXv05oB2mxKzdNfkpWm-098fewAGwDa19w26IwI03XtM9x7Tvcf04LHPyD8Zmw9K2sbkxb_J6yGZI-LxkqQxY0rzH3mofgA
CODEN IEBEAX
CitedBy_id crossref_primary_10_1007_s00542_023_05552_4
crossref_primary_10_3390_app13053255
crossref_primary_10_1016_j_cmpb_2020_105769
crossref_primary_10_1016_j_patcog_2024_110376
crossref_primary_10_1109_TBME_2016_2535311
crossref_primary_10_1049_iet_ipr_2018_5636
crossref_primary_10_1007_s41965_024_00168_7
crossref_primary_10_1016_j_artmed_2019_02_004
crossref_primary_10_1016_j_neucom_2022_04_113
crossref_primary_10_1016_j_patcog_2017_04_008
crossref_primary_10_1007_s11063_019_10011_1
crossref_primary_10_1007_s11760_017_1154_z
crossref_primary_10_1016_j_compmedimag_2020_101783
crossref_primary_10_1016_j_eswa_2022_116526
crossref_primary_10_1080_21681163_2017_1402210
crossref_primary_10_1007_s11548_017_1619_0
crossref_primary_10_1016_j_bspc_2023_104829
crossref_primary_10_3390_jimaging5020026
crossref_primary_10_1371_journal_pone_0273318
crossref_primary_10_1109_TAES_2022_3147437
crossref_primary_10_1016_j_compmedimag_2019_101657
crossref_primary_10_1038_srep34603
crossref_primary_10_1109_ACCESS_2024_3477420
crossref_primary_10_1002_ima_22482
crossref_primary_10_1049_iet_ipr_2017_0284
crossref_primary_10_1371_journal_pone_0247388
crossref_primary_10_1016_j_bspc_2021_103053
crossref_primary_10_1016_j_measurement_2022_112316
crossref_primary_10_3390_app14010465
crossref_primary_10_1007_s00371_022_02600_4
crossref_primary_10_1007_s11042_023_14745_y
crossref_primary_10_1007_s10916_017_0719_2
crossref_primary_10_1016_j_eswa_2018_06_034
crossref_primary_10_1016_j_cmpb_2020_105752
crossref_primary_10_1016_j_patcog_2021_107998
crossref_primary_10_3390_sym11070946
crossref_primary_10_1002_cta_2462
crossref_primary_10_1016_j_media_2021_102300
crossref_primary_10_1007_s00521_020_05396_3
crossref_primary_10_1109_JBHI_2020_3028180
crossref_primary_10_1109_ACCESS_2019_2922365
crossref_primary_10_1109_JBHI_2020_3002985
crossref_primary_10_3390_electronics13173514
crossref_primary_10_1007_s13311_021_01024_7
crossref_primary_10_1002_ima_23045
crossref_primary_10_1016_j_asoc_2020_106439
crossref_primary_10_1038_s41598_024_55061_1
crossref_primary_10_1109_TMI_2019_2950051
crossref_primary_10_1049_iet_ipr_2018_5413
crossref_primary_10_1002_ima_70073
crossref_primary_10_1007_s11517_019_01967_2
crossref_primary_10_1007_s11831_021_09635_1
crossref_primary_10_1016_j_neuri_2022_100074
crossref_primary_10_1049_iet_ipr_2019_0969
crossref_primary_10_1002_mp_14944
crossref_primary_10_1016_j_compeleceng_2021_107670
crossref_primary_10_1109_TMI_2022_3161681
crossref_primary_10_3390_s23167309
crossref_primary_10_3390_electronics11010060
crossref_primary_10_1109_ACCESS_2020_3033027
crossref_primary_10_1371_journal_pone_0229831
crossref_primary_10_3390_math7020169
crossref_primary_10_1016_j_bbe_2025_05_002
crossref_primary_10_1016_j_compbiomed_2025_110155
crossref_primary_10_1002_ima_22461
crossref_primary_10_1109_TMI_2016_2546227
crossref_primary_10_1007_s00138_018_0924_0
crossref_primary_10_1016_j_neucom_2020_06_143
crossref_primary_10_1049_iet_ipr_2019_1007
crossref_primary_10_1016_j_measurement_2023_113844
crossref_primary_10_3390_sym10070257
crossref_primary_10_1016_j_cmpb_2021_106081
crossref_primary_10_1088_1742_6596_1574_1_012160
crossref_primary_10_1049_ipr2_12119
crossref_primary_10_1109_ACCESS_2019_2940476
crossref_primary_10_7717_peerj_5855
crossref_primary_10_1080_21681163_2022_2083982
crossref_primary_10_1109_TII_2020_2993842
crossref_primary_10_1016_j_neucom_2018_11_113
crossref_primary_10_1364_AO_401792
crossref_primary_10_4018_IJEHMC_2019040102
crossref_primary_10_3389_fcell_2023_1196191
crossref_primary_10_1007_s11554_018_0748_1
crossref_primary_10_2196_27414
crossref_primary_10_1007_s00371_024_03666_y
crossref_primary_10_1007_s00521_022_07086_8
crossref_primary_10_1016_j_patcog_2016_07_023
crossref_primary_10_1016_j_dsp_2023_104002
crossref_primary_10_3389_fmed_2021_761050
crossref_primary_10_1016_j_bspc_2019_101740
crossref_primary_10_1002_ima_22579
crossref_primary_10_1109_TMI_2019_2903562
crossref_primary_10_1109_TAI_2024_3351589
crossref_primary_10_1016_j_bspc_2022_103930
crossref_primary_10_1007_s13042_022_01715_3
crossref_primary_10_1109_TBME_2016_2638918
crossref_primary_10_1016_j_neunet_2021_03_006
crossref_primary_10_1080_21681163_2018_1519851
crossref_primary_10_1016_j_neucom_2022_03_061
crossref_primary_10_1109_TIP_2019_2946078
crossref_primary_10_3390_jimaging8100291
crossref_primary_10_1016_j_compmedimag_2021_101902
crossref_primary_10_1109_ACCESS_2021_3074458
crossref_primary_10_1038_s41598_025_02470_5
crossref_primary_10_1007_s11042_023_15433_7
crossref_primary_10_1016_j_cmpb_2021_106422
crossref_primary_10_1049_iet_ipr_2018_5425
crossref_primary_10_1016_j_bspc_2020_101883
crossref_primary_10_1109_TIP_2019_2920514
crossref_primary_10_1109_TBME_2017_2787025
crossref_primary_10_1109_TBME_2018_2828137
crossref_primary_10_3233_JIFS_236702
crossref_primary_10_1016_j_eswa_2019_05_029
crossref_primary_10_1007_s10278_018_0059_x
crossref_primary_10_1016_j_bspc_2021_102799
crossref_primary_10_1016_j_bspc_2021_102953
crossref_primary_10_1109_TMI_2025_3538336
crossref_primary_10_3390_life12070973
crossref_primary_10_1016_j_bspc_2021_102837
crossref_primary_10_1109_ACCESS_2020_3015108
crossref_primary_10_1109_JBHI_2020_2999257
crossref_primary_10_1016_j_eswa_2024_123430
crossref_primary_10_1016_j_sigpro_2019_06_018
crossref_primary_10_3390_math12020264
crossref_primary_10_1109_ACCESS_2018_2869858
crossref_primary_10_1002_mp_16253
crossref_primary_10_1109_TCYB_2022_3195447
crossref_primary_10_3390_jcm9041018
crossref_primary_10_1016_j_media_2020_101905
crossref_primary_10_1109_TBME_2017_2674521
crossref_primary_10_1016_j_media_2018_02_009
crossref_primary_10_1109_JBHI_2024_3394151
crossref_primary_10_1016_j_cmpb_2022_107160
crossref_primary_10_1371_journal_pdig_0000174
crossref_primary_10_1007_s11042_024_19075_1
crossref_primary_10_1016_j_bbe_2016_09_002
crossref_primary_10_3390_s21041167
crossref_primary_10_1109_TIM_2025_3545862
crossref_primary_10_4018_JITR_2018100108
crossref_primary_10_1016_j_bspc_2018_04_016
crossref_primary_10_1016_j_cmpb_2021_106206
crossref_primary_10_1088_1361_6560_ac1c4c
crossref_primary_10_1155_2022_4695136
crossref_primary_10_32604_cmc_2022_020074
crossref_primary_10_1002_mp_12953
crossref_primary_10_1109_TMI_2020_2992244
crossref_primary_10_1002_ima_22428
crossref_primary_10_1109_TMI_2017_2756073
crossref_primary_10_1109_JBHI_2018_2872813
crossref_primary_10_1007_s11042_024_18696_w
crossref_primary_10_3390_app112411907
crossref_primary_10_1109_TMI_2016_2587062
crossref_primary_10_1007_s40846_018_0454_2
crossref_primary_10_1016_j_inffus_2024_102777
crossref_primary_10_32604_cmc_2022_020904
crossref_primary_10_1007_s11042_023_17621_x
crossref_primary_10_1080_03091902_2021_1906342
crossref_primary_10_1007_s11042_025_21018_3
crossref_primary_10_1016_j_ymeth_2021_05_015
crossref_primary_10_1109_TMI_2022_3219436
Cites_doi 10.1016/S0010-4825(03)00055-6
10.1109/TMI.2009.2017941
10.1109/TMI.2007.909827
10.1167/iovs.03-0667
10.1109/TPAMI.2003.1159954
10.1016/j.cmpb.2012.03.009
10.1109/TITB.2010.2052282
10.1109/JBHI.2013.2294635
10.1007/BF02347689
10.1155/2013/154860
10.1109/TITB.2009.2036604
10.1109/TMI.2010.2099236
10.1109/TMI.2004.825627
10.1109/TMI.2010.2043259
10.1109/TMI.2007.898551
10.1109/TMI.2010.2064333
10.1109/83.931095
10.1167/iovs.10-5876
10.1109/TBME.2012.2205687
10.1167/iovs.09-3649
10.1109/TMI.2006.879955
10.1109/42.845178
10.1109/JBHI.2014.2335617
10.1109/TBME.2010.2097599
10.1167/iovs.07-1353
10.1016/j.patcog.2012.08.009
10.1117/12.535349
10.1167/iovs.06-0177
10.1109/TCSII.2006.886244
10.1109/TMI.2006.879967
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TBME.2015.2403295
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Xplore
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 1749
ExternalDocumentID 25700436
10_1109_TBME_2015_2403295
7042289
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Institute for Engineering and Medicine at the University of Minnesota
– fundername: Research to Prevent Blindness Inc
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
RIG
7X8
ID FETCH-LOGICAL-c321t-c159e818633c789d528fa988e14f0ddfcecd2cdae133320fb61dca8075f7f1883
IEDL.DBID RIE
ISICitedReferencesCount 217
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356310700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Sat Sep 27 16:11:07 EDT 2025
Mon Jul 21 05:59:00 EDT 2025
Sat Nov 29 05:34:16 EST 2025
Tue Nov 18 22:20:17 EST 2025
Wed Aug 27 06:26:48 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Accuracy
vessel segmentation
morphological reconstruction
stopping criterion
fundus image
iterative algorithm
computational complexity
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-c159e818633c789d528fa988e14f0ddfcecd2cdae133320fb61dca8075f7f1883
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25700436
PQID 1690207997
PQPubID 23479
PageCount 12
ParticipantIDs crossref_primary_10_1109_TBME_2015_2403295
ieee_primary_7042289
proquest_miscellaneous_1690207997
pubmed_primary_25700436
crossref_citationtrail_10_1109_TBME_2015_2403295
PublicationCentury 2000
PublicationDate 2015-July
2015-7-00
2015-Jul
20150701
PublicationDateYYYYMMDD 2015-07-01
PublicationDate_xml – month: 07
  year: 2015
  text: 2015-July
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref35
ref13
ref34
ref12
ref15
ref36
(ref32) 2011
ref31
ref30
ref11
ref10
ref1
ref17
ref16
ref19
ref18
niemeijer (ref14) 0; 5370
(ref3) 0
ref24
ref23
ref26
ref25
ref20
ref22
abramoff (ref4) 2010; 3
ref21
budai (ref28) 0
ref27
ref29
ref8
gonzalez (ref33) 1992
ref7
ref9
ref6
ref5
karperien (ref2) 2008; 2
References_xml – ident: ref25
  doi: 10.1016/S0010-4825(03)00055-6
– ident: ref35
  doi: 10.1109/TMI.2009.2017941
– volume: 2
  start-page: 109
  year: 2008
  ident: ref2
  article-title: Automated detection of proliferative retinopathy in clinical practice
  publication-title: Clin Ophthalmol (Auckland NZ)
– ident: ref26
  doi: 10.1109/TMI.2007.909827
– year: 1992
  ident: ref33
  publication-title: Digital Image Processing
– ident: ref8
  doi: 10.1167/iovs.03-0667
– ident: ref34
  doi: 10.1109/TPAMI.2003.1159954
– ident: ref12
  doi: 10.1016/j.cmpb.2012.03.009
– ident: ref19
  doi: 10.1109/TITB.2010.2052282
– ident: ref9
  doi: 10.1109/JBHI.2013.2294635
– ident: ref10
  doi: 10.1007/BF02347689
– ident: ref29
  doi: 10.1155/2013/154860
– ident: ref30
  doi: 10.1109/TITB.2009.2036604
– ident: ref11
  doi: 10.1109/TMI.2010.2099236
– volume: 3
  start-page: 169
  year: 2010
  ident: ref4
  publication-title: IEEE Trans Med Imag
– ident: ref31
  doi: 10.1109/TMI.2004.825627
– start-page: 261
  year: 0
  ident: ref28
  article-title: Multiscale blood vessel segmentation in retinal fundus images
  publication-title: Proc Bildverarbeitung fr die Medizin 04
– ident: ref27
  doi: 10.1109/TMI.2010.2043259
– ident: ref16
  doi: 10.1109/TMI.2007.898551
– year: 0
  ident: ref3
– ident: ref17
  doi: 10.1109/TMI.2010.2064333
– ident: ref23
  doi: 10.1109/83.931095
– ident: ref5
  doi: 10.1167/iovs.10-5876
– ident: ref18
  doi: 10.1109/TBME.2012.2205687
– ident: ref6
  doi: 10.1167/iovs.09-3649
– ident: ref22
  doi: 10.1109/TMI.2006.879955
– ident: ref20
  doi: 10.1109/42.845178
– ident: ref13
  doi: 10.1109/JBHI.2014.2335617
– ident: ref24
  doi: 10.1109/TBME.2010.2097599
– ident: ref1
  doi: 10.1167/iovs.07-1353
– ident: ref21
  doi: 10.1016/j.patcog.2012.08.009
– year: 2011
  ident: ref32
– volume: 5370
  start-page: 648
  year: 0
  ident: ref14
  article-title: Comparative study of retinal vessel segmentation methods on a new publicly available database
  publication-title: Proc SPIE Med Imag
  doi: 10.1117/12.535349
– ident: ref7
  doi: 10.1167/iovs.06-0177
– ident: ref36
  doi: 10.1109/TCSII.2006.886244
– ident: ref15
  doi: 10.1109/TMI.2006.879967
SSID ssj0014846
Score 2.5916922
Snippet This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1738
SubjectTerms accuracy
Algorithms
Biomedical imaging
Blood vessels
computational complexity
Databases, Factual
Diagnostic Techniques, Ophthalmological
fundus image
Fundus Oculi
Humans
Image Processing, Computer-Assisted - methods
Image segmentation
iterative algorithm
Iterative algorithms
morphological reconstruction
Observers
Pathology
Retina
Retinal Vessels - anatomy & histology
ROC Curve
stopping criterion
Vessel segmentation
Title Iterative Vessel Segmentation of Fundus Images
URI https://ieeexplore.ieee.org/document/7042289
https://www.ncbi.nlm.nih.gov/pubmed/25700436
https://www.proquest.com/docview/1690207997
Volume 62
WOSCitedRecordID wos000356310700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Xplore
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLa2CSE48Nh4jMdUJE6Ibm3aLskR0CYmsQmJgXar2sRFSFuL9uD3k6Rd4QBI3HpI0iqfE9u1_RngsssCIgL0lW_CuO17yOyYMqEAiRMaSRpTagqFH-hoxCYT_liB67IWBhFN8hm29aOJ5ctMrPSvsg41hFW8ClVKu3mtVhkx8FlelOO46gAT7hcRTNfhnfHtsKeTuIK2Jp8jXHerIYbX3RAzf6kj01_ld1PTqJz-7v8-dg92CtPSusllYR8qmNZh-xvhYB02h0UovQHtgeFTVped9aL5w6fWE77Oikqk1MoSq7_SbT2swUxdOYsDeO73xnf3dtE8wRYecZe2UHYKaro6zxOUcRkQlkScMXT9xJEyESgkETJC5aR6xEniritFpKmJE5q4jHmHUEuzFI_BIq7EmArJ3SDyfXQ4CkJiGQRe5HeVvm-Cs97DUBTM4rrBxTQ0HobDQ41AqBEICwSacFVOec9pNf4a3NDbWw4sdrYJF2ugQnUmdKAjSjFbLUId-iMO5Zw24ShHsJy8Bv7k50VPYUu_Ok_IPYPacr7Cc9gQH8u3xbylBG_CWkbwPgFMcc-i
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4Bm_jxMEYLWxlsQdoTIm3iJLX9yCYqKtoKiYL6FiX2BSGVdKItf_98jht4YEh7y4NtWffZvrvc3XcAP7siYSrB2PgmQvpxhMLPuVAGkLzgmeY557ZQeMBHIzGZyOs1OKtrYRDRJp9hmz5tLF_P1JJ-lXW4JayS6_CBOme5aq06ZhCLqiwnCM0VZjJ2McwwkJ3xr-EFpXElbaKfY5L61TDL7G6pmV8Uku2w8m9j0yqd3u7_bfczfHLGpXdenYY9WMOyATuvKAcbsDl0wfQmtPuWUdk8d94dMYhPvRu8f3S1SKU3K7zekhp7eP1H8-jM9-G2dzH-fem79gm-ili48JWxVJAI66JIcSF1wkSRSSEwjItA60Kh0kzpDI2bGrGgyLuhVhmRExe8CIWIDmCjnJX4FTwWasy50jJMsjjGQKJiLNdJEmVx12j8FgQrGabKcYtTi4tpan2MQKaEQEoIpA6BFpzWU_5UxBrvDW6SeOuBTrItOFkBlZpbQaGOrMTZcp5S8I8FXEregi8VgvXkFfCHby_6A7Yux8NBOuiPrr7BNm2jSs89go3F0xKP4aN6XjzMn77b4_cXZibSAw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+Vessel+Segmentation+of+Fundus+Images&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Roychowdhury%2C+Sohini&rft.au=Koozekanani%2C+Dara+D&rft.au=Parhi%2C+Keshab+K&rft.date=2015-07-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=62&rft.issue=7&rft.spage=1738&rft_id=info:doi/10.1109%2FTBME.2015.2403295&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon