Iterative Vessel Segmentation of Fundus Images
This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the...
Uloženo v:
| Vydáno v: | IEEE transactions on biomedical engineering Ročník 62; číslo 7; s. 1738 - 1749 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
United States
IEEE
01.07.2015
|
| Témata: | |
| ISSN: | 0018-9294, 1558-2531, 1558-2531 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets. |
|---|---|
| AbstractList | This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets. This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets.This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by tophat reconstruction of the negative green plane image. An initial estimate of the segmented vasculature is extracted by global thresholding the vessel enhanced image. Next, new vessel pixels are identified iteratively by adaptive thresholding of the residual image generated by masking out the existing segmented vessel estimate from the vessel enhanced image. The new vessel pixels are, then, region grown into the existing vessel, thereby resulting in an iterative enhancement of the segmented vessel structure. As the iterations progress, the number of false edge pixels identified as new vessel pixels increases compared to the number of actual vessel pixels. A key contribution of this paper is a novel stopping criterion that terminates the iterative process leading to higher vessel segmentation accuracy. This iterative algorithm is robust to the rate of new vessel pixel addition since it achieves 93.2-95.35% vessel segmentation accuracy with 0.9577-0.9638 area under ROC curve (AUC) on abnormal retinal images from the STARE dataset. The proposed algorithm is computationally efficient and consistent in vessel segmentation performance for retinal images with variations due to pathology, uneven illumination, pigmentation, and fields of view since it achieves a vessel segmentation accuracy of about 95% in an average time of 2.45, 3.95, and 8 s on images from three public datasets DRIVE, STARE, and CHASE_DB1, respectively. Additionally, the proposed algorithm has more than 90% segmentation accuracy for segmenting peripapillary blood vessels in the images from the DRIVE and CHASE_DB1 datasets. |
| Author | Koozekanani, Dara D. Parhi, Keshab K. Roychowdhury, Sohini |
| Author_xml | – sequence: 1 givenname: Sohini surname: Roychowdhury fullname: Roychowdhury, Sohini email: roych@uw.edu organization: Department of Electrical and Computer Engineering, University of Washington, Bothell, WA, USA – sequence: 2 givenname: Dara D. surname: Koozekanani fullname: Koozekanani, Dara D. email: dkoozeka@umn.edu organization: Department of Ophthalmology, University of Minnesota, Minneapolis, MN, USA – sequence: 3 givenname: Keshab K. surname: Parhi fullname: Parhi, Keshab K. email: parhi@umn.edu organization: Department of Electrical & Computer Engineering, University of Minnesota, Minneapolis, MN, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25700436$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kE1PwzAMhiMEYh_wAxAS6pFLS5w0TXKEaYNJQxwYXKssdaaifoymReLf06ljBw6cLFvPa8vPhJxWdYWEXAGNAKi-Wz88zyNGQUQsppxpcULGIIQKmeBwSsaUggo10_GITLz_6NtYxck5GTEhKY15MibRssXGtPkXBu_oPRbBK25LrNp-VldB7YJFV2WdD5al2aK_IGfOFB4vD3VK3hbz9ewpXL08Lmf3q9ByBm1oQWhUoBLOrVQ6E0w5o5VCiB3NMmfRZsxmBoFzzqjbJJBZo6gUTjpQik_J7bB319SfHfo2LXNvsShMhXXnU0g0ZVRqLXv05oB2mxKzdNfkpWm-098fewAGwDa19w26IwI03XtM9x7Tvcf04LHPyD8Zmw9K2sbkxb_J6yGZI-LxkqQxY0rzH3mofgA |
| CODEN | IEBEAX |
| CitedBy_id | crossref_primary_10_1007_s00542_023_05552_4 crossref_primary_10_3390_app13053255 crossref_primary_10_1016_j_cmpb_2020_105769 crossref_primary_10_1016_j_patcog_2024_110376 crossref_primary_10_1109_TBME_2016_2535311 crossref_primary_10_1049_iet_ipr_2018_5636 crossref_primary_10_1007_s41965_024_00168_7 crossref_primary_10_1016_j_artmed_2019_02_004 crossref_primary_10_1016_j_neucom_2022_04_113 crossref_primary_10_1016_j_patcog_2017_04_008 crossref_primary_10_1007_s11063_019_10011_1 crossref_primary_10_1007_s11760_017_1154_z crossref_primary_10_1016_j_compmedimag_2020_101783 crossref_primary_10_1016_j_eswa_2022_116526 crossref_primary_10_1080_21681163_2017_1402210 crossref_primary_10_1007_s11548_017_1619_0 crossref_primary_10_1016_j_bspc_2023_104829 crossref_primary_10_3390_jimaging5020026 crossref_primary_10_1371_journal_pone_0273318 crossref_primary_10_1109_TAES_2022_3147437 crossref_primary_10_1016_j_compmedimag_2019_101657 crossref_primary_10_1038_srep34603 crossref_primary_10_1109_ACCESS_2024_3477420 crossref_primary_10_1002_ima_22482 crossref_primary_10_1049_iet_ipr_2017_0284 crossref_primary_10_1371_journal_pone_0247388 crossref_primary_10_1016_j_bspc_2021_103053 crossref_primary_10_1016_j_measurement_2022_112316 crossref_primary_10_3390_app14010465 crossref_primary_10_1007_s00371_022_02600_4 crossref_primary_10_1007_s11042_023_14745_y crossref_primary_10_1007_s10916_017_0719_2 crossref_primary_10_1016_j_eswa_2018_06_034 crossref_primary_10_1016_j_cmpb_2020_105752 crossref_primary_10_1016_j_patcog_2021_107998 crossref_primary_10_3390_sym11070946 crossref_primary_10_1002_cta_2462 crossref_primary_10_1016_j_media_2021_102300 crossref_primary_10_1007_s00521_020_05396_3 crossref_primary_10_1109_JBHI_2020_3028180 crossref_primary_10_1109_ACCESS_2019_2922365 crossref_primary_10_1109_JBHI_2020_3002985 crossref_primary_10_3390_electronics13173514 crossref_primary_10_1007_s13311_021_01024_7 crossref_primary_10_1002_ima_23045 crossref_primary_10_1016_j_asoc_2020_106439 crossref_primary_10_1038_s41598_024_55061_1 crossref_primary_10_1109_TMI_2019_2950051 crossref_primary_10_1049_iet_ipr_2018_5413 crossref_primary_10_1002_ima_70073 crossref_primary_10_1007_s11517_019_01967_2 crossref_primary_10_1007_s11831_021_09635_1 crossref_primary_10_1016_j_neuri_2022_100074 crossref_primary_10_1049_iet_ipr_2019_0969 crossref_primary_10_1002_mp_14944 crossref_primary_10_1016_j_compeleceng_2021_107670 crossref_primary_10_1109_TMI_2022_3161681 crossref_primary_10_3390_s23167309 crossref_primary_10_3390_electronics11010060 crossref_primary_10_1109_ACCESS_2020_3033027 crossref_primary_10_1371_journal_pone_0229831 crossref_primary_10_3390_math7020169 crossref_primary_10_1016_j_bbe_2025_05_002 crossref_primary_10_1016_j_compbiomed_2025_110155 crossref_primary_10_1002_ima_22461 crossref_primary_10_1109_TMI_2016_2546227 crossref_primary_10_1007_s00138_018_0924_0 crossref_primary_10_1016_j_neucom_2020_06_143 crossref_primary_10_1049_iet_ipr_2019_1007 crossref_primary_10_1016_j_measurement_2023_113844 crossref_primary_10_3390_sym10070257 crossref_primary_10_1016_j_cmpb_2021_106081 crossref_primary_10_1088_1742_6596_1574_1_012160 crossref_primary_10_1049_ipr2_12119 crossref_primary_10_1109_ACCESS_2019_2940476 crossref_primary_10_7717_peerj_5855 crossref_primary_10_1080_21681163_2022_2083982 crossref_primary_10_1109_TII_2020_2993842 crossref_primary_10_1016_j_neucom_2018_11_113 crossref_primary_10_1364_AO_401792 crossref_primary_10_4018_IJEHMC_2019040102 crossref_primary_10_3389_fcell_2023_1196191 crossref_primary_10_1007_s11554_018_0748_1 crossref_primary_10_2196_27414 crossref_primary_10_1007_s00371_024_03666_y crossref_primary_10_1007_s00521_022_07086_8 crossref_primary_10_1016_j_patcog_2016_07_023 crossref_primary_10_1016_j_dsp_2023_104002 crossref_primary_10_3389_fmed_2021_761050 crossref_primary_10_1016_j_bspc_2019_101740 crossref_primary_10_1002_ima_22579 crossref_primary_10_1109_TMI_2019_2903562 crossref_primary_10_1109_TAI_2024_3351589 crossref_primary_10_1016_j_bspc_2022_103930 crossref_primary_10_1007_s13042_022_01715_3 crossref_primary_10_1109_TBME_2016_2638918 crossref_primary_10_1016_j_neunet_2021_03_006 crossref_primary_10_1080_21681163_2018_1519851 crossref_primary_10_1016_j_neucom_2022_03_061 crossref_primary_10_1109_TIP_2019_2946078 crossref_primary_10_3390_jimaging8100291 crossref_primary_10_1016_j_compmedimag_2021_101902 crossref_primary_10_1109_ACCESS_2021_3074458 crossref_primary_10_1038_s41598_025_02470_5 crossref_primary_10_1007_s11042_023_15433_7 crossref_primary_10_1016_j_cmpb_2021_106422 crossref_primary_10_1049_iet_ipr_2018_5425 crossref_primary_10_1016_j_bspc_2020_101883 crossref_primary_10_1109_TIP_2019_2920514 crossref_primary_10_1109_TBME_2017_2787025 crossref_primary_10_1109_TBME_2018_2828137 crossref_primary_10_3233_JIFS_236702 crossref_primary_10_1016_j_eswa_2019_05_029 crossref_primary_10_1007_s10278_018_0059_x crossref_primary_10_1016_j_bspc_2021_102799 crossref_primary_10_1016_j_bspc_2021_102953 crossref_primary_10_1109_TMI_2025_3538336 crossref_primary_10_3390_life12070973 crossref_primary_10_1016_j_bspc_2021_102837 crossref_primary_10_1109_ACCESS_2020_3015108 crossref_primary_10_1109_JBHI_2020_2999257 crossref_primary_10_1016_j_eswa_2024_123430 crossref_primary_10_1016_j_sigpro_2019_06_018 crossref_primary_10_3390_math12020264 crossref_primary_10_1109_ACCESS_2018_2869858 crossref_primary_10_1002_mp_16253 crossref_primary_10_1109_TCYB_2022_3195447 crossref_primary_10_3390_jcm9041018 crossref_primary_10_1016_j_media_2020_101905 crossref_primary_10_1109_TBME_2017_2674521 crossref_primary_10_1016_j_media_2018_02_009 crossref_primary_10_1109_JBHI_2024_3394151 crossref_primary_10_1016_j_cmpb_2022_107160 crossref_primary_10_1371_journal_pdig_0000174 crossref_primary_10_1007_s11042_024_19075_1 crossref_primary_10_1016_j_bbe_2016_09_002 crossref_primary_10_3390_s21041167 crossref_primary_10_1109_TIM_2025_3545862 crossref_primary_10_4018_JITR_2018100108 crossref_primary_10_1016_j_bspc_2018_04_016 crossref_primary_10_1016_j_cmpb_2021_106206 crossref_primary_10_1088_1361_6560_ac1c4c crossref_primary_10_1155_2022_4695136 crossref_primary_10_32604_cmc_2022_020074 crossref_primary_10_1002_mp_12953 crossref_primary_10_1109_TMI_2020_2992244 crossref_primary_10_1002_ima_22428 crossref_primary_10_1109_TMI_2017_2756073 crossref_primary_10_1109_JBHI_2018_2872813 crossref_primary_10_1007_s11042_024_18696_w crossref_primary_10_3390_app112411907 crossref_primary_10_1109_TMI_2016_2587062 crossref_primary_10_1007_s40846_018_0454_2 crossref_primary_10_1016_j_inffus_2024_102777 crossref_primary_10_32604_cmc_2022_020904 crossref_primary_10_1007_s11042_023_17621_x crossref_primary_10_1080_03091902_2021_1906342 crossref_primary_10_1007_s11042_025_21018_3 crossref_primary_10_1016_j_ymeth_2021_05_015 crossref_primary_10_1109_TMI_2022_3219436 |
| Cites_doi | 10.1016/S0010-4825(03)00055-6 10.1109/TMI.2009.2017941 10.1109/TMI.2007.909827 10.1167/iovs.03-0667 10.1109/TPAMI.2003.1159954 10.1016/j.cmpb.2012.03.009 10.1109/TITB.2010.2052282 10.1109/JBHI.2013.2294635 10.1007/BF02347689 10.1155/2013/154860 10.1109/TITB.2009.2036604 10.1109/TMI.2010.2099236 10.1109/TMI.2004.825627 10.1109/TMI.2010.2043259 10.1109/TMI.2007.898551 10.1109/TMI.2010.2064333 10.1109/83.931095 10.1167/iovs.10-5876 10.1109/TBME.2012.2205687 10.1167/iovs.09-3649 10.1109/TMI.2006.879955 10.1109/42.845178 10.1109/JBHI.2014.2335617 10.1109/TBME.2010.2097599 10.1167/iovs.07-1353 10.1016/j.patcog.2012.08.009 10.1117/12.535349 10.1167/iovs.06-0177 10.1109/TCSII.2006.886244 10.1109/TMI.2006.879967 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
| DOI | 10.1109/TBME.2015.2403295 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005–Present IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Xplore CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-2531 |
| EndPage | 1749 |
| ExternalDocumentID | 25700436 10_1109_TBME_2015_2403295 7042289 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Institute for Engineering and Medicine at the University of Minnesota – fundername: Research to Prevent Blindness Inc |
| GroupedDBID | --- -~X .55 .DC .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IF 6IK 6IL 6IN 85S 97E AAJGR AARMG AASAJ AAWTH AAYJJ ABAZT ABJNI ABQJQ ABVLG ACGFO ACGFS ACIWK ACKIV ACNCT ACPRK ADZIZ AENEX AETIX AFFNX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CHZPO CS3 DU5 EBS EJD F5P HZ~ H~9 IAAWW IBMZZ ICLAB IDIHD IEGSK IFIPE IFJZH IPLJI JAVBF LAI MS~ O9- OCL P2P RIA RIE RIL RNS TAE TN5 VH1 VJK X7M ZGI ZXP AAYXX CITATION CGR CUY CVF ECM EIF NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c321t-c159e818633c789d528fa988e14f0ddfcecd2cdae133320fb61dca8075f7f1883 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 217 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000356310700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0018-9294 1558-2531 |
| IngestDate | Sat Sep 27 16:11:07 EDT 2025 Mon Jul 21 05:59:00 EDT 2025 Sat Nov 29 05:34:16 EST 2025 Tue Nov 18 22:20:17 EST 2025 Wed Aug 27 06:26:48 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | Accuracy vessel segmentation morphological reconstruction stopping criterion fundus image iterative algorithm computational complexity |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c321t-c159e818633c789d528fa988e14f0ddfcecd2cdae133320fb61dca8075f7f1883 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 25700436 |
| PQID | 1690207997 |
| PQPubID | 23479 |
| PageCount | 12 |
| ParticipantIDs | crossref_primary_10_1109_TBME_2015_2403295 ieee_primary_7042289 proquest_miscellaneous_1690207997 pubmed_primary_25700436 crossref_citationtrail_10_1109_TBME_2015_2403295 |
| PublicationCentury | 2000 |
| PublicationDate | 2015-July 2015-7-00 2015-Jul 20150701 |
| PublicationDateYYYYMMDD | 2015-07-01 |
| PublicationDate_xml | – month: 07 year: 2015 text: 2015-July |
| PublicationDecade | 2010 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on biomedical engineering |
| PublicationTitleAbbrev | TBME |
| PublicationTitleAlternate | IEEE Trans Biomed Eng |
| PublicationYear | 2015 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | ref35 ref13 ref34 ref12 ref15 ref36 (ref32) 2011 ref31 ref30 ref11 ref10 ref1 ref17 ref16 ref19 ref18 niemeijer (ref14) 0; 5370 (ref3) 0 ref24 ref23 ref26 ref25 ref20 ref22 abramoff (ref4) 2010; 3 ref21 budai (ref28) 0 ref27 ref29 ref8 gonzalez (ref33) 1992 ref7 ref9 ref6 ref5 karperien (ref2) 2008; 2 |
| References_xml | – ident: ref25 doi: 10.1016/S0010-4825(03)00055-6 – ident: ref35 doi: 10.1109/TMI.2009.2017941 – volume: 2 start-page: 109 year: 2008 ident: ref2 article-title: Automated detection of proliferative retinopathy in clinical practice publication-title: Clin Ophthalmol (Auckland NZ) – ident: ref26 doi: 10.1109/TMI.2007.909827 – year: 1992 ident: ref33 publication-title: Digital Image Processing – ident: ref8 doi: 10.1167/iovs.03-0667 – ident: ref34 doi: 10.1109/TPAMI.2003.1159954 – ident: ref12 doi: 10.1016/j.cmpb.2012.03.009 – ident: ref19 doi: 10.1109/TITB.2010.2052282 – ident: ref9 doi: 10.1109/JBHI.2013.2294635 – ident: ref10 doi: 10.1007/BF02347689 – ident: ref29 doi: 10.1155/2013/154860 – ident: ref30 doi: 10.1109/TITB.2009.2036604 – ident: ref11 doi: 10.1109/TMI.2010.2099236 – volume: 3 start-page: 169 year: 2010 ident: ref4 publication-title: IEEE Trans Med Imag – ident: ref31 doi: 10.1109/TMI.2004.825627 – start-page: 261 year: 0 ident: ref28 article-title: Multiscale blood vessel segmentation in retinal fundus images publication-title: Proc Bildverarbeitung fr die Medizin 04 – ident: ref27 doi: 10.1109/TMI.2010.2043259 – ident: ref16 doi: 10.1109/TMI.2007.898551 – year: 0 ident: ref3 – ident: ref17 doi: 10.1109/TMI.2010.2064333 – ident: ref23 doi: 10.1109/83.931095 – ident: ref5 doi: 10.1167/iovs.10-5876 – ident: ref18 doi: 10.1109/TBME.2012.2205687 – ident: ref6 doi: 10.1167/iovs.09-3649 – ident: ref22 doi: 10.1109/TMI.2006.879955 – ident: ref20 doi: 10.1109/42.845178 – ident: ref13 doi: 10.1109/JBHI.2014.2335617 – ident: ref24 doi: 10.1109/TBME.2010.2097599 – ident: ref1 doi: 10.1167/iovs.07-1353 – ident: ref21 doi: 10.1016/j.patcog.2012.08.009 – year: 2011 ident: ref32 – volume: 5370 start-page: 648 year: 0 ident: ref14 article-title: Comparative study of retinal vessel segmentation methods on a new publicly available database publication-title: Proc SPIE Med Imag doi: 10.1117/12.535349 – ident: ref7 doi: 10.1167/iovs.06-0177 – ident: ref36 doi: 10.1109/TCSII.2006.886244 – ident: ref15 doi: 10.1109/TMI.2006.879967 |
| SSID | ssj0014846 |
| Score | 2.5916922 |
| Snippet | This paper presents a novel unsupervised iterative blood vessel segmentation algorithm using fundus images. First, a vessel enhanced image is generated by... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 1738 |
| SubjectTerms | accuracy Algorithms Biomedical imaging Blood vessels computational complexity Databases, Factual Diagnostic Techniques, Ophthalmological fundus image Fundus Oculi Humans Image Processing, Computer-Assisted - methods Image segmentation iterative algorithm Iterative algorithms morphological reconstruction Observers Pathology Retina Retinal Vessels - anatomy & histology ROC Curve stopping criterion Vessel segmentation |
| Title | Iterative Vessel Segmentation of Fundus Images |
| URI | https://ieeexplore.ieee.org/document/7042289 https://www.ncbi.nlm.nih.gov/pubmed/25700436 https://www.proquest.com/docview/1690207997 |
| Volume | 62 |
| WOSCitedRecordID | wos000356310700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore customDbUrl: eissn: 1558-2531 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014846 issn: 0018-9294 databaseCode: RIE dateStart: 19640101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDLa2CSE48Nh4jMdUJE6Ibm3aLskR0CYmsQmJgXar2sRFSFuL9uD3k6Rd4QBI3HpI0iqfE9u1_RngsssCIgL0lW_CuO17yOyYMqEAiRMaSRpTagqFH-hoxCYT_liB67IWBhFN8hm29aOJ5ctMrPSvsg41hFW8ClVKu3mtVhkx8FlelOO46gAT7hcRTNfhnfHtsKeTuIK2Jp8jXHerIYbX3RAzf6kj01_ld1PTqJz-7v8-dg92CtPSusllYR8qmNZh-xvhYB02h0UovQHtgeFTVped9aL5w6fWE77Oikqk1MoSq7_SbT2swUxdOYsDeO73xnf3dtE8wRYecZe2UHYKaro6zxOUcRkQlkScMXT9xJEyESgkETJC5aR6xEniritFpKmJE5q4jHmHUEuzFI_BIq7EmArJ3SDyfXQ4CkJiGQRe5HeVvm-Cs97DUBTM4rrBxTQ0HobDQ41AqBEICwSacFVOec9pNf4a3NDbWw4sdrYJF2ugQnUmdKAjSjFbLUId-iMO5Zw24ShHsJy8Bv7k50VPYUu_Ok_IPYPacr7Cc9gQH8u3xbylBG_CWkbwPgFMcc-i |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3fT9swED4Bm_jxMEYLWxlsQdoTIm3iJLX9yCYqKtoKiYL6FiX2BSGVdKItf_98jht4YEh7y4NtWffZvrvc3XcAP7siYSrB2PgmQvpxhMLPuVAGkLzgmeY557ZQeMBHIzGZyOs1OKtrYRDRJp9hmz5tLF_P1JJ-lXW4JayS6_CBOme5aq06ZhCLqiwnCM0VZjJ2McwwkJ3xr-EFpXElbaKfY5L61TDL7G6pmV8Uku2w8m9j0yqd3u7_bfczfHLGpXdenYY9WMOyATuvKAcbsDl0wfQmtPuWUdk8d94dMYhPvRu8f3S1SKU3K7zekhp7eP1H8-jM9-G2dzH-fem79gm-ili48JWxVJAI66JIcSF1wkSRSSEwjItA60Kh0kzpDI2bGrGgyLuhVhmRExe8CIWIDmCjnJX4FTwWasy50jJMsjjGQKJiLNdJEmVx12j8FgQrGabKcYtTi4tpan2MQKaEQEoIpA6BFpzWU_5UxBrvDW6SeOuBTrItOFkBlZpbQaGOrMTZcp5S8I8FXEregi8VgvXkFfCHby_6A7Yux8NBOuiPrr7BNm2jSs89go3F0xKP4aN6XjzMn77b4_cXZibSAw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Iterative+Vessel+Segmentation+of+Fundus+Images&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Roychowdhury%2C+Sohini&rft.au=Koozekanani%2C+Dara+D&rft.au=Parhi%2C+Keshab+K&rft.date=2015-07-01&rft.issn=1558-2531&rft.eissn=1558-2531&rft.volume=62&rft.issue=7&rft.spage=1738&rft_id=info:doi/10.1109%2FTBME.2015.2403295&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon |