SpikeSim: An end-to-end Compute-in-Memory Hardware Evaluation Tool for Benchmarking Spiking Neural Networks

Spiking Neural Networks (SNNs) are an active research domain towards energy efficient machine intelligence. Compared to conventional artificial neural networks (ANNs), SNNs use temporal spike data and bio-plausible neuronal activation functions such as Leaky-Integrate Fire/Integrate Fire (LIF/IF) fo...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computer-aided design of integrated circuits and systems Vol. 42; no. 11; p. 1
Main Authors: Moitra, Abhishek, Bhattacharjee, Abhiroop, Kuang, Runcong, Krishnan, Gokul, Cao, Yu, Panda, Priyadarshini
Format: Journal Article
Language:English
Published: New York IEEE 01.11.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0278-0070, 1937-4151
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Spiking Neural Networks (SNNs) are an active research domain towards energy efficient machine intelligence. Compared to conventional artificial neural networks (ANNs), SNNs use temporal spike data and bio-plausible neuronal activation functions such as Leaky-Integrate Fire/Integrate Fire (LIF/IF) for data processing. However, SNNs incur significant dot-product operations causing high memory and computation overhead in standard von-Neumann computing platforms. To this end, In-Memory Computing (IMC) architectures have been proposed to alleviate the "memory-wall bottleneck" prevalent in von-Neumann architectures. Although recent works have proposed IMC-based SNN hardware accelerators, the following key implementation aspects have been overlooked 1) the adverse effects of crossbar non-ideality on SNN performance due to repeated analog dot-product operations over multiple time-steps 2) hardware overheads of essential SNN-specific components such as the LIF/IF and data communication modules. To this end, we propose SpikeSim, a tool that can perform realistic performance, energy, latency and area evaluation of IMC-mapped SNNs. SpikeSim consists of a practical monolithic IMC architecture called SpikeFlow for mapping SNNs. Additionally, the non-ideality computation engine (NICE) and energy-latency-area (ELA) engine performs hardware-realistic evaluation of SpikeFlow-mapped SNNs. Based on 65nm CMOS implementation and experiments on CIFAR10, CIFAR100 and TinyImagenet datasets, we find that the LIF/IF neuronal module has significant area contribution (>11% of the total hardware area). To this end, we propose SNN topological modifications that leads to 1.24× and 10× reduction in the neuronal module's area and the overall energy-delay-product value, respectively. Furthermore, in this work, we perform a holistic comparison between IMC implemented ANN and SNNs and conclude that lower number of time-steps are the key to achieve higher throughput and energy-efficiency for SNNs compared to 4-bit ANNs. The code repository for the SpikeSim tool is available at https://github.com/Intelligent-Computing-Lab-Yale/Quanitzation-aware-SNN-training-and-hardware-evaluation-for-IMC-Architectures
AbstractList Spiking neural networks (SNNs) are an active research domain toward energy-efficient machine intelligence. Compared to conventional artificial neural networks (ANNs), SNNs use temporal spike data and bio-plausible neuronal activation functions such as leaky-integrate fire/integrate fire (LIF/IF) for data processing. However, SNNs incur significant dot-product operations causing high memory and computation overhead in standard von-Neumann computing platforms. To this end, in-memory computing (IMC) architectures have been proposed to alleviate the “memory-wall bottleneck” prevalent in von-Neumann architectures. Although recent works have proposed IMC-based SNN hardware accelerators, the following key implementation aspects have been overlooked: 1) the adverse effects of crossbar nonideality on SNN performance due to repeated analog dot-product operations over multiple time-steps and 2) hardware overheads of essential SNN-specific components, such as the LIF/IF and data communication modules. To this end, we propose SpikeSim, a tool that can perform realistic performance, energy, latency and area evaluation of IMC-mapped SNNs. SpikeSim consists of a practical monolithic IMC architecture called SpikeFlow for mapping SNNs. Additionally, the nonideality computation engine (NICE) and energy–latency–area (ELA) engine performs hardware-realistic evaluation of SpikeFlow-mapped SNNs. Based on 65nm CMOS implementation and experiments on CIFAR10, CIFAR100 and TinyImagenet datasets, we find that the LIF/IF neuronal module has significant area contribution [Formula Omitted] of the total hardware area). To this end, we propose SNN topological modifications that leads to [Formula Omitted] and [Formula Omitted] reduction in the neuronal module’s area and the overall energy-delay-product value, respectively. Furthermore, in this work, we perform a holistic comparison between IMC implemented ANN and SNNs and conclude that lower number of time-steps are the key to achieve higher throughput and energy-efficiency for SNNs compared to 4-bit ANNs. The code repository for the SpikeSim tool is available at Github link.
Not provided.
Spiking Neural Networks (SNNs) are an active research domain towards energy efficient machine intelligence. Compared to conventional artificial neural networks (ANNs), SNNs use temporal spike data and bio-plausible neuronal activation functions such as Leaky-Integrate Fire/Integrate Fire (LIF/IF) for data processing. However, SNNs incur significant dot-product operations causing high memory and computation overhead in standard von-Neumann computing platforms. To this end, In-Memory Computing (IMC) architectures have been proposed to alleviate the "memory-wall bottleneck" prevalent in von-Neumann architectures. Although recent works have proposed IMC-based SNN hardware accelerators, the following key implementation aspects have been overlooked 1) the adverse effects of crossbar non-ideality on SNN performance due to repeated analog dot-product operations over multiple time-steps 2) hardware overheads of essential SNN-specific components such as the LIF/IF and data communication modules. To this end, we propose SpikeSim, a tool that can perform realistic performance, energy, latency and area evaluation of IMC-mapped SNNs. SpikeSim consists of a practical monolithic IMC architecture called SpikeFlow for mapping SNNs. Additionally, the non-ideality computation engine (NICE) and energy-latency-area (ELA) engine performs hardware-realistic evaluation of SpikeFlow-mapped SNNs. Based on 65nm CMOS implementation and experiments on CIFAR10, CIFAR100 and TinyImagenet datasets, we find that the LIF/IF neuronal module has significant area contribution (>11% of the total hardware area). To this end, we propose SNN topological modifications that leads to 1.24× and 10× reduction in the neuronal module's area and the overall energy-delay-product value, respectively. Furthermore, in this work, we perform a holistic comparison between IMC implemented ANN and SNNs and conclude that lower number of time-steps are the key to achieve higher throughput and energy-efficiency for SNNs compared to 4-bit ANNs. The code repository for the SpikeSim tool is available at https://github.com/Intelligent-Computing-Lab-Yale/Quanitzation-aware-SNN-training-and-hardware-evaluation-for-IMC-Architectures
Author Cao, Yu
Moitra, Abhishek
Kuang, Runcong
Panda, Priyadarshini
Krishnan, Gokul
Bhattacharjee, Abhiroop
Author_xml – sequence: 1
  givenname: Abhishek
  orcidid: 0000-0002-0534-5206
  surname: Moitra
  fullname: Moitra, Abhishek
  organization: Department of Electrical Engineering, Yale University, New Haven, CT, USA
– sequence: 2
  givenname: Abhiroop
  orcidid: 0000-0002-7721-271X
  surname: Bhattacharjee
  fullname: Bhattacharjee, Abhiroop
  organization: Department of Electrical Engineering, Yale University, New Haven, CT, USA
– sequence: 3
  givenname: Runcong
  surname: Kuang
  fullname: Kuang, Runcong
  organization: School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, U.S
– sequence: 4
  givenname: Gokul
  orcidid: 0000-0003-1813-1140
  surname: Krishnan
  fullname: Krishnan, Gokul
  organization: School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, U.S
– sequence: 5
  givenname: Yu
  orcidid: 0000-0001-6968-1180
  surname: Cao
  fullname: Cao, Yu
  organization: School of Electrical, Computer, and Energy Engineering, Arizona State University, Tempe, U.S
– sequence: 6
  givenname: Priyadarshini
  orcidid: 0000-0002-4167-6782
  surname: Panda
  fullname: Panda, Priyadarshini
  organization: Department of Electrical Engineering, Yale University, New Haven, CT, USA
BackLink https://www.osti.gov/biblio/2579823$$D View this record in Osti.gov
BookMark eNp9kE9vEzEUxC1UJNLCB0DisIKzg_-s1za3EFqK1JZDw9myvS_UzcYOtpeq3767pAfEgdNcZubN-52ik5giIPSWkiWlRH_crFdflowwvuRMtpqqF2hBNZe4pYKeoAVhUmFCJHmFTku5J4S2gukF2t0ewg5uw_5Ts4oNxB7XhCdp1ml_GCvgEPE17FN-bC5t7h9shub8tx1GW0OKzSalodmm3HyG6O_2Nu9C_NnMnbPewJjtMEl9SHlXXqOXWzsUePOsZ-jHxflmfYmvvn_9tl5dYc8Zrdj10rK2B6qUbJXzWnekB-EAoHdCaK86cA4cdZRx0Wvbed3LzvlOgNRW8zP0_tibSg2m-FDB3_kUI_hqmJBaMT6ZPhxNh5x-jVCquU9jjtMuw5TUXDHRzlX06PI5lZJhaw45TG8-GkrMDN7M4M0M3jyDnzLyn8y04A-umm0Y_pt8d0yG6de_LlHGOib5E8ZVkzM
CODEN ITCSDI
CitedBy_id crossref_primary_10_3389_fnins_2023_1233037
crossref_primary_10_1109_ACCESS_2025_3588665
crossref_primary_10_1109_TETC_2024_3480524
crossref_primary_10_1109_TVLSI_2023_3327417
crossref_primary_10_3389_fnins_2024_1420119
crossref_primary_10_1002_smll_202505708
crossref_primary_10_1002_aisy_202300456
crossref_primary_10_1016_j_neucom_2025_130539
crossref_primary_10_1016_j_mee_2025_112408
crossref_primary_10_1109_TCASAI_2025_3536379
crossref_primary_10_1109_JETCAS_2023_3327748
crossref_primary_10_1038_s44172_025_00492_5
crossref_primary_10_1063_5_0211040
crossref_primary_10_3389_fnins_2025_1593580
crossref_primary_10_3390_brainsci13091316
crossref_primary_10_1016_j_mejo_2024_106377
Cites_doi 10.1038/s41928-018-0023-2
10.1109/ISCA45697.2020.00038
10.5573/JSTS.2014.14.3.356
10.1145/3476999
10.1109/MM.2018.112130359
10.3389/fncom.2015.00099
10.1109/ISCAS48785.2022.9937336
10.1145/3061639.3062311
10.1109/SEAA.2018.00069
10.1145/2744769.2744930
10.1109/TC.2022.3174585
10.1007/978-3-030-58607-2_23
10.1109/IJCNN.2015.7280696
10.1109/TVLSI.2019.2929245
10.1109/JSSC.2016.2616357
10.3389/fnins.2017.00682
10.1109/ICASSP43922.2022.9747906
10.1109/HPCA53966.2022.00031
10.1109/IRPS46558.2021.9405092
10.1109/ISLPED.2017.8009177
10.3389/fnins.2018.00331
10.1109/TCAD.2015.2474396
10.1109/TCAD.2021.3109857
10.1145/3531437.3539729
10.1038/s41586-019-1677-2
10.1109/DAC18072.2020.9218688
10.3389/fnins.2017.00350
10.1109/TCAD.2018.2789723
10.1063/1.5113536
10.1145/3576195
10.1021/nl203687n
10.1109/TCAD.2020.3000185
10.1109/ISPASS.2013.6557149
10.1109/TCAD.2021.3138347
10.1109/IEDM13553.2020.9371937
10.1145/3007787.3001139
10.1145/3297858.3304049
10.1109/ACCESS.2019.2954753
10.3389/fnins.2021.773954
10.1016/j.neunet.2021.09.022
10.3389/fnins.2019.00095
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
CorporateAuthor Yale Univ., New Haven, CT (United States)
CorporateAuthor_xml – name: Yale Univ., New Haven, CT (United States)
DBID 97E
RIA
RIE
AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
OTOTI
DOI 10.1109/TCAD.2023.3274918
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998-Present
IEEE Electronic Library (IEL)
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Computer Science
EISSN 1937-4151
EndPage 1
ExternalDocumentID 2579823
10_1109_TCAD_2023_3274918
10122627
Genre orig-research
GroupedDBID --Z
-~X
0R~
29I
4.4
5GY
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFS
ACIWK
ACNCT
AENEX
AGQYO
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
HZ~
IFIPE
IPLJI
JAVBF
LAI
M43
O9-
OCL
P2P
PZZ
RIA
RIE
RNS
TN5
5VS
AAYXX
AETIX
AGSQL
AI.
AIBXA
ALLEH
CITATION
EJD
H~9
IBMZZ
ICLAB
IFJZH
VH1
VJK
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
OTOTI
ID FETCH-LOGICAL-c321t-bd7a24de188748bc9960de5beeedb559c86ebbeb1b1235d9a6c9d76bc65e79a93
IEDL.DBID RIE
ISICitedReferencesCount 15
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001098114300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0070
IngestDate Mon Aug 25 02:20:59 EDT 2025
Mon Jun 30 08:35:24 EDT 2025
Tue Nov 18 22:44:19 EST 2025
Sat Nov 29 03:31:52 EST 2025
Wed Aug 27 02:18:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-bd7a24de188748bc9960de5beeedb559c86ebbeb1b1235d9a6c9d76bc65e79a93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
SC0023198
None
USDOE Office of Science (SC)
ORCID 0000-0002-7721-271X
0000-0002-4167-6782
0000-0001-6968-1180
0000-0002-0534-5206
0000-0003-1813-1140
0009-0007-1869-8653
0000000318131140
0000000241676782
0000000169681180
0000000205345206
000000027721271X
0009000718698653
PQID 2879382549
PQPubID 85470
PageCount 1
ParticipantIDs crossref_primary_10_1109_TCAD_2023_3274918
ieee_primary_10122627
proquest_journals_2879382549
crossref_citationtrail_10_1109_TCAD_2023_3274918
osti_scitechconnect_2579823
PublicationCentury 2000
PublicationDate 2023-11-01
PublicationDateYYYYMMDD 2023-11-01
PublicationDate_xml – month: 11
  year: 2023
  text: 2023-11-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: United States
PublicationTitle IEEE transactions on computer-aided design of integrated circuits and systems
PublicationTitleAbbrev TCAD
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref35
ref12
ref15
ref37
ref14
ref36
le (ref28) 2015
ref31
ref30
ref11
ref33
ref10
ref32
yin (ref19) 2022
ref2
ref1
ref17
ref39
ref16
ref38
ref18
li (ref34) 2021
ref24
ref46
ref23
ref26
ref25
ref20
ref42
ref22
ref44
ref21
ref43
hajri (ref45) 2019; 7
krizhevsky (ref27) 2009
ref29
ref8
ref7
ref9
ref4
ref3
ref6
ref5
bhattacharjee (ref41) 2021
ref40
References_xml – ident: ref23
  doi: 10.1038/s41928-018-0023-2
– ident: ref6
  doi: 10.1109/ISCA45697.2020.00038
– ident: ref25
  doi: 10.5573/JSTS.2014.14.3.356
– ident: ref17
  doi: 10.1145/3476999
– ident: ref4
  doi: 10.1109/MM.2018.112130359
– ident: ref30
  doi: 10.3389/fncom.2015.00099
– ident: ref43
  doi: 10.1109/ISCAS48785.2022.9937336
– ident: ref9
  doi: 10.1145/3061639.3062311
– ident: ref15
  doi: 10.1109/SEAA.2018.00069
– ident: ref39
  doi: 10.1145/2744769.2744930
– ident: ref22
  doi: 10.1109/TC.2022.3174585
– ident: ref33
  doi: 10.1007/978-3-030-58607-2_23
– ident: ref32
  doi: 10.1109/IJCNN.2015.7280696
– year: 2022
  ident: ref19
  article-title: SATA: Sparsity-aware training accelerator for spiking neural networks
  publication-title: IEEE Trans Comput -Aided Design Integr Circuits Syst
– year: 2015
  ident: ref28
  publication-title: Tiny imagenet visual recognition challenge
– ident: ref44
  doi: 10.1109/TVLSI.2019.2929245
– ident: ref13
  doi: 10.1109/JSSC.2016.2616357
– start-page: 884
  year: 2021
  ident: ref41
  article-title: Efficiency-driven hardware otimization for adversarially robust neural networks
  publication-title: Proc DATE
– ident: ref35
  doi: 10.3389/fnins.2017.00682
– ident: ref37
  doi: 10.1109/ICASSP43922.2022.9747906
– ident: ref7
  doi: 10.1109/HPCA53966.2022.00031
– ident: ref21
  doi: 10.1109/IRPS46558.2021.9405092
– ident: ref10
  doi: 10.1109/ISLPED.2017.8009177
– year: 2009
  ident: ref27
  article-title: Learning multiple layers of features from tiny images
– ident: ref36
  doi: 10.3389/fnins.2018.00331
– ident: ref5
  doi: 10.1109/TCAD.2015.2474396
– ident: ref40
  doi: 10.1109/TCAD.2021.3109857
– ident: ref26
  doi: 10.1145/3531437.3539729
– ident: ref1
  doi: 10.1038/s41586-019-1677-2
– ident: ref20
  doi: 10.1109/DAC18072.2020.9218688
– ident: ref2
  doi: 10.3389/fnins.2017.00350
– ident: ref14
  doi: 10.1109/TCAD.2018.2789723
– ident: ref11
  doi: 10.1063/1.5113536
– ident: ref42
  doi: 10.1145/3576195
– ident: ref8
  doi: 10.1021/nl203687n
– ident: ref16
  doi: 10.1109/TCAD.2020.3000185
– ident: ref46
  doi: 10.1109/ISPASS.2013.6557149
– ident: ref18
  doi: 10.1109/TCAD.2021.3138347
– ident: ref24
  doi: 10.1109/IEDM13553.2020.9371937
– ident: ref29
  doi: 10.1145/3007787.3001139
– year: 2021
  ident: ref34
  article-title: A free lunch from ANN: Towards efficient, accurate spiking neural networks calibration
  publication-title: arXiv 2106 06984
– ident: ref12
  doi: 10.1145/3297858.3304049
– volume: 7
  start-page: 168963
  year: 2019
  ident: ref45
  article-title: RRAM device models: A comparative analysis with experimental validation
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2954753
– ident: ref38
  doi: 10.3389/fnins.2021.773954
– ident: ref3
  doi: 10.1016/j.neunet.2021.09.022
– ident: ref31
  doi: 10.3389/fnins.2019.00095
SSID ssj0014529
Score 2.533641
Snippet Spiking Neural Networks (SNNs) are an active research domain towards energy efficient machine intelligence. Compared to conventional artificial neural networks...
Spiking neural networks (SNNs) are an active research domain toward energy-efficient machine intelligence. Compared to conventional artificial neural networks...
Not provided.
SourceID osti
proquest
crossref
ieee
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analog Crossbars
Artificial neural networks
Benchmark testing
Biological neural networks
Computation
Computer architecture
Computer memory
Computer Science
Data communication
Data processing
Emerging Devices
Energy efficiency
Engineering
Engines
Hardware
In-Memory Computing
Modules
Network latency
Neural networks
Neurons
Spiking Neural Networks (SNNs)
Title SpikeSim: An end-to-end Compute-in-Memory Hardware Evaluation Tool for Benchmarking Spiking Neural Networks
URI https://ieeexplore.ieee.org/document/10122627
https://www.proquest.com/docview/2879382549
https://www.osti.gov/biblio/2579823
Volume 42
WOSCitedRecordID wos001098114300026&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1937-4151
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014529
  issn: 0278-0070
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB5UPOjBt7i-yMGTkLXb1qbxpqJ4cRFcwVtokhEXtZXdqvjvnUnrsiAKntJDmjSdyWQmM_MNwEGWIsOAJxKTzMnU51rmOipox0cF6eOMcelDsQnV7-f39_qmTVYPuTCIGILPsMuPwZfvK_fGV2VHjEUVZ7GahVmlsiZZa-IyYA9iuFBhyFhi5NaFSZMdDWhVXa4T3k3ICNNc4GPqEApVVaipaE_9kMjhmLlc_ucHrsBSq0-K04YBVmEGyzVYnEIZXIen29fhE94OX07EaSmw9LKuJDWireggh6W85oDbT8F-_I9ihOJiAgIuBlX1LEi1FWfE0I8vRbhcFzwmtwzuQfP3m2jy8QbcXV4Mzq9kW2NBuiTu1dJ6VcSpxx4JmzS3jsFaPB5bWpq3ZG24PENrSaBbTqr1usic9iqzLjtGpQudbMJcWZW4BSLiLNUe2ijWKRG90JZMKat6KeoHpZ3uQPT9041rAci5DsazCYZIpA3TyTCdTEunDhxOXnlt0Df-6rzBFJnq2BCjAztMWkMqBePiOg4gcrUhWaXzOOnA7jfFTbt9x4bMSJ0E23n7l0F3YIHnbrISd2GuHr3hHsy793o4Hu0HzvwCT5LfEw
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9tbNLggTEoooOBH_aE5JImaRLvDVARE1BNopP6ZsX2IaqWBLUBxH_PnROqShNIe3IeEn_kzuc7393vAH4mMTIMeCQxSqyMXaZkpoKcdnyQkz7OGJfOF5tIB4NsNFJ_mmR1nwuDiD74DDv86H35rrQPfFV2xFhUYRKmH-FTL47DoE7XWjgN2Ifor1QYNJZYuXFi0nBHQ1pXhyuFdyIywxSX-Fg6hnxdFWpK2lX_yGR_0Jx9_c8pbsB6o1GK45oFvsEHLDZhbQlncAsm1_fjCV6P736J40Jg4WRVSmpEU9NBjgt5xSG3z4I9-U_5DEV_AQMuhmU5FaTcihNi6du73F-vC-6TW4b3oPEHdTz5vAV_z_rD03PZVFmQNgq7lTQuzcPYYZfETZwZy3AtDnuGluYM2Rs2S9AYEumG02qdyhOrXJoYm_QwVbmKtmGlKAvcARFwnmoXTRCqmMieK0PGlEm7MaqbVFnVhuD1p2vbQJBzJYyp9qZIoDTTSTOddEOnNhwuPrmv8Tfee7nFFFl6sSZGG3aZtJqUCkbGtRxCZCtN0kplYdSGvVeK62YDzzUZkiry1vP3Nzo9gC_nw6tLffl7cLELqzyPOkdxD1aq2QP-gM_2sRrPZ_ueS18AD-riWg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=SpikeSim%3A+An+end-to-end+Compute-in-Memory+Hardware+Evaluation+Tool+for+Benchmarking+Spiking+Neural+Networks&rft.jtitle=IEEE+transactions+on+computer-aided+design+of+integrated+circuits+and+systems&rft.au=Moitra%2C+Abhishek&rft.au=Bhattacharjee%2C+Abhiroop&rft.au=Kuang%2C+Runcong&rft.au=Krishnan%2C+Gokul&rft.date=2023-11-01&rft.pub=IEEE&rft.issn=0278-0070&rft.spage=1&rft.epage=1&rft_id=info:doi/10.1109%2FTCAD.2023.3274918&rft.externalDocID=10122627
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0070&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0070&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0070&client=summon