Switching-based clustering algorithms for segmentation of low-level salt-and-pepper noise–corrupted images

This paper presents new clustering-based segmentation algorithms. The proposed switching-based clustering algorithms can minimize salt-and-pepper noise during segmentation without degrading the images’ fine details. The proposed algorithms incorporate the salt-and-pepper noise detection stage into t...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Signal, image and video processing Ročník 9; číslo 2; s. 387 - 398
Hlavní autoři: Sulaiman, Siti Noraini, Mat Isa, Nor Ashidi, Yusoff, Intan Aidha, Ahmad, Fadzil
Médium: Journal Article
Jazyk:angličtina
Vydáno: London Springer London 01.02.2015
Témata:
ISSN:1863-1703, 1863-1711
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper presents new clustering-based segmentation algorithms. The proposed switching-based clustering algorithms can minimize salt-and-pepper noise during segmentation without degrading the images’ fine details. The proposed algorithms incorporate the salt-and-pepper noise detection stage into the clustering algorithm, producing an adaptive technique specifically for segmentation of noisy images. Experimental results show that the proposed switching-based clustering algorithms produce better segmentation with fewer noise effects than conventional clustering algorithms. Quantitative and qualitative analyses show positive results for the proposed switching-based clustering algorithms, which consistently outperform conventional clustering algorithms in segmenting up to 50 % of salt-and-pepper noise density. Thus, these switching-based clustering algorithms can be used as pre- or post-processing task (i.e., segmenting images into regions of interest) in electronic products such as televisions and monitors.
ISSN:1863-1703
1863-1711
DOI:10.1007/s11760-013-0455-0