Nonlinear distributed-parameter observer design for efficient estimation of internal temperature profiles in polymer electrolyte membrane fuel cells

This paper presents a methodology to design a nonlinear distributed-parameter observer to estimate internal temperature profiles in polymer electrolyte membrane fuel cells. Accurate knowledge of the spatial temperature distributions allows beneficial insight into the cell’s condition since the tempe...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear dynamics Vol. 113; no. 14; pp. 18265 - 18289
Main Authors: Fuchs, Benjamin, Altmann, Florian, Vrlić, Martin, Braun, Stefan, Kozek, Martin, Hametner, Christoph, Jakubek, Stefan
Format: Journal Article
Language:English
Published: Dordrecht Springer Nature B.V 01.07.2025
Subjects:
ISSN:0924-090X, 1573-269X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract This paper presents a methodology to design a nonlinear distributed-parameter observer to estimate internal temperature profiles in polymer electrolyte membrane fuel cells. Accurate knowledge of the spatial temperature distributions allows beneficial insight into the cell’s condition since the temperature is strongly coupled to other cell states. The extended Kalman filter-based observer employs a high-fidelity nonlinear non-isothermal distributed-parameter model for predicting internal temperature distributions. A reduced-order model, preserving the major dynamics and coupling effects of the original model, is utilized for real-time capable and feasible state correction. To improve the estimation, the observer scheme is augmented to simultaneously estimate selected material parameters along the temperature profiles online. In a simulation experiment, the observer is compared to an open-loop simulation benchmark. Further, the consistency of the estimation is investigated. The observer methodology is validated using a high-resolution simulated reality since internal temperature distributions are inaccessible in a real system. The validation demonstrates the observer’s accuracy in estimating the unmeasurable internal temperature distributions. The results substantiate the observer’s advantage over open-loop model simulations and outline the importance of temperature profile estimation for meaningful condition monitoring.
AbstractList This paper presents a methodology to design a nonlinear distributed-parameter observer to estimate internal temperature profiles in polymer electrolyte membrane fuel cells. Accurate knowledge of the spatial temperature distributions allows beneficial insight into the cell’s condition since the temperature is strongly coupled to other cell states. The extended Kalman filter-based observer employs a high-fidelity nonlinear non-isothermal distributed-parameter model for predicting internal temperature distributions. A reduced-order model, preserving the major dynamics and coupling effects of the original model, is utilized for real-time capable and feasible state correction. To improve the estimation, the observer scheme is augmented to simultaneously estimate selected material parameters along the temperature profiles online. In a simulation experiment, the observer is compared to an open-loop simulation benchmark. Further, the consistency of the estimation is investigated. The observer methodology is validated using a high-resolution simulated reality since internal temperature distributions are inaccessible in a real system. The validation demonstrates the observer’s accuracy in estimating the unmeasurable internal temperature distributions. The results substantiate the observer’s advantage over open-loop model simulations and outline the importance of temperature profile estimation for meaningful condition monitoring.
Author Jakubek, Stefan
Vrlić, Martin
Hametner, Christoph
Fuchs, Benjamin
Altmann, Florian
Kozek, Martin
Braun, Stefan
Author_xml – sequence: 1
  givenname: Benjamin
  orcidid: 0009-0005-1725-7464
  surname: Fuchs
  fullname: Fuchs, Benjamin
– sequence: 2
  givenname: Florian
  surname: Altmann
  fullname: Altmann, Florian
– sequence: 3
  givenname: Martin
  surname: Vrlić
  fullname: Vrlić, Martin
– sequence: 4
  givenname: Stefan
  surname: Braun
  fullname: Braun, Stefan
– sequence: 5
  givenname: Martin
  surname: Kozek
  fullname: Kozek, Martin
– sequence: 6
  givenname: Christoph
  surname: Hametner
  fullname: Hametner, Christoph
– sequence: 7
  givenname: Stefan
  surname: Jakubek
  fullname: Jakubek, Stefan
BookMark eNp9UUFrFjEQDVLBr7V_wFPAc3SSfLvZHKVYKxS9KPQWstlJSckma5IV-j_8wab9evLgad4w84Z5752Ts5QTEvKOwwcOoD5WzkFxBmJgvMOJwSty4IOSTIz67owcQIsjAw13b8h5rQ8AIAVMB_LnW04xJLSFLqG2Eua94cI2W-yKDQvNc8Xyu4MFa7hP1OdC0fvgAqZGsbaw2hZyotnTkDoj2UgbrhsW2_aCdCvZh4i1T-mW4-Pab2FE10pvGtIV17nYhNTvGKnDGOtb8trbWPHypV6Qn9eff1zdsNvvX75efbplTgremB3Ay5ELP0upux7h_CRntEdUzg161IvTI_d4xEGJyTk5KuDLqKSyyoKW8oK8P93tP_7auxbzkPcnAdV0d47dR6XHvjWdtlzJtRb0xoX2rLkVG6LhYJ4yMKcMTM_APGdgoFPFP9StdL_K4_9IfwFX1Y_L
CitedBy_id crossref_primary_10_1149_1945_7111_adfd8f
Cites_doi 10.1016/j.jpowsour.2004.12.033
10.1016/j.compchemeng.2021.107444
10.1016/j.jpowsour.2010.11.084
10.1016/j.ijheatmasstransfer.2015.04.010
10.1016/j.compchemeng.2024.108926
10.3390/math9243180
10.1007/s11071-022-08025-x
10.34726/hss.2022.96214
10.1016/j.ijhydene.2016.02.057
10.1016/j.enconman.2018.02.028
10.1002/0471221279
10.1016/j.ijhydene.2016.06.041
10.1137/130932715
10.1016/j.jpowsour.2009.06.077
10.1016/j.jpowsour.2020.229070
10.1002/0470045345
10.1016/j.egyai.2021.100114
10.1109/TAC.1981.1102568
10.1007/978-1-4471-3792-4
10.1016/j.ijhydene.2021.03.014
10.1137/1.9780898719598
10.1016/j.jpowsour.2003.09.033
10.1115/1.3658902
10.1016/j.pecs.2020.100859
10.1109/TAC.1982.1102945
10.1016/j.ijhydene.2015.05.132
10.1016/j.jpowsour.2009.03.038
10.1149/1.2085971
10.1137/0301010
10.1016/j.cej.2021.133667
10.1016/j.apenergy.2014.03.048
10.1002/fld.639
10.1109/AIM.2017.8014275
10.1016/j.egyr.2023.06.006
10.1109/TAC.1977.1101601
10.1002/celc.202000588
10.1016/j.jpowsour.2008.01.070
10.3390/en14010144
10.1109/TIE.2017.2682787
10.1016/S0019-9958(73)90508-1
ContentType Journal Article
Copyright Copyright Springer Nature B.V. Jul 2025
Copyright_xml – notice: Copyright Springer Nature B.V. Jul 2025
DBID AAYXX
CITATION
DOI 10.1007/s11071-025-11108-0
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
EISSN 1573-269X
EndPage 18289
ExternalDocumentID 10_1007_s11071_025_11108_0
GroupedDBID -Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67Z
6NX
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYXX
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMVHM
AMXSW
AMYLF
AMYQR
AOCGG
ARCEE
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
CAG
CCPQU
CITATION
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9T
PF0
PHGZM
PHGZT
PQGLB
PT4
PT5
PTHSS
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCV
SDH
SDM
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
YLTOR
Z45
Z8Z
ZMTXR
~A9
~EX
AESKC
ID FETCH-LOGICAL-c321t-a50f3612fb3390322cf83bea4e7cc5969dc961fe4e5728cc36701d6737a7a0933
IEDL.DBID RSV
ISICitedReferencesCount 2
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001457958100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0924-090X
IngestDate Wed Nov 05 08:48:18 EST 2025
Sat Nov 29 07:54:50 EST 2025
Tue Nov 18 22:25:29 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 14
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-a50f3612fb3390322cf83bea4e7cc5969dc961fe4e5728cc36701d6737a7a0933
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0005-1725-7464
OpenAccessLink https://link.springer.com/content/pdf/10.1007/s11071-025-11108-0.pdf
PQID 3204108796
PQPubID 2043746
PageCount 25
ParticipantIDs proquest_journals_3204108796
crossref_citationtrail_10_1007_s11071_025_11108_0
crossref_primary_10_1007_s11071_025_11108_0
PublicationCentury 2000
PublicationDate 2025-07-00
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-00
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationTitle Nonlinear dynamics
PublicationYear 2025
Publisher Springer Nature B.V
Publisher_xml – name: Springer Nature B.V
References Q Wang (11108_CR4) 2022; 433
L Pernebo (11108_CR35) 1982; 27
11108_CR43
IF Yupanqui Tello (11108_CR13) 2021; 9
J Zhao (11108_CR10) 2021; 6
T Wilberforce (11108_CR2) 2016; 41
L Böhler (11108_CR11) 2021; 46
RE Kalman (11108_CR39) 1963; 1
SR Kou (11108_CR40) 1973; 22
Y Shan (11108_CR44) 2005; 145
11108_CR27
J Ramousse (11108_CR29) 2009; 192
J Luna (11108_CR14) 2015; 40
D Murschenhofer (11108_CR21) 2018; 162
T Lochner (11108_CR7) 2020; 7
J Luna (11108_CR16) 2017; 64
B Moore (11108_CR25) 1981; 26
D Pernsteiner (11108_CR34) 2021; 153
AH Jazwinski (11108_CR19) 1970
P Ren (11108_CR3) 2020; 80
TE Springer (11108_CR28) 1991; 138
J Luna (11108_CR15) 2016; 41
R Hermann (11108_CR41) 1977; 22
O Burheim (11108_CR32) 2010; 195
P Benner (11108_CR24) 2015; 57
11108_CR33
11108_CR30
A Alaswad (11108_CR1) 2021
RE Kalman (11108_CR20) 1960; 83
B Fan (11108_CR23) 2023; 111
11108_CR9
ML Hautus (11108_CR42) 1969; 72
11108_CR38
SD Knights (11108_CR6) 2004; 127
TW Sheu (11108_CR31) 2004; 44
11108_CR36
11108_CR37
Y Bar-Shalom (11108_CR45) 2002
S Sugihara (11108_CR8) 2021; 482
S De Lira (11108_CR12) 2011; 196
P Shah (11108_CR22) 2024
JT Pukrushpan (11108_CR26) 2004
M Vrlić (11108_CR17) 2023; 10
W Schmittinger (11108_CR5) 2008; 180
P Pei (11108_CR18) 2014; 125
References_xml – volume: 145
  start-page: 30
  issue: 1
  year: 2005
  ident: 11108_CR44
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2004.12.033
– ident: 11108_CR33
– volume: 72
  start-page: 443
  year: 1969
  ident: 11108_CR42
  publication-title: Ned. Akad. Wetenschappen
– volume: 153
  year: 2021
  ident: 11108_CR34
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2021.107444
– volume: 196
  start-page: 4298
  issue: 9
  year: 2011
  ident: 11108_CR12
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2010.11.084
– ident: 11108_CR43
  doi: 10.1016/j.ijheatmasstransfer.2015.04.010
– year: 2024
  ident: 11108_CR22
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2024.108926
– ident: 11108_CR37
– volume: 9
  start-page: 3180
  issue: 24
  year: 2021
  ident: 11108_CR13
  publication-title: Mathematics
  doi: 10.3390/math9243180
– volume: 111
  start-page: 3327
  issue: 4
  year: 2023
  ident: 11108_CR23
  publication-title: Nonlinear Dyn.
  doi: 10.1007/s11071-022-08025-x
– ident: 11108_CR27
  doi: 10.34726/hss.2022.96214
– volume: 41
  start-page: 16509
  issue: 37
  year: 2016
  ident: 11108_CR2
  publication-title: Int. J. Hydr. Energy
  doi: 10.1016/j.ijhydene.2016.02.057
– volume: 162
  start-page: 159
  year: 2018
  ident: 11108_CR21
  publication-title: Energy Convers. Manage.
  doi: 10.1016/j.enconman.2018.02.028
– volume-title: Stochastic Processes and Filtering Theory
  year: 1970
  ident: 11108_CR19
– volume-title: Estimation with Applications to Tracking and Navigation: Theory, Algorithms and Software.
  year: 2002
  ident: 11108_CR45
  doi: 10.1002/0471221279
– volume: 41
  start-page: 19737
  issue: 43
  year: 2016
  ident: 11108_CR15
  publication-title: Int. J. Hydr. Energy
  doi: 10.1016/j.ijhydene.2016.06.041
– volume: 57
  start-page: 483
  issue: 4
  year: 2015
  ident: 11108_CR24
  publication-title: SIAM Rev.
  doi: 10.1137/130932715
– volume: 195
  start-page: 249
  issue: 1
  year: 2010
  ident: 11108_CR32
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2009.06.077
– volume: 482
  year: 2021
  ident: 11108_CR8
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2020.229070
– ident: 11108_CR38
  doi: 10.1002/0470045345
– volume: 6
  year: 2021
  ident: 11108_CR10
  publication-title: Energy AI
  doi: 10.1016/j.egyai.2021.100114
– volume: 26
  start-page: 17
  issue: 1
  year: 1981
  ident: 11108_CR25
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1981.1102568
– volume-title: Control of Fuel Cell Power Systems: Principles, Modeling, Analysis and Feedback Design.
  year: 2004
  ident: 11108_CR26
  doi: 10.1007/978-1-4471-3792-4
– ident: 11108_CR9
– volume: 46
  start-page: 18604
  issue: 35
  year: 2021
  ident: 11108_CR11
  publication-title: Int. J. Hydr. Energy
  doi: 10.1016/j.ijhydene.2021.03.014
– ident: 11108_CR30
  doi: 10.1137/1.9780898719598
– volume: 127
  start-page: 127
  issue: 1–2
  year: 2004
  ident: 11108_CR6
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2003.09.033
– volume: 83
  start-page: 95
  issue: 1
  year: 1960
  ident: 11108_CR20
  publication-title: J. Basic Eng.
  doi: 10.1115/1.3658902
– volume: 80
  year: 2020
  ident: 11108_CR3
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2020.100859
– volume: 27
  start-page: 382
  issue: 2
  year: 1982
  ident: 11108_CR35
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1982.1102945
– volume: 40
  start-page: 11322
  issue: 34
  year: 2015
  ident: 11108_CR14
  publication-title: Int. J. Hydr. Energy
  doi: 10.1016/j.ijhydene.2015.05.132
– volume: 192
  start-page: 435
  issue: 2
  year: 2009
  ident: 11108_CR29
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2009.03.038
– volume: 138
  start-page: 2334
  year: 1991
  ident: 11108_CR28
  publication-title: J. Electrochem. Soc.
  doi: 10.1149/1.2085971
– volume: 1
  start-page: 152
  issue: 2
  year: 1963
  ident: 11108_CR39
  publication-title: J. Soc. Ind. Appl. Math. Ser. A: Control
  doi: 10.1137/0301010
– volume: 433
  year: 2022
  ident: 11108_CR4
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2021.133667
– volume: 125
  start-page: 60
  year: 2014
  ident: 11108_CR18
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2014.03.048
– volume: 44
  start-page: 297
  issue: 3
  year: 2004
  ident: 11108_CR31
  publication-title: Int. J. Numer. Methods Fluids
  doi: 10.1002/fld.639
– ident: 11108_CR36
  doi: 10.1109/AIM.2017.8014275
– volume: 10
  start-page: 1
  year: 2023
  ident: 11108_CR17
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2023.06.006
– volume: 22
  start-page: 728
  issue: 5
  year: 1977
  ident: 11108_CR41
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.1977.1101601
– volume: 7
  start-page: 3545
  issue: 17
  year: 2020
  ident: 11108_CR7
  publication-title: ChemElectroChem
  doi: 10.1002/celc.202000588
– volume: 180
  start-page: 1
  issue: 1
  year: 2008
  ident: 11108_CR5
  publication-title: J. Power Sour.
  doi: 10.1016/j.jpowsour.2008.01.070
– year: 2021
  ident: 11108_CR1
  publication-title: Energies
  doi: 10.3390/en14010144
– volume: 64
  start-page: 6649
  issue: 8
  year: 2017
  ident: 11108_CR16
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2682787
– volume: 22
  start-page: 89
  issue: 1
  year: 1973
  ident: 11108_CR40
  publication-title: Inform. Control
  doi: 10.1016/S0019-9958(73)90508-1
SSID ssj0003208
Score 2.4441707
Snippet This paper presents a methodology to design a nonlinear distributed-parameter observer to estimate internal temperature profiles in polymer electrolyte...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 18265
SubjectTerms Condition monitoring
Electrolytes
Electrolytic cells
Estimation
Extended Kalman filter
Fuel cells
Parameters
Polymers
Proton exchange membrane fuel cells
Real time
Reduced order models
Temperature profiles
Title Nonlinear distributed-parameter observer design for efficient estimation of internal temperature profiles in polymer electrolyte membrane fuel cells
URI https://www.proquest.com/docview/3204108796
Volume 113
WOSCitedRecordID wos001457958100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-269X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003208
  issn: 0924-090X
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEA6leNCD1apYrZKDNw022fdRxOKpiC96W3azCRT2Ubqt0P_hD3Ymm1YLKvS2kN2wZCbJN5PJ9xFy5aVaCkBtzOVBxtwk0QzCIJ-FbuqJDCC6r1IjNhGMRuF4HD21yM2fJ_i3NUYoEPIKj3GsWWcYoHNfoFzB88v7etl1hJGfG0BAgcmHsb0h83sXm7vQ5iJsdpZhZ7t_OiD7FkHSu8bkh6Slyi7pWDRJ7Vytu2TvB9XgEfkcNZwYyYxmyJWLMlcqY8j8XWBFDK1SzM_CQ2ZqOiiAWaoMvwRsSxS5OJpLjrTSdNKkEXOKxFaWlZla9e8aWum0ypcF9GVFdvLlXNFCFRCZl4rqhcopHhjUx-Rt-PB6_8isIgOTjuBzlngD7QAm0qnjRDDiQurQSVXiqkBKL_KjTEY-18pVXiBCKZEdjmcohZMECeZOTki7rEp1Siggr9DlofQNaVsiInOb09UBDKiQ3O8RvrJQLC1dOapm5PE30TIaIQYjxMYI8aBHrtffTBuyjn_f7q8MH9uJW8fgRS60BpF_tlVn52RXoDuYQt4-ac9nC3VBduTHfFLPLo2nfgHTAuBF
linkProvider Springer Nature
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+distributed-parameter+observer+design+for+efficient+estimation+of+internal+temperature+profiles+in+polymer+electrolyte+membrane+fuel+cells&rft.jtitle=Nonlinear+dynamics&rft.au=Fuchs%2C+Benjamin&rft.au=Altmann%2C+Florian&rft.au=Vrli%C4%87%2C+Martin&rft.au=Braun%2C+Stefan&rft.date=2025-07-01&rft.issn=0924-090X&rft.eissn=1573-269X&rft.volume=113&rft.issue=14&rft.spage=18265&rft.epage=18289&rft_id=info:doi/10.1007%2Fs11071-025-11108-0&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11071_025_11108_0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-090X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-090X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-090X&client=summon