Mechanical modeling of plantar pressure during human walking in different terrains: Experiments and analysis

Accurate plantar pressure models play a pivotal in predicting human gait dynamics and have broad applications, including the development of exoskeletons, prosthetics, and legged robots. However, existing models often overlook the influence of varying terrains on plantar pressures. In this study, we...

Full description

Saved in:
Bibliographic Details
Published in:European journal of mechanics, A, Solids Vol. 111; p. 105566
Main Authors: Liu, Jiaqi, Fang, Hongbin, Feng, Mingfei, Zhang, Qiwei, Xu, Jian
Format: Journal Article
Language:English
Published: Elsevier Masson SAS 01.05.2025
Subjects:
ISSN:0997-7538
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate plantar pressure models play a pivotal in predicting human gait dynamics and have broad applications, including the development of exoskeletons, prosthetics, and legged robots. However, existing models often overlook the influence of varying terrains on plantar pressures. In this study, we conducted a comprehensive modeling analysis of plantar pressure using experimental walking data collected from 12 subjects (6 males and 6 females). Statistical analysis reveals significant variations in vertical ground reaction forces across different plantar regions and terrains. In response to these findings, we develop a novel viscoelastic ellipsoid model capable of describing the complex mechanical behavior of foot-ground contact. The plantar tissue is divided into five distinct regions, each represented by an ellipsoid with viscoelastic material properties. Our model also expresses the plantar deformation by the contact area, which can be measured by in-shoe pressure sensors, thus addressing the challenge of measuring plantar tissue deformation in walking experiments. Additionally, we employ a quasi-static contact model to estimate the equivalent contact area, overcoming the challenge of contact area saturation during walking and improving the model's accuracy. Based on this foundation, we apply an intelligent optimization algorithm to identify the optimal geometric and material parameters of the ellipsoid models. Comparison of model outputs and experimental results demonstrate that the ellipsoid model can accurately render the vertical ground reaction forces of different plantar regions under various terrains, providing valuable insights into foot-ground interaction. Moreover, by comparing the results of parameter optimization in different terrain contexts, we unveil the critical relationships between terrain factors and model parameters, thereby deepening our understanding of foot-ground contact mechanics. •Experiments reveal significant variations in VGRF in different plantar regions and terrains.•A viscoelastic ellipsoid model incorporating five distinct plantar regions is developed.•Equivalent contact area is estimated to solve contact area saturation and improve accuracy.•Comparison of predictions and test results indicate high accuracy and robustness of model.•Critical relationships between terrain factors and model parameters are unveiled.
AbstractList Accurate plantar pressure models play a pivotal in predicting human gait dynamics and have broad applications, including the development of exoskeletons, prosthetics, and legged robots. However, existing models often overlook the influence of varying terrains on plantar pressures. In this study, we conducted a comprehensive modeling analysis of plantar pressure using experimental walking data collected from 12 subjects (6 males and 6 females). Statistical analysis reveals significant variations in vertical ground reaction forces across different plantar regions and terrains. In response to these findings, we develop a novel viscoelastic ellipsoid model capable of describing the complex mechanical behavior of foot-ground contact. The plantar tissue is divided into five distinct regions, each represented by an ellipsoid with viscoelastic material properties. Our model also expresses the plantar deformation by the contact area, which can be measured by in-shoe pressure sensors, thus addressing the challenge of measuring plantar tissue deformation in walking experiments. Additionally, we employ a quasi-static contact model to estimate the equivalent contact area, overcoming the challenge of contact area saturation during walking and improving the model's accuracy. Based on this foundation, we apply an intelligent optimization algorithm to identify the optimal geometric and material parameters of the ellipsoid models. Comparison of model outputs and experimental results demonstrate that the ellipsoid model can accurately render the vertical ground reaction forces of different plantar regions under various terrains, providing valuable insights into foot-ground interaction. Moreover, by comparing the results of parameter optimization in different terrain contexts, we unveil the critical relationships between terrain factors and model parameters, thereby deepening our understanding of foot-ground contact mechanics. •Experiments reveal significant variations in VGRF in different plantar regions and terrains.•A viscoelastic ellipsoid model incorporating five distinct plantar regions is developed.•Equivalent contact area is estimated to solve contact area saturation and improve accuracy.•Comparison of predictions and test results indicate high accuracy and robustness of model.•Critical relationships between terrain factors and model parameters are unveiled.
ArticleNumber 105566
Author Fang, Hongbin
Feng, Mingfei
Zhang, Qiwei
Xu, Jian
Liu, Jiaqi
Author_xml – sequence: 1
  givenname: Jiaqi
  surname: Liu
  fullname: Liu, Jiaqi
  organization: School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, China
– sequence: 2
  givenname: Hongbin
  orcidid: 0000-0001-6691-0531
  surname: Fang
  fullname: Fang, Hongbin
  organization: Institute of AI and Robotics, MOE Engineering Research Center of AI and Robotics, Shanghai Engineering Research Center of AI and Robotics, Fudan University, Shanghai, 200433, China
– sequence: 3
  givenname: Mingfei
  surname: Feng
  fullname: Feng, Mingfei
  organization: Institute of AI and Robotics, MOE Engineering Research Center of AI and Robotics, Shanghai Engineering Research Center of AI and Robotics, Fudan University, Shanghai, 200433, China
– sequence: 4
  givenname: Qiwei
  surname: Zhang
  fullname: Zhang, Qiwei
  organization: Yiwu Research Institute, Fudan University, Yiwu, Zhejiang, 322000, China
– sequence: 5
  givenname: Jian
  orcidid: 0000-0002-3521-6843
  surname: Xu
  fullname: Xu, Jian
  email: xujian@tongji.edu.cn
  organization: School of Aerospace Engineering and Applied Mechanics, Tongji University, Shanghai, 200092, China
BookMark eNqNUMtOwzAQ9KFItIV_MB-QYsdJTLggVJWHBOICZ8uxN9TFsSM7Afr3OCoHxKmH1Wp3dkY7s0Az5x0gdEHJihJaXe5WMAbfgdpGb1c5yYu0L8uqmqE5qWue8ZJdnaJFjDtCSMLpHNnndC6dUdLizmuwxr1j3-LeSjfIgPsAMY4BsB7DBG3HTjr8Je3HNBmHtWlbCOAGPEAI0rh4jTffPQTTpWXE0ulU0u6jiWfopJU2wvlvX6K3u83r-iF7erl_XN8-ZYrldMgkq3IKVFNWA29aWUtGFSUNz3lJCw5A21px1nDNdEFUUxHNG8aUKqCUpKzZEtUHXRV8jAFa0ad3ZNgLSsQUldiJP1GJKSpxiCpxb_5xlRnkYLwbkjt7lML6oADJ4qeBIKIy4BRoE0ANQntzhMoPT7OVGw
CitedBy_id crossref_primary_10_1016_j_triboint_2025_111202
Cites_doi 10.3390/app10072342
10.1016/S0020-7683(96)00172-2
10.1299/jbse.23-00130
10.1016/j.proeng.2016.06.240
10.1080/10255842.2015.1081181
10.1016/j.mechmachtheory.2021.104501
10.1016/j.mechmachtheory.2022.105046
10.1115/1.2389230
10.1007/978-3-319-10723-3
10.1016/j.apm.2024.06.034
10.1016/j.jbiomech.2005.08.021
10.1007/s11044-010-9237-4
10.3390/app14156541
10.1007/s11044-010-9220-0
10.1053/apmr.2002.35661
10.3390/sports11060117
10.1007/s10439-015-1538-6
10.1016/0021-9290(95)00141-7
10.1016/j.jbiomech.2019.05.041
10.1109/LSENS.2023.3279392
10.1016/j.jbiomech.2017.04.038
10.1016/j.ijmecsci.2022.107214
10.1016/j.fas.2022.07.007
10.1115/1.2897737
10.1109/TRO.2018.2862902
10.1136/bjsports-2022-106588
10.1016/j.robot.2014.10.001
10.1016/j.mechmachtheory.2021.104327
10.1081/SME-120022855
10.1007/s11044-017-9605-4
10.1016/j.gaitpost.2013.07.118
10.1007/s10439-018-2026-6
10.1016/S0268-0033(03)00080-9
10.1109/TAC.1981.1102780
10.1155/2018/8610458
10.1007/s11044-013-9363-x
10.3389/fbioe.2016.00077
10.3390/s22062203
10.1016/S0021-9290(98)00085-2
10.1016/j.arcontrol.2022.12.002
10.1115/1.4038739
10.1016/j.mechmachtheory.2023.105305
ContentType Journal Article
Copyright 2025 Elsevier Masson SAS
Copyright_xml – notice: 2025 Elsevier Masson SAS
DBID AAYXX
CITATION
DOI 10.1016/j.euromechsol.2024.105566
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
ExternalDocumentID 10_1016_j_euromechsol_2024_105566
S0997753824003462
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXKI
AAXUO
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ACRPL
ADEZE
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AFJKZ
AFTJW
AGHFR
AGUBO
AGYEJ
AHJVU
AI.
AIEXJ
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AXJTR
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SST
SSZ
T5K
VH1
XPP
ZMT
~02
~G-
9DU
AATTM
AAYWO
AAYXX
ACLOT
AGQPQ
AIIUN
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c321t-a3621e1d139e7bfa9a31c10b7275147ee1f9c73b7d3d40cb60d7b33cc4e5a0593
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001423286300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0997-7538
IngestDate Sat Nov 29 08:10:32 EST 2025
Tue Nov 18 22:23:54 EST 2025
Sat Mar 08 15:49:42 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Viscoelastic ellipsoid
Human biomechanics
Biomechanical modeling
Parameter identification
Foot-ground contact
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-a3621e1d139e7bfa9a31c10b7275147ee1f9c73b7d3d40cb60d7b33cc4e5a0593
ORCID 0000-0001-6691-0531
0000-0002-3521-6843
ParticipantIDs crossref_primary_10_1016_j_euromechsol_2024_105566
crossref_citationtrail_10_1016_j_euromechsol_2024_105566
elsevier_sciencedirect_doi_10_1016_j_euromechsol_2024_105566
PublicationCentury 2000
PublicationDate May-June 2025
2025-05-00
PublicationDateYYYYMMDD 2025-05-01
PublicationDate_xml – month: 05
  year: 2025
  text: May-June 2025
PublicationDecade 2020
PublicationTitle European journal of mechanics, A, Solids
PublicationYear 2025
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Lin, Pandy (bib27) 2017; 59
Trindade, Ono, Lemaire, Almohimeed (bib47) 2014; IUS
Chen, Ju, Tang (bib10) 2003; 18
Cenk Güler, Berme, Simon (bib9) 1998; 31
Antunes, Dias, Coelho, Rebelo, Pereira (bib1) 2008; 1
Wojtyra (bib50) 2003; 31
Flores, Ambrósio, Lankarani (bib16) 2023; 184
Yarnitzky, Yizhar, Gefen (bib51) 2006; 39
Febrer-Nafría, Nasr, Ezati, Brown, Font-Llagunes, McPhee (bib15) 2023; B.V
Peasgood, Kubica, McPhee (bib38) 2007; 2
Wang, Liu, Liu (bib49) 2022; 221
Flores, MacHado, Silva, Martins (bib17) 2011; 25
Sun, Wu, Voglewede (bib43) 2018; 140
Carpentier, Mansard (bib8) 2018; 34
Corral, García, Castejon, Meneses, Gismeros (bib11) 2020; 10
Gardner, Porbanderwala, Haider (bib18) 2023; 7
Azad, Mistry (bib3) 2015
DeBerardinis, Dufek, Trabia (bib13) 2019; 92
Gilchrist, Winter (bib20) 1996; 29
Lugrís, Carlín, Pàmies-Vilà, Font-Llagunes, Cuadrado (bib58) 2013; 30
Rodrigues da Silva, Marques, Tavares da Silva, Flores (bib41) 2022; 167
Meyer, Eskinazi, Jackson, Rao, Patten, Fregly (bib33) 2016; 4
Liu, Fang, Xu (bib29) 2022; 10
Cramer, Wimmer, Malloy, O’keefe, Knowlton, Ferrigno (bib12) 2022; 22
Wang, Jia, Cheng, Flores (bib48) 2024; 135
Gonthier, Lange, McPhee, Piedbœuf (bib21) 2005; 6 A
Millard, McPhee, Kubica (bib57) 2009
Mills, Nguyen (bib34) 1992; 114
Lopes, Silva, Ambrósio, Flores (bib32) 2010; 24
Oh, Baek, Song, Mohammed, Jeon, Kong (bib37) 2015; 73
Tallis, Morris, Duncan, Eyre, Guimaraes-Ferreira (bib45) 2023; 11
Lopes, Neptune, Ambrósio, Silva (bib54) 2015; 19
Brown, McPhee (bib55) 2018; 42
Taha, Norman, Omar, Suwarganda (bib44) 2016; 147
Moreira, Silva, Flores (bib35) 2009
Kotsifaki, Sideris, King, Bahr, Whiteley (bib26) 2023; 57
Giannakopoulos, Suresh (bib19) 1997; 34
Yue, Lin, Zhang, Qiu, Cheng (bib52) 2018; 2018
Lin, Walter, Pandy (bib28) 2018; 46
Phillips, Kokotovic (bib39) 1981; 26
Haraguchi, Hase (bib22) 2024; 19
Ayari, Knani (bib2) 2017
Porsa, Lin, Pandy (bib40) 2016; 44
Saraiva, Rodrigues da Silva, Marques, Tavares da Silva, Flores (bib42) 2022; 177
Mouzo, Lugris, Pamies-Vila, Font-Llagunes, Cuadrado (bib36) 2015
Klaesner, Hastings, Zou, Lewis, Mueller (bib25) 2002; 83
Telfer, Woodburn, Turner (bib46) 2014; 39
Boos, McPhee (bib4) 2013; 8
Brogliato (bib5) 2023; 55
Hu, Guo (bib23) 2021; 162
Zhuang, Wang, Wang, Li, Li, Li, Dong (bib53) 2024; 14
Eidmann, Vinke, Jakuscheit, Rudert, Stratos (bib14) 2022; 28
Kecskeméthy, Flores (bib24) 2015; 26
Lopes (10.1016/j.euromechsol.2024.105566_bib32) 2010; 24
Trindade (10.1016/j.euromechsol.2024.105566_bib47) 2014; IUS
Cramer (10.1016/j.euromechsol.2024.105566_bib12) 2022; 22
Liu (10.1016/j.euromechsol.2024.105566_bib29) 2022; 10
Millard (10.1016/j.euromechsol.2024.105566_bib57) 2009
Wojtyra (10.1016/j.euromechsol.2024.105566_bib50) 2003; 31
Kotsifaki (10.1016/j.euromechsol.2024.105566_bib26) 2023; 57
Peasgood (10.1016/j.euromechsol.2024.105566_bib38) 2007; 2
Brogliato (10.1016/j.euromechsol.2024.105566_bib5) 2023; 55
Moreira (10.1016/j.euromechsol.2024.105566_bib35) 2009
Mouzo (10.1016/j.euromechsol.2024.105566_bib36) 2015
Gonthier (10.1016/j.euromechsol.2024.105566_bib21) 2005; 6 A
Wang (10.1016/j.euromechsol.2024.105566_bib49) 2022; 221
Sun (10.1016/j.euromechsol.2024.105566_bib43) 2018; 140
Oh (10.1016/j.euromechsol.2024.105566_bib37) 2015; 73
Eidmann (10.1016/j.euromechsol.2024.105566_bib14) 2022; 28
Wang (10.1016/j.euromechsol.2024.105566_bib48) 2024; 135
Lin (10.1016/j.euromechsol.2024.105566_bib28) 2018; 46
Rodrigues da Silva (10.1016/j.euromechsol.2024.105566_bib41) 2022; 167
Carpentier (10.1016/j.euromechsol.2024.105566_bib8) 2018; 34
Klaesner (10.1016/j.euromechsol.2024.105566_bib25) 2002; 83
Mills (10.1016/j.euromechsol.2024.105566_bib34) 1992; 114
Boos (10.1016/j.euromechsol.2024.105566_bib4) 2013; 8
Lin (10.1016/j.euromechsol.2024.105566_bib27) 2017; 59
Taha (10.1016/j.euromechsol.2024.105566_bib44) 2016; 147
Flores (10.1016/j.euromechsol.2024.105566_bib17) 2011; 25
Porsa (10.1016/j.euromechsol.2024.105566_bib40) 2016; 44
Zhuang (10.1016/j.euromechsol.2024.105566_bib53) 2024; 14
Flores (10.1016/j.euromechsol.2024.105566_bib16) 2023; 184
Gardner (10.1016/j.euromechsol.2024.105566_bib18) 2023; 7
Corral (10.1016/j.euromechsol.2024.105566_bib11) 2020; 10
DeBerardinis (10.1016/j.euromechsol.2024.105566_bib13) 2019; 92
Gilchrist (10.1016/j.euromechsol.2024.105566_bib20) 1996; 29
Phillips (10.1016/j.euromechsol.2024.105566_bib39) 1981; 26
Brown (10.1016/j.euromechsol.2024.105566_bib55) 2018; 42
Tallis (10.1016/j.euromechsol.2024.105566_bib45) 2023; 11
Chen (10.1016/j.euromechsol.2024.105566_bib10) 2003; 18
Lopes (10.1016/j.euromechsol.2024.105566_bib54) 2015; 19
Saraiva (10.1016/j.euromechsol.2024.105566_bib42) 2022; 177
Lugrís (10.1016/j.euromechsol.2024.105566_bib58) 2013; 30
Antunes (10.1016/j.euromechsol.2024.105566_bib1) 2008; 1
Cenk Güler (10.1016/j.euromechsol.2024.105566_bib9) 1998; 31
Kecskeméthy (10.1016/j.euromechsol.2024.105566_bib24) 2015; 26
Meyer (10.1016/j.euromechsol.2024.105566_bib33) 2016; 4
Hu (10.1016/j.euromechsol.2024.105566_bib23) 2021; 162
Telfer (10.1016/j.euromechsol.2024.105566_bib46) 2014; 39
Febrer-Nafría (10.1016/j.euromechsol.2024.105566_bib15) 2023; B.V
Yarnitzky (10.1016/j.euromechsol.2024.105566_bib51) 2006; 39
Ayari (10.1016/j.euromechsol.2024.105566_bib2) 2017
Haraguchi (10.1016/j.euromechsol.2024.105566_bib22) 2024; 19
Giannakopoulos (10.1016/j.euromechsol.2024.105566_bib19) 1997; 34
Azad (10.1016/j.euromechsol.2024.105566_bib3) 2015
Yue (10.1016/j.euromechsol.2024.105566_bib52) 2018; 2018
References_xml – volume: 10
  start-page: 2342
  year: 2020
  ident: bib11
  article-title: Dynamic modeling of the dissipative contact and friction forces of a passive biped-walking robot
  publication-title: Appl. Sci.
– volume: 19
  start-page: 1
  year: 2024
  end-page: 14
  ident: bib22
  article-title: Prediction of ground reaction forces and moments and joint kinematics and kinetics by inertial measurement units using 3D forward dynamics model
  publication-title: J. Biomech. Sci. Eng.
– volume: 11
  start-page: 117
  year: 2023
  ident: bib45
  article-title: Agreement between force platform and smartphone application-derived measures of vertical jump height in youth grassroots soccer players
  publication-title: Sports
– volume: 6 A
  start-page: 477
  year: 2005
  end-page: 486
  ident: bib21
  article-title: A contact modeling method based on volumetric properties
  publication-title: Proc. ASME Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. - DETC2005
– volume: 18
  start-page: 17
  year: 2003
  end-page: 24
  ident: bib10
  article-title: Effects of total contact insoles on the plantar stress redistribution: a finite element analysis
  publication-title: Clin. Biomech.
– volume: 28
  start-page: 1384
  year: 2022
  end-page: 1388
  ident: bib14
  article-title: The influence of partial weight bearing on plantar peak forces using three different types of postoperative shoes
  publication-title: Foot Ankle Surg.
– volume: 25
  start-page: 357
  year: 2011
  end-page: 375
  ident: bib17
  article-title: On the continuous contact force models for soft materials in multibody dynamics
  publication-title: Multibody Syst. Dyn.
– volume: IUS
  start-page: 2112
  year: 2014
  end-page: 2115
  ident: bib47
  article-title: Development of a wearable ultrasonic sensor and method for continuous monitoring of mechanical properties of plantar soft tissue for diabetic patients
  publication-title: IEEE Int. Ultrason. Symp.
– volume: 162
  year: 2021
  ident: bib23
  article-title: A new concept of contact joint to model the geometric foot-environment contacts for efficiently determining possible stances for legged robots
  publication-title: Mech. Mach. Theory
– volume: 39
  start-page: 328
  year: 2014
  end-page: 332
  ident: bib46
  article-title: Measurement of functional heel pad behaviour in-shoe during gait using orthotic embedded ultrasonography
  publication-title: Gait Posture
– volume: 135
  start-page: 51
  year: 2024
  end-page: 72
  ident: bib48
  article-title: An enhanced contact force model with accurate evaluation of the energy dissipation during contact-impact events in dynamical systems
  publication-title: Appl. Math. Model.
– volume: 147
  start-page: 240
  year: 2016
  end-page: 245
  ident: bib44
  article-title: A finite element analysis of a human foot model to simulate neutral standing on ground
  publication-title: Procedia Eng.
– volume: 34
  start-page: 1441
  year: 2018
  end-page: 1460
  ident: bib8
  article-title: Multicontact locomotion of legged robots
  publication-title: IEEE Trans. Robot.
– start-page: 849
  year: 2017
  end-page: 854
  ident: bib2
  article-title: Kinematics velocity and dynamic modeling of biped robot
  publication-title: 2017 4th Int. Conf. Control. Decis. Inf. Technol. CoDIT 2017 2017-Janua
– volume: 184
  year: 2023
  ident: bib16
  article-title: Contact-impact events with friction in multibody dynamics: back to basics
  publication-title: Mech. Mach. Theory
– volume: 26
  start-page: 1087
  year: 1981
  end-page: 1094
  ident: bib39
  article-title: A singular perturbation approach to modeling and control of Markov chains
  publication-title: IEEE Trans. Automat. Contr.
– volume: 8
  year: 2013
  ident: bib4
  article-title: Volumetric modeling and experimental validation of normal contact dynamic forces
  publication-title: J. Comput. Nonlinear Dyn.
– volume: 140
  year: 2018
  ident: bib43
  article-title: Dynamic simulation of human gait model with predictive capability
  publication-title: J. Biomech. Eng.
– volume: 4
  start-page: 77
  year: 2016
  ident: bib33
  article-title: Muscle synergies facilitate computational prediction of subject-specific walking motions
  publication-title: Front. Bioeng. Biotechnol.
– volume: 177
  year: 2022
  ident: bib42
  article-title: A review on foot-ground contact modeling strategies for human motion analysis
  publication-title: Mech. Mach. Theory
– volume: 55
  start-page: 297
  year: 2023
  end-page: 337
  ident: bib5
  article-title: Modeling, analysis and control of robot–object nonsmooth underactuated Lagrangian systems: a tutorial overview and perspectives
  publication-title: Annu. Rev. Control
– volume: 39
  start-page: 2673
  year: 2006
  end-page: 2689
  ident: bib51
  article-title: Real-time subject-specific monitoring of internal deformations and stresses in the soft tissues of the foot: a new approach in gait analysis
  publication-title: J. Biomech.
– volume: B.V
  year: 2023
  ident: bib15
  article-title: Predictive multibody dynamic simulation of human neuromusculoskeletal systems: a review, Multibody System Dynamics
  publication-title: The Author(s), under exclusive licence to Springer Nature
– volume: 34
  start-page: 2393
  year: 1997
  end-page: 2428
  ident: bib19
  article-title: Indentation of solids with gradients in elastic properties: Part II. Axisymmetric indentors
  publication-title: Int. J. Solids Struct.
– volume: 42
  start-page: 447
  year: 2018
  end-page: 467
  ident: bib55
  article-title: A 3D ellipsoidal volumetric foot–ground contact model for forward dynamics
  publication-title: Multibody Syst. Dyn.
– volume: 57
  start-page: 1304
  year: 2023
  end-page: 1310
  ident: bib26
  article-title: Performance and symmetry measures during vertical jump testing at return to sport after ACL reconstruction
  publication-title: Br. J. Sports Med.
– start-page: 1
  year: 2009
  end-page: 13
  ident: bib35
  article-title: Ground foot interaction in human gait: modelling and simulation
  publication-title: 7th EUROMECH Solid Mech. Conf.
– volume: 22
  start-page: 2203
  year: 2022
  ident: bib12
  article-title: Validity and reliability of the Insole3 instrumented shoe insole for ground reaction force measurement during walking and running
  publication-title: Sensors
– volume: 31
  start-page: 357
  year: 2003
  end-page: 379
  ident: bib50
  article-title: Multibody simulation model of human walking
  publication-title: Mech. Based Des. Struct. Mach.
– volume: 24
  start-page: 255
  year: 2010
  end-page: 280
  ident: bib32
  article-title: A mathematical framework for rigid contact detection between quadric and superquadric surfaces
  publication-title: Multibody Syst. Dyn.
– volume: 2
  start-page: 65
  year: 2007
  end-page: 72
  ident: bib38
  article-title: Stabilization of a dynamic walking gait simulation
  publication-title: J. Comput. Nonlinear Dyn.
– volume: 1
  start-page: 1
  year: 2008
  end-page: 11
  ident: bib1
  article-title: Non-linear finite element modelling of anatomically detailed 3D foot model
  publication-title: Rep. Pap.
– volume: 221
  year: 2022
  ident: bib49
  article-title: Energy dissipation analysis for elastoplastic contact and dynamic dashpot models
  publication-title: Int. J. Mech. Sci.
– volume: 59
  start-page: 1
  year: 2017
  end-page: 8
  ident: bib27
  article-title: Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation
  publication-title: J. Biomech.
– volume: 73
  start-page: 68
  year: 2015
  end-page: 77
  ident: bib37
  article-title: A generalized control framework of assistive controllers and its application to lower limb exoskeletons
  publication-title: Rob. Auton. Syst.
– volume: 83
  start-page: 1796
  year: 2002
  end-page: 1801
  ident: bib25
  article-title: Plantar tissue stiffness in patients with diabetes mellitus and peripheral neuropathy
  publication-title: Arch. Phys. Med. Rehabil.
– start-page: 25
  year: 2009
  end-page: 43
  ident: bib57
  article-title: Multi-Step Forward Dynamic Gait Simulation
  publication-title: Multibody Dyn. Comput. methods Appl.
– volume: 30
  start-page: 247
  year: 2013
  end-page: 263
  ident: bib58
  publication-title: Multibody Syst. Dyn.
– volume: 46
  start-page: 1216
  year: 2018
  end-page: 1227
  ident: bib28
  article-title: Predictive simulations of neuromuscular coordination and joint-contact loading in human gait
  publication-title: Ann. Biomed. Eng.
– volume: 14
  year: 2024
  ident: bib53
  article-title: A review of foot–terrain interaction mechanics for heavy-duty legged robots
  publication-title: Appl. Sci.
– start-page: 4391
  year: 2015
  end-page: 4396
  ident: bib3
  article-title: Balance control strategy for legged robots with compliant contacts
  publication-title: Proc. - IEEE Int. Conf. Robot. Autom. 2015-June
– volume: 29
  start-page: 795
  year: 1996
  end-page: 798
  ident: bib20
  article-title: A two-part, viscoelastic foot model for use in gait simulations
  publication-title: J. Biomech.
– volume: 92
  start-page: 137
  year: 2019
  end-page: 145
  ident: bib13
  article-title: A viscoelastic ellipsoidal model of the mechanics of plantar tissues
  publication-title: J. Biomech.
– volume: 19
  start-page: 954
  year: 2015
  end-page: 963
  ident: bib54
  article-title: A superellipsoid-plane model for simulating foot-ground contact during human gait
  publication-title: Comput. Methods Biomech. Biomed. Engin.
– volume: 44
  start-page: 2542
  year: 2016
  end-page: 2557
  ident: bib40
  article-title: Direct methods for predicting movement biomechanics based upon optimal control theory with implementation in OpenSim
  publication-title: Ann. Biomed. Eng.
– start-page: 1092
  year: 2015
  end-page: 1100
  ident: bib36
  article-title: Underactuated approach for the control-based forward dynamic analysis of acquired gait motions
  publication-title: Multibody Dyn. 2015. Proc. ECCOMAS Themat. Conf. Multibody Dyn. 2015. Cent. Int. Mètodes Numèrics en Eng. (CIMNE)
– volume: 26
  year: 2015
  ident: bib24
  article-title: Interdisciplinary applications of kinematics: proceedings of the international conference, Lima, Peru, september 9-11, 2013
  publication-title: Mech. Mach. Sci.
– volume: 10
  start-page: 1
  year: 2022
  end-page: 25
  ident: bib29
  article-title: Online adaptive pid control for a multi-joint lower extremity exoskeleton system using improved particle swarm optimization
  publication-title: Machines
– volume: 114
  start-page: 650
  year: 1992
  end-page: 659
  ident: bib34
  article-title: Robotic manipulator collisions: modeling and simulation
  publication-title: J. Dyn. Syst. Meas. Control. Trans. ASME
– volume: 167
  year: 2022
  ident: bib41
  article-title: A compendium of contact force models inspired by Hunt and Crossley's cornerstone work
  publication-title: Mech. Mach. Theory
– volume: 31
  start-page: 847
  year: 1998
  end-page: 853
  ident: bib9
  article-title: A viscoelastic sphere model for the representation of plantar soft tissue during simulations
  publication-title: J. Biomech.
– volume: 2018
  year: 2018
  ident: bib52
  article-title: Design and performance evaluation of a wearable sensing system for lower-limb exoskeleton
  publication-title: Appl. Bionics Biomech.
– volume: 7
  start-page: 1
  year: 2023
  end-page: 4
  ident: bib18
  article-title: An affordable inkjet-printed foot sole sensor and machine learning for telehealth devices
  publication-title: IEEE Sensors Lett
– volume: 10
  start-page: 2342
  year: 2020
  ident: 10.1016/j.euromechsol.2024.105566_bib11
  article-title: Dynamic modeling of the dissipative contact and friction forces of a passive biped-walking robot
  publication-title: Appl. Sci.
  doi: 10.3390/app10072342
– volume: 34
  start-page: 2393
  year: 1997
  ident: 10.1016/j.euromechsol.2024.105566_bib19
  article-title: Indentation of solids with gradients in elastic properties: Part II. Axisymmetric indentors
  publication-title: Int. J. Solids Struct.
  doi: 10.1016/S0020-7683(96)00172-2
– volume: 19
  start-page: 1
  year: 2024
  ident: 10.1016/j.euromechsol.2024.105566_bib22
  article-title: Prediction of ground reaction forces and moments and joint kinematics and kinetics by inertial measurement units using 3D forward dynamics model
  publication-title: J. Biomech. Sci. Eng.
  doi: 10.1299/jbse.23-00130
– volume: 147
  start-page: 240
  year: 2016
  ident: 10.1016/j.euromechsol.2024.105566_bib44
  article-title: A finite element analysis of a human foot model to simulate neutral standing on ground
  publication-title: Procedia Eng.
  doi: 10.1016/j.proeng.2016.06.240
– volume: B.V
  year: 2023
  ident: 10.1016/j.euromechsol.2024.105566_bib15
  article-title: Predictive multibody dynamic simulation of human neuromusculoskeletal systems: a review, Multibody System Dynamics
  publication-title: The Author(s), under exclusive licence to Springer Nature
– volume: 8
  year: 2013
  ident: 10.1016/j.euromechsol.2024.105566_bib4
  article-title: Volumetric modeling and experimental validation of normal contact dynamic forces
  publication-title: J. Comput. Nonlinear Dyn.
– volume: 19
  start-page: 954
  year: 2015
  ident: 10.1016/j.euromechsol.2024.105566_bib54
  article-title: A superellipsoid-plane model for simulating foot-ground contact during human gait
  publication-title: Comput. Methods Biomech. Biomed. Engin.
  doi: 10.1080/10255842.2015.1081181
– volume: 167
  year: 2022
  ident: 10.1016/j.euromechsol.2024.105566_bib41
  article-title: A compendium of contact force models inspired by Hunt and Crossley's cornerstone work
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2021.104501
– volume: 6 A
  start-page: 477
  year: 2005
  ident: 10.1016/j.euromechsol.2024.105566_bib21
  article-title: A contact modeling method based on volumetric properties
  publication-title: Proc. ASME Int. Des. Eng. Tech. Conf. Comput. Inf. Eng. Conf. - DETC2005
– volume: 177
  year: 2022
  ident: 10.1016/j.euromechsol.2024.105566_bib42
  article-title: A review on foot-ground contact modeling strategies for human motion analysis
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2022.105046
– volume: 2
  start-page: 65
  year: 2007
  ident: 10.1016/j.euromechsol.2024.105566_bib38
  article-title: Stabilization of a dynamic walking gait simulation
  publication-title: J. Comput. Nonlinear Dyn.
  doi: 10.1115/1.2389230
– volume: 26
  year: 2015
  ident: 10.1016/j.euromechsol.2024.105566_bib24
  article-title: Interdisciplinary applications of kinematics: proceedings of the international conference, Lima, Peru, september 9-11, 2013
  publication-title: Mech. Mach. Sci.
  doi: 10.1007/978-3-319-10723-3
– volume: 135
  start-page: 51
  year: 2024
  ident: 10.1016/j.euromechsol.2024.105566_bib48
  article-title: An enhanced contact force model with accurate evaluation of the energy dissipation during contact-impact events in dynamical systems
  publication-title: Appl. Math. Model.
  doi: 10.1016/j.apm.2024.06.034
– volume: 39
  start-page: 2673
  year: 2006
  ident: 10.1016/j.euromechsol.2024.105566_bib51
  article-title: Real-time subject-specific monitoring of internal deformations and stresses in the soft tissues of the foot: a new approach in gait analysis
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2005.08.021
– volume: 25
  start-page: 357
  year: 2011
  ident: 10.1016/j.euromechsol.2024.105566_bib17
  article-title: On the continuous contact force models for soft materials in multibody dynamics
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-010-9237-4
– volume: 14
  year: 2024
  ident: 10.1016/j.euromechsol.2024.105566_bib53
  article-title: A review of foot–terrain interaction mechanics for heavy-duty legged robots
  publication-title: Appl. Sci.
  doi: 10.3390/app14156541
– volume: 24
  start-page: 255
  year: 2010
  ident: 10.1016/j.euromechsol.2024.105566_bib32
  article-title: A mathematical framework for rigid contact detection between quadric and superquadric surfaces
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-010-9220-0
– start-page: 1
  year: 2009
  ident: 10.1016/j.euromechsol.2024.105566_bib35
  article-title: Ground foot interaction in human gait: modelling and simulation
  publication-title: 7th EUROMECH Solid Mech. Conf.
– volume: 83
  start-page: 1796
  year: 2002
  ident: 10.1016/j.euromechsol.2024.105566_bib25
  article-title: Plantar tissue stiffness in patients with diabetes mellitus and peripheral neuropathy
  publication-title: Arch. Phys. Med. Rehabil.
  doi: 10.1053/apmr.2002.35661
– volume: 11
  start-page: 117
  year: 2023
  ident: 10.1016/j.euromechsol.2024.105566_bib45
  article-title: Agreement between force platform and smartphone application-derived measures of vertical jump height in youth grassroots soccer players
  publication-title: Sports
  doi: 10.3390/sports11060117
– volume: 44
  start-page: 2542
  year: 2016
  ident: 10.1016/j.euromechsol.2024.105566_bib40
  article-title: Direct methods for predicting movement biomechanics based upon optimal control theory with implementation in OpenSim
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-015-1538-6
– volume: 29
  start-page: 795
  year: 1996
  ident: 10.1016/j.euromechsol.2024.105566_bib20
  article-title: A two-part, viscoelastic foot model for use in gait simulations
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(95)00141-7
– start-page: 1092
  year: 2015
  ident: 10.1016/j.euromechsol.2024.105566_bib36
  article-title: Underactuated approach for the control-based forward dynamic analysis of acquired gait motions
– volume: 92
  start-page: 137
  year: 2019
  ident: 10.1016/j.euromechsol.2024.105566_bib13
  article-title: A viscoelastic ellipsoidal model of the mechanics of plantar tissues
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2019.05.041
– volume: 7
  start-page: 1
  year: 2023
  ident: 10.1016/j.euromechsol.2024.105566_bib18
  article-title: An affordable inkjet-printed foot sole sensor and machine learning for telehealth devices
  publication-title: IEEE Sensors Lett
  doi: 10.1109/LSENS.2023.3279392
– volume: 59
  start-page: 1
  year: 2017
  ident: 10.1016/j.euromechsol.2024.105566_bib27
  article-title: Three-dimensional data-tracking dynamic optimization simulations of human locomotion generated by direct collocation
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2017.04.038
– volume: 221
  year: 2022
  ident: 10.1016/j.euromechsol.2024.105566_bib49
  article-title: Energy dissipation analysis for elastoplastic contact and dynamic dashpot models
  publication-title: Int. J. Mech. Sci.
  doi: 10.1016/j.ijmecsci.2022.107214
– volume: 28
  start-page: 1384
  year: 2022
  ident: 10.1016/j.euromechsol.2024.105566_bib14
  article-title: The influence of partial weight bearing on plantar peak forces using three different types of postoperative shoes
  publication-title: Foot Ankle Surg.
  doi: 10.1016/j.fas.2022.07.007
– volume: 114
  start-page: 650
  year: 1992
  ident: 10.1016/j.euromechsol.2024.105566_bib34
  article-title: Robotic manipulator collisions: modeling and simulation
  publication-title: J. Dyn. Syst. Meas. Control. Trans. ASME
  doi: 10.1115/1.2897737
– volume: 34
  start-page: 1441
  year: 2018
  ident: 10.1016/j.euromechsol.2024.105566_bib8
  article-title: Multicontact locomotion of legged robots
  publication-title: IEEE Trans. Robot.
  doi: 10.1109/TRO.2018.2862902
– start-page: 849
  year: 2017
  ident: 10.1016/j.euromechsol.2024.105566_bib2
  article-title: Kinematics velocity and dynamic modeling of biped robot
– volume: 57
  start-page: 1304
  year: 2023
  ident: 10.1016/j.euromechsol.2024.105566_bib26
  article-title: Performance and symmetry measures during vertical jump testing at return to sport after ACL reconstruction
  publication-title: Br. J. Sports Med.
  doi: 10.1136/bjsports-2022-106588
– start-page: 4391
  year: 2015
  ident: 10.1016/j.euromechsol.2024.105566_bib3
  article-title: Balance control strategy for legged robots with compliant contacts
  publication-title: Proc. - IEEE Int. Conf. Robot. Autom. 2015-June
– volume: 73
  start-page: 68
  year: 2015
  ident: 10.1016/j.euromechsol.2024.105566_bib37
  article-title: A generalized control framework of assistive controllers and its application to lower limb exoskeletons
  publication-title: Rob. Auton. Syst.
  doi: 10.1016/j.robot.2014.10.001
– volume: 162
  year: 2021
  ident: 10.1016/j.euromechsol.2024.105566_bib23
  article-title: A new concept of contact joint to model the geometric foot-environment contacts for efficiently determining possible stances for legged robots
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2021.104327
– volume: 31
  start-page: 357
  year: 2003
  ident: 10.1016/j.euromechsol.2024.105566_bib50
  article-title: Multibody simulation model of human walking
  publication-title: Mech. Based Des. Struct. Mach.
  doi: 10.1081/SME-120022855
– volume: 42
  start-page: 447
  year: 2018
  ident: 10.1016/j.euromechsol.2024.105566_bib55
  article-title: A 3D ellipsoidal volumetric foot–ground contact model for forward dynamics
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-017-9605-4
– volume: 39
  start-page: 328
  year: 2014
  ident: 10.1016/j.euromechsol.2024.105566_bib46
  article-title: Measurement of functional heel pad behaviour in-shoe during gait using orthotic embedded ultrasonography
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2013.07.118
– start-page: 25
  year: 2009
  ident: 10.1016/j.euromechsol.2024.105566_bib57
  article-title: Multi-Step Forward Dynamic Gait Simulation
  publication-title: Multibody Dyn. Comput. methods Appl.
– volume: 46
  start-page: 1216
  year: 2018
  ident: 10.1016/j.euromechsol.2024.105566_bib28
  article-title: Predictive simulations of neuromuscular coordination and joint-contact loading in human gait
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-018-2026-6
– volume: 18
  start-page: 17
  year: 2003
  ident: 10.1016/j.euromechsol.2024.105566_bib10
  article-title: Effects of total contact insoles on the plantar stress redistribution: a finite element analysis
  publication-title: Clin. Biomech.
  doi: 10.1016/S0268-0033(03)00080-9
– volume: 26
  start-page: 1087
  year: 1981
  ident: 10.1016/j.euromechsol.2024.105566_bib39
  article-title: A singular perturbation approach to modeling and control of Markov chains
  publication-title: IEEE Trans. Automat. Contr.
  doi: 10.1109/TAC.1981.1102780
– volume: IUS
  start-page: 2112
  year: 2014
  ident: 10.1016/j.euromechsol.2024.105566_bib47
  article-title: Development of a wearable ultrasonic sensor and method for continuous monitoring of mechanical properties of plantar soft tissue for diabetic patients
  publication-title: IEEE Int. Ultrason. Symp.
– volume: 2018
  year: 2018
  ident: 10.1016/j.euromechsol.2024.105566_bib52
  article-title: Design and performance evaluation of a wearable sensing system for lower-limb exoskeleton
  publication-title: Appl. Bionics Biomech.
  doi: 10.1155/2018/8610458
– volume: 30
  start-page: 247
  year: 2013
  ident: 10.1016/j.euromechsol.2024.105566_bib58
  article-title: Solution methods for the double-support indeterminacy in human gait
  publication-title: Multibody Syst. Dyn.
  doi: 10.1007/s11044-013-9363-x
– volume: 4
  start-page: 77
  year: 2016
  ident: 10.1016/j.euromechsol.2024.105566_bib33
  article-title: Muscle synergies facilitate computational prediction of subject-specific walking motions
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2016.00077
– volume: 10
  start-page: 1
  year: 2022
  ident: 10.1016/j.euromechsol.2024.105566_bib29
  article-title: Online adaptive pid control for a multi-joint lower extremity exoskeleton system using improved particle swarm optimization
  publication-title: Machines
– volume: 22
  start-page: 2203
  year: 2022
  ident: 10.1016/j.euromechsol.2024.105566_bib12
  article-title: Validity and reliability of the Insole3 instrumented shoe insole for ground reaction force measurement during walking and running
  publication-title: Sensors
  doi: 10.3390/s22062203
– volume: 31
  start-page: 847
  year: 1998
  ident: 10.1016/j.euromechsol.2024.105566_bib9
  article-title: A viscoelastic sphere model for the representation of plantar soft tissue during simulations
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(98)00085-2
– volume: 55
  start-page: 297
  year: 2023
  ident: 10.1016/j.euromechsol.2024.105566_bib5
  article-title: Modeling, analysis and control of robot–object nonsmooth underactuated Lagrangian systems: a tutorial overview and perspectives
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2022.12.002
– volume: 1
  start-page: 1
  year: 2008
  ident: 10.1016/j.euromechsol.2024.105566_bib1
  article-title: Non-linear finite element modelling of anatomically detailed 3D foot model
  publication-title: Rep. Pap.
– volume: 140
  year: 2018
  ident: 10.1016/j.euromechsol.2024.105566_bib43
  article-title: Dynamic simulation of human gait model with predictive capability
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4038739
– volume: 184
  year: 2023
  ident: 10.1016/j.euromechsol.2024.105566_bib16
  article-title: Contact-impact events with friction in multibody dynamics: back to basics
  publication-title: Mech. Mach. Theory
  doi: 10.1016/j.mechmachtheory.2023.105305
SSID ssj0002021
Score 2.422902
Snippet Accurate plantar pressure models play a pivotal in predicting human gait dynamics and have broad applications, including the development of exoskeletons,...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 105566
SubjectTerms Biomechanical modeling
Foot-ground contact
Human biomechanics
Parameter identification
Viscoelastic ellipsoid
Title Mechanical modeling of plantar pressure during human walking in different terrains: Experiments and analysis
URI https://dx.doi.org/10.1016/j.euromechsol.2024.105566
Volume 111
WOSCitedRecordID wos001423286300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0997-7538
  databaseCode: AIEXJ
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002021
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ta9RAEF7Oq4hffBdrVVbwm0Rus7nb3eKXUk6qaFGocN9CdrM5UmNS764vP6k_09nXXKWlVRBCCEt2k8w82Z0dZuZB6I3myqzzpgKAzJKMS51IVZVJyUtCtZgQxSpLNsH29_lsJr4OBuchF-akYW3Lz87E0X9VNbSBsk3q7F-oOw4KDXANSoczqB3ON1L8F22Sea3sLc1NCGtuQIamrrXdXy90SFB0JH2nRfPDZ7cEypTVWxC5IZCwQXPTyASw9PVdXTGTKz373sr96d_GkR5bX2vX1GW05D_XxxZIdfGrjljyPuy9rp3LOqIXpDx3kf7tvNLx7ujy_laf-lbvxUjHfcxgcEcKlsDWiV-Ymf087OZWS-U5uXTadx6IQ1MrszPfBXqErX-avev7XCy1_ccSGAMTQ8zbYb42VG6Gyt1Qt9BGysaCD9HGzsfp7FNc9eEey84YvuMOet3HEl7xXpfbQmv2zcEDdM9vTPCOA9RDNNDtI3Tfb1KwXwKWj1HT4wsHfOGuwh5fOOALO3xhiy_s8YXrFkd84YCvbbyGLgzowgFdT9D3D9OD3b3EU3YkiqZklRRgDxFN4D8XmsmqEAUliowkWMlgmTOtSSUUo5KVtMxGSk5GJZOUKpXpcWHYJZ-iYdu1-hnCTCnKSp6RytQwpFKMKBySMVMobEL1JuJBeLny9ewNrUqTX6vETZTGrkeuqMtNOr0PGsq9deqszhxQeH335__yzC10t_9ZXqDhanGsX6Lb6mRVLxevPAR_A0d_vGU
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mechanical+modeling+of+plantar+pressure+during+human+walking+in+different+terrains%3A+Experiments+and+analysis&rft.jtitle=European+journal+of+mechanics%2C+A%2C+Solids&rft.au=Liu%2C+Jiaqi&rft.au=Fang%2C+Hongbin&rft.au=Feng%2C+Mingfei&rft.au=Zhang%2C+Qiwei&rft.date=2025-05-01&rft.issn=0997-7538&rft.volume=111&rft.spage=105566&rft_id=info:doi/10.1016%2Fj.euromechsol.2024.105566&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_euromechsol_2024_105566
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0997-7538&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0997-7538&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0997-7538&client=summon