Robust prediction of workability properties for 3D printing with steel slag aggregate using bayesian regularization and evolution algorithm
This study addresses the growing interest in utilizing steel slag as a sustainable alternative to river sand in additive manufacturing of concrete, driven by the increasing scarcity of natural resources. The rheological properties of fresh material significantly impact the quality of 3D-printed fila...
Uloženo v:
| Vydáno v: | Construction & building materials Ročník 431; s. 136470 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
14.06.2024
|
| Témata: | |
| ISSN: | 0950-0618 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This study addresses the growing interest in utilizing steel slag as a sustainable alternative to river sand in additive manufacturing of concrete, driven by the increasing scarcity of natural resources. The rheological properties of fresh material significantly impact the quality of 3D-printed filament, necessitating suitable workability for printability. The research focuses on evaluating the influence of steel slag aggregate and key admixtures, such as silica fume and superplasticizer, on the workability properties of fresh concrete. Through an extensive series of 90 slump tests, optimal combinations ensuring the desired workability for 3D printing applications were identified. To enhance the manufacturing of fresh concrete and develop user-friendly tools, a novel soft computing approach is introduced—Adaptive Elitist Differential Evolution coupled with Bayesian Regularization Artificial Neural Network (aeDE-BRANN). This advanced model considers five critical input parameters: silica fume to Portland cement ratio, steel slag to cement ratio, water to cement ratio, cement content, and superplasticizer dosage. The model outputs crucial workability metrics, including slump flow and slump. In a comprehensive comparative study, the aeDE-BRANN framework demonstrates superior performance in terms of both simplicity and efficiency when compared to other forecasting models. Feature analysis techniques, including Shapley values from game theory and partial dependence plots, provide valuable insights into the intricate relationships between input variables and workability properties. The findings underscore the water to cement ratio as the most influential factor on workability, followed by silica fume to Portland cement ratio and steel slag to cement ratio. This study contributes a reliable tool for predicting workability properties, aiding in the selection of suitable steel slag aggregate and admixtures. Ultimately, it facilitates the sustainable and innovative evolution of 3D concrete printing practices.
•aeDE-BRNN Excels in 3D Printing Prediction: Outperforms XGB, DT, SVM, and GD-ANN, enabling practical decisions.•Critical Workability Factors Revealed: SHAP values and Partial Dependence Plots identify key determinants.•Holistic Integration Drives Innovation: aeDE-BRNN, feature analysis, and PDPs synergize for advancements.•Precise Material Optimization: Steel slag aggregate integration and model insights enable enhanced efficiency. |
|---|---|
| AbstractList | This study addresses the growing interest in utilizing steel slag as a sustainable alternative to river sand in additive manufacturing of concrete, driven by the increasing scarcity of natural resources. The rheological properties of fresh material significantly impact the quality of 3D-printed filament, necessitating suitable workability for printability. The research focuses on evaluating the influence of steel slag aggregate and key admixtures, such as silica fume and superplasticizer, on the workability properties of fresh concrete. Through an extensive series of 90 slump tests, optimal combinations ensuring the desired workability for 3D printing applications were identified. To enhance the manufacturing of fresh concrete and develop user-friendly tools, a novel soft computing approach is introduced—Adaptive Elitist Differential Evolution coupled with Bayesian Regularization Artificial Neural Network (aeDE-BRANN). This advanced model considers five critical input parameters: silica fume to Portland cement ratio, steel slag to cement ratio, water to cement ratio, cement content, and superplasticizer dosage. The model outputs crucial workability metrics, including slump flow and slump. In a comprehensive comparative study, the aeDE-BRANN framework demonstrates superior performance in terms of both simplicity and efficiency when compared to other forecasting models. Feature analysis techniques, including Shapley values from game theory and partial dependence plots, provide valuable insights into the intricate relationships between input variables and workability properties. The findings underscore the water to cement ratio as the most influential factor on workability, followed by silica fume to Portland cement ratio and steel slag to cement ratio. This study contributes a reliable tool for predicting workability properties, aiding in the selection of suitable steel slag aggregate and admixtures. Ultimately, it facilitates the sustainable and innovative evolution of 3D concrete printing practices.
•aeDE-BRNN Excels in 3D Printing Prediction: Outperforms XGB, DT, SVM, and GD-ANN, enabling practical decisions.•Critical Workability Factors Revealed: SHAP values and Partial Dependence Plots identify key determinants.•Holistic Integration Drives Innovation: aeDE-BRNN, feature analysis, and PDPs synergize for advancements.•Precise Material Optimization: Steel slag aggregate integration and model insights enable enhanced efficiency. |
| ArticleNumber | 136470 |
| Author | Van Tran, Mien Nguyen, Tan Ly, Duy-Khuong Tran, Nhi |
| Author_xml | – sequence: 1 givenname: Mien surname: Van Tran fullname: Van Tran, Mien organization: Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Viet Nam – sequence: 2 givenname: Duy-Khuong surname: Ly fullname: Ly, Duy-Khuong organization: Laboratory for Computational Mechanics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam – sequence: 3 givenname: Tan orcidid: 0000-0003-4909-4258 surname: Nguyen fullname: Nguyen, Tan email: nguyentan@tdtu.edu.vn organization: Smart Computing in Civil Engineering Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam – sequence: 4 givenname: Nhi orcidid: 0000-0002-4779-6865 surname: Tran fullname: Tran, Nhi organization: Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Viet Nam |
| BookMark | eNqNkM1KAzEQx3NQ0KrvEB-gNdmPrHsSqZ9QEETPYTY7WVPTpCRZpb6CL21qPYgnLxNmhvmF_29C9px3SMgpZzPOuDhbzpR33Whsv4I0K1hRzXgpqobtkUPW1mzKBD8_IJMYl4wxUYjikHw--m6Mia4D9kYl4x31mr778AqdsSZt8savMSSDkWofaHmVJ8Yl4wb6btILjQnR0mhhoDAMAQdISMe43XewwWjA0TwdLQTzAd8_gOspvnk77jo7-JBJq2Oyr8FGPPl5j8jzzfXT_G66eLi9n18upqoseJpCgSVr-wYr1jcAvO6ZqmqsNVdaC161okHVNKih46rqiqYtAPtGC5FLVbPyiLQ7rgo-xoBa5kQrCBvJmdyalEv5y6TcmpQ7k_n24s-tMuk7VQpg7L8I8x0Bc8Q3g0FGZdCp7D-gSrL35h-UL9-lob0 |
| CitedBy_id | crossref_primary_10_1016_j_jobe_2024_111268 crossref_primary_10_1016_j_cscm_2025_e04254 crossref_primary_10_1016_j_envsoft_2025_106570 crossref_primary_10_1016_j_enganabound_2025_106227 crossref_primary_10_1016_j_jrmge_2024_10_012 crossref_primary_10_1038_s41598_024_79287_1 crossref_primary_10_3390_math12132077 crossref_primary_10_1016_j_istruc_2025_109831 crossref_primary_10_1016_j_istruc_2025_109707 crossref_primary_10_1016_j_conbuildmat_2024_139664 crossref_primary_10_1016_j_susmat_2024_e01164 crossref_primary_10_1038_s41598_025_98945_6 crossref_primary_10_3390_buildings14113422 |
| Cites_doi | 10.1109/45.329294 10.1007/s10163-023-01713-9 10.1016/j.asej.2020.01.007 10.1016/j.conbuildmat.2022.127151 10.1016/j.jclepro.2020.124447 10.1016/j.oceaneng.2024.116987 10.1080/00218464.2021.2001335 10.1016/j.conbuildmat.2021.125561 10.1016/j.conbuildmat.2018.10.129 10.1007/978-3-319-47898-2_34 10.1016/j.conbuildmat.2018.12.150 10.1023/A:1008202821328 10.1162/neco.1992.4.3.448 10.1016/j.istruc.2023.03.128 10.1016/j.oceaneng.2024.117758 10.1177/1687814018822880 10.18848/2154-8587/CGP/v09i01/57-81 10.1016/j.jclepro.2021.126919 10.1016/j.conbuildmat.2018.12.061 10.1016/j.compstruc.2015.11.014 10.1002/mawe.201700279 10.1016/j.ins.2012.01.017 10.1016/j.conbuildmat.2020.118779 10.1109/TEVC.2008.927706 10.1016/j.conbuildmat.2018.11.252 10.1016/j.engstruct.2020.110927 10.1016/j.compositesb.2019.106968 10.1016/j.conbuildmat.2017.12.051 10.1007/s10898-012-9897-0 10.1016/j.engstruct.2022.114062 10.1016/j.engstruct.2022.115123 10.1016/j.cemconres.2020.106070 10.1016/j.compgeo.2024.106086 10.1080/00949655.2017.1300663 10.1016/j.conbuildmat.2020.118654 10.1016/j.sandf.2022.101203 10.1016/j.conbuildmat.2021.123938 10.22214/ijraset.2017.2038 10.1016/S0169-7439(97)00061-0 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.conbuildmat.2024.136470 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_conbuildmat_2024_136470 S0950061824016118 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29F 4.4 457 4G. 5GY 5VS 6J9 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIKJ AAKOC AALRI AAOAW AAQFI AAXKI AAXUO ABFRF ABJNI ABMAC ABXRA ACDAQ ACGFO ACGFS ACRLP ADBBV ADEZE ADHUB ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEZYN AFJKZ AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANKPU AXJTR BAAKF BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IAO IEA IGG IHE IHM IOF ISM J1W JJJVA KOM LY7 M24 M41 MAGPM MO0 N95 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PV9 Q38 ROL RPZ RZL SDF SDG SES SEW SPC SPCBC SSM SST SSZ T5K UNMZH XI7 ~G- 9DU AAQXK AATTM AAYWO AAYXX ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEUPX AFPUW AHDLI AI. AIGII AIIUN AKBMS AKYEP APXCP ASPBG AVWKF AZFZN BAIFH BBTPI CITATION EFKBS EFLBG EJD FEDTE FGOYB G-2 HVGLF HZ~ ITC R2- RNS SET SMS VH1 WUQ ZMT ~HD |
| ID | FETCH-LOGICAL-c321t-a2e309d7e40d7aa15d0c45e5f1cff614967ec77efab1c4b2792aed7f66d7f4503 |
| ISICitedReferencesCount | 17 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001265824100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0950-0618 |
| IngestDate | Tue Nov 18 22:14:44 EST 2025 Sat Nov 29 02:16:44 EST 2025 Sat Feb 08 15:52:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Steel slag aggregate 3D concrete printing Additive Manufacturing Workability properties Feature analysis Soft computing approach |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c321t-a2e309d7e40d7aa15d0c45e5f1cff614967ec77efab1c4b2792aed7f66d7f4503 |
| ORCID | 0000-0003-4909-4258 0000-0002-4779-6865 |
| ParticipantIDs | crossref_primary_10_1016_j_conbuildmat_2024_136470 crossref_citationtrail_10_1016_j_conbuildmat_2024_136470 elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2024_136470 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-06-14 |
| PublicationDateYYYYMMDD | 2024-06-14 |
| PublicationDate_xml | – month: 06 year: 2024 text: 2024-06-14 day: 14 |
| PublicationDecade | 2020 |
| PublicationTitle | Construction & building materials |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Dong, Wang, Chen, Tan, Gu (bib20) 2021; 282 Tay, Qian, Tan (bib38) 2019; 174 K. Demertzis, L. Iliadis, Adaptive elitist differential evolution extreme learning machines on big data: intelligent recognition of invasive species, Advances in Big Data: Proceedings of the 2nd INNS Conference on Big Data, October 23-25, 2016, Thessaloniki, Greece 2, Springer, 2017, pp. 333-345. Geng, Luo, Liu, Li, Hou, Long (bib24) 2023; 18 Nguyen-Thoi, Ly, Truong, Nguyen, Mahesh (bib37) 2022; 259 Zhang, Zhang, She, Yang, Liu, Yang (bib8) 2019; 201 Xiao, Zou, Yu, Wang, Ding, Zhu, Yu, Li, Duan, Wu, Li (bib16) 2020; 32 Vo-Van, Nguyen-Thoi, Vo-Duy, Ho-Huu, Nguyen-Trang (bib34) 2017; 87 Liu, Li, Weng, Wong, Tan (bib22) 2019; 198 Tran, Vu, Nguyen (bib39) 2023; 18 Nguyen-Trang, Nguyen-Thoi, Truong-Khac, Pham-Chau, Ao (bib35) 2019; 2019 X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the thirteenth international conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249-256. Khan, Sanchez, Zhou (bib6) 2020; 133 R.M. Neal, Bayesian training of back-propagation networks by the hybrid Monte Carlo method, 1992. Nguyen, Ly, Nguyen-Thoi, Nguyen, Doan (bib44) 2022; 62 MacKay (bib29) 1992; 4 Ma, Li, Wang (bib12) 2018; 162 Padhye, Bhardawaj, Deb (bib48) 2012; 55 Goh, Yeong (bib23) 2022; 70 Shiau, Nguyen, Ly-Khuong (bib26) 2024; 297 Bekkeri, Shetty, Nayak (bib11) 2023; 25 Liu, Li, Gunasekara, Fox, Tran (bib17) 2022; 314 Hemeida, Hassan, Mohamed, Alkhalaf, Mahmoud, Senjyu, El-Din (bib25) 2020; 11 Qin, Huang, Suganthan (bib46) 2009; 13 van Woensel, van Oirschot, Burgmans, Mohammadi, Hermans (bib4) 2018; 9 Marshall Raman (bib10) 2017; V Burden, Winkler (bib31) 2008; 458 Storn, Price (bib45) 1997; 11 Panda, Tay, Paul, Tan (bib2) 2018; 49 Paolini, Kollmannsberger, Rank (bib5) 2019; 30 Guo, Xie, Zheng, Li (bib21) 2018; 192 Gouravaraju, Narayan, Sauer, Gautam (bib43) 2021; 99 Li, Zhang, Yuan, Wang, Zhang, Chen, Zhang (bib13) 2020; 249 Nguyen, Nguyen, Truong, Doan, Tran (bib28) 2023; 51 Pan, Jiang, Ji (bib9) 2022; 330 Ting, Tay, Tan (bib18) 2021; 300 Nguyen-Van, Liu, Li, Zhang, Nguyen-Xuan, Tran (bib7) 2023; 274 Kayri (bib32) 2016; 21 Mangalathu, Hwang, Jeon (bib50) 2020; 219 Ho-Huu, Nguyen-Thoi, Vo-Duy, Nguyen-Trang (bib33) 2016; 165 Svozil, Kvasnicka, Pospichal (bib40) 1997; 39 Nguyen, Bui-Ngoc, Shiau, Nguyen-Dinh (bib49) 2024; 304 Jia, Wang, Cai, Jin (bib47) 2013; 222 Abdulhameed, Al-Ahmari, Ameen, Mian (bib1) 2019; 11 Bebis, Georgiopoulos (bib41) 1994; 13 Nguyen, Shiau, Ly (bib27) 2024; 167 Chen, Veer, Çopuroğlu (bib3) 2017; 62 Dai, Zhu, Zhai, Wu, Yin, Qian, Hua (bib14) 2021; 299 Ding, Xiao, Qin, Duan (bib15) 2020; 248 Pan, Zhou, Jiang, Xu, Jin, Ma, Zhuang, Diao, Zhang, Si, Chen (bib19) 2019; 200 Burden (10.1016/j.conbuildmat.2024.136470_bib31) 2008; 458 10.1016/j.conbuildmat.2024.136470_bib30 van Woensel (10.1016/j.conbuildmat.2024.136470_bib4) 2018; 9 Nguyen (10.1016/j.conbuildmat.2024.136470_bib44) 2022; 62 Mangalathu (10.1016/j.conbuildmat.2024.136470_bib50) 2020; 219 Shiau (10.1016/j.conbuildmat.2024.136470_bib26) 2024; 297 10.1016/j.conbuildmat.2024.136470_bib36 Goh (10.1016/j.conbuildmat.2024.136470_bib23) 2022; 70 Svozil (10.1016/j.conbuildmat.2024.136470_bib40) 1997; 39 Guo (10.1016/j.conbuildmat.2024.136470_bib21) 2018; 192 Padhye (10.1016/j.conbuildmat.2024.136470_bib48) 2012; 55 Abdulhameed (10.1016/j.conbuildmat.2024.136470_bib1) 2019; 11 Panda (10.1016/j.conbuildmat.2024.136470_bib2) 2018; 49 Bebis (10.1016/j.conbuildmat.2024.136470_bib41) 1994; 13 Nguyen (10.1016/j.conbuildmat.2024.136470_bib28) 2023; 51 Gouravaraju (10.1016/j.conbuildmat.2024.136470_bib43) 2021; 99 Ting (10.1016/j.conbuildmat.2024.136470_bib18) 2021; 300 Nguyen-Thoi (10.1016/j.conbuildmat.2024.136470_bib37) 2022; 259 Paolini (10.1016/j.conbuildmat.2024.136470_bib5) 2019; 30 Li (10.1016/j.conbuildmat.2024.136470_bib13) 2020; 249 Liu (10.1016/j.conbuildmat.2024.136470_bib17) 2022; 314 Bekkeri (10.1016/j.conbuildmat.2024.136470_bib11) 2023; 25 Dai (10.1016/j.conbuildmat.2024.136470_bib14) 2021; 299 Tran (10.1016/j.conbuildmat.2024.136470_bib39) 2023; 18 MacKay (10.1016/j.conbuildmat.2024.136470_bib29) 1992; 4 Chen (10.1016/j.conbuildmat.2024.136470_bib3) 2017; 62 Xiao (10.1016/j.conbuildmat.2024.136470_bib16) 2020; 32 Storn (10.1016/j.conbuildmat.2024.136470_bib45) 1997; 11 Nguyen (10.1016/j.conbuildmat.2024.136470_bib27) 2024; 167 Ma (10.1016/j.conbuildmat.2024.136470_bib12) 2018; 162 Qin (10.1016/j.conbuildmat.2024.136470_bib46) 2009; 13 Pan (10.1016/j.conbuildmat.2024.136470_bib19) 2019; 200 Liu (10.1016/j.conbuildmat.2024.136470_bib22) 2019; 198 Khan (10.1016/j.conbuildmat.2024.136470_bib6) 2020; 133 Ding (10.1016/j.conbuildmat.2024.136470_bib15) 2020; 248 Nguyen (10.1016/j.conbuildmat.2024.136470_bib49) 2024; 304 Marshall Raman (10.1016/j.conbuildmat.2024.136470_bib10) 2017; V 10.1016/j.conbuildmat.2024.136470_bib42 Dong (10.1016/j.conbuildmat.2024.136470_bib20) 2021; 282 Nguyen-Trang (10.1016/j.conbuildmat.2024.136470_bib35) 2019; 2019 Tay (10.1016/j.conbuildmat.2024.136470_bib38) 2019; 174 Nguyen-Van (10.1016/j.conbuildmat.2024.136470_bib7) 2023; 274 Jia (10.1016/j.conbuildmat.2024.136470_bib47) 2013; 222 Geng (10.1016/j.conbuildmat.2024.136470_bib24) 2023; 18 Hemeida (10.1016/j.conbuildmat.2024.136470_bib25) 2020; 11 Vo-Van (10.1016/j.conbuildmat.2024.136470_bib34) 2017; 87 Zhang (10.1016/j.conbuildmat.2024.136470_bib8) 2019; 201 Ho-Huu (10.1016/j.conbuildmat.2024.136470_bib33) 2016; 165 Pan (10.1016/j.conbuildmat.2024.136470_bib9) 2022; 330 Kayri (10.1016/j.conbuildmat.2024.136470_bib32) 2016; 21 |
| References_xml | – volume: 200 start-page: 570 year: 2019 end-page: 577 ident: bib19 article-title: Investigating the effects of steel slag powder on the properties of self-compacting concrete with recycled aggregates publication-title: Constr. Build. Mater. – volume: 18 year: 2023 ident: bib39 article-title: Simplified assessment for one-part 3D-printable geopolymer concrete based on slump and slump flow measurements publication-title: Case Stud. Constr. Mater. – volume: 55 start-page: 771 year: 2012 end-page: 799 ident: bib48 article-title: Improving differential evolution through a unified approach publication-title: J. Glob. Optim. – reference: K. Demertzis, L. Iliadis, Adaptive elitist differential evolution extreme learning machines on big data: intelligent recognition of invasive species, Advances in Big Data: Proceedings of the 2nd INNS Conference on Big Data, October 23-25, 2016, Thessaloniki, Greece 2, Springer, 2017, pp. 333-345. – volume: 219 year: 2020 ident: bib50 article-title: Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach publication-title: Eng. Struct. – volume: V start-page: 241 year: 2017 end-page: 246 ident: bib10 article-title: Study on Replacement Level of Concrete Waste as Fine Aggregate in Concrete publication-title: Int. J. Res. Appl. Sci. Eng. Technol. – volume: 4 start-page: 448 year: 1992 end-page: 472 ident: bib29 article-title: A practical Bayesian framework for backpropagation networks publication-title: Neural Comput. – volume: 49 start-page: 666 year: 2018 end-page: 673 ident: bib2 article-title: Current challenges and future potential of 3D concrete printing publication-title: Mater. und Werkst. – volume: 330 year: 2022 ident: bib9 article-title: Interlayer bonding investigation of 3D printing cementitious materials with fluidity-retaining polycarboxylate superplasticizer and high-dispersion polycarboxylate superplasticizer publication-title: Constr. Build. Mater. – volume: 32 year: 2020 ident: bib16 article-title: 3D recycled mortar printing: System development, process design, material properties and on-site printing publication-title: J. Build. Eng. – volume: 51 start-page: 1525 year: 2023 end-page: 1538 ident: bib28 article-title: Corrosion effect on bond behavior between rebar and concrete using Bayesian regularized feed-forward neural network publication-title: Structures – volume: 201 start-page: 278 year: 2019 end-page: 285 ident: bib8 article-title: Rheological and harden properties of the high-thixotropy 3D printing concrete publication-title: Constr. Build. Mater. – volume: 297 year: 2024 ident: bib26 article-title: Unraveling seismic uplift behavior of plate anchors in frictional-cohesive soils: A comprehensive analysis through stability factors and machine learning publication-title: Ocean Eng. – volume: 458 start-page: 25 year: 2008 end-page: 44 ident: bib31 article-title: Bayesian regularization of neural networks publication-title: Methods Mol. Biol. – volume: 13 start-page: 398 year: 2009 end-page: 417 ident: bib46 article-title: Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization publication-title: IEEE Trans. Evolut. Comput. – volume: 62 year: 2022 ident: bib44 article-title: Prediction of axial load bearing capacity of PHC nodular pile using Bayesian regularization artificial neural network publication-title: Soils Found. – volume: 99 start-page: 92 year: 2021 end-page: 115 ident: bib43 article-title: A Bayesian regularization-backpropagation neural network model for peeling computations publication-title: J. Adhes. – volume: 304 start-page: 117758 year: 2024 ident: bib49 article-title: Optimizing load-displacement prediction for bored piles with the 3mSOS algorithm and neural networks publication-title: Ocean Eng – volume: 62 start-page: 167 year: 2017 end-page: 194 ident: bib3 article-title: A critical review of 3D concrete printing as a low CO2 concrete approach publication-title: Heron – volume: 299 year: 2021 ident: bib14 article-title: Stability of steel slag as fine aggregate and its application in 3D printing materials publication-title: Constr. Build. Mater. – volume: 167 year: 2024 ident: bib27 article-title: Enhanced earth pressure determination with negative wall-soil friction using soft computing publication-title: Comput. Geotech. – volume: 70 start-page: 95 year: 2022 end-page: 100 ident: bib23 article-title: Applications of machine learning in 3D printing publication-title: Mater. Today.: Proc. – volume: 249 year: 2020 ident: bib13 article-title: Preparation and microstructural characterization of a novel 3D printable building material composed of copper tailings and iron tailings publication-title: Constr. Build. Mater. – volume: 11 start-page: 341 year: 1997 ident: bib45 article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. – volume: 18 year: 2023 ident: bib24 article-title: Research status and prospect of machine learning in construction 3D printing publication-title: Case Stud. Constr. Mater. – volume: 248 year: 2020 ident: bib15 article-title: Mechanical behavior of 3D printed mortar with recycled sand at early ages publication-title: Constr. Build. Mater. – volume: 174 year: 2019 ident: bib38 article-title: Printability region for 3D concrete printing using slump and slump flow test publication-title: Compos. Part B: Eng. – volume: 39 start-page: 43 year: 1997 end-page: 62 ident: bib40 article-title: Introduction to multi-layer feed-forward neural networks publication-title: Chemom. Intell. Lab. Syst. – volume: 9 start-page: 57 year: 2018 end-page: 81 ident: bib4 article-title: Printing architecture: an overview of existing and promising additive manufacturing methods and their application in the building industry publication-title: Int. J. Constr. Environ. – volume: 21 start-page: 20 year: 2016 ident: bib32 article-title: Predictive Abilities of Bayesian Regularization and Levenberg–Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data publication-title: Math. Comput. Appl. – volume: 222 start-page: 302 year: 2013 end-page: 322 ident: bib47 article-title: An improved (μ+λ)-constrained differential evolution for constrained optimization publication-title: Inf. Sci. – volume: 165 start-page: 59 year: 2016 end-page: 75 ident: bib33 article-title: An adaptive elitist differential evolution for optimization of truss structures with discrete design variables publication-title: Comput. Struct. – volume: 259 year: 2022 ident: bib37 article-title: Analysis and optimal control of smart damping for porous functionally graded magneto-electro-elastic plate using smoothed FEM and metaheuristic algorithm publication-title: Eng. Struct. – volume: 13 start-page: 27 year: 1994 end-page: 31 ident: bib41 article-title: Feed-forward neural networks publication-title: IEEE Potentials – volume: 274 year: 2023 ident: bib7 article-title: Modelling of 3D-printed bio-inspired Bouligand cementitious structures reinforced with steel fibres publication-title: Eng. Struct. – volume: 314 year: 2022 ident: bib17 article-title: 3D-printed concrete with recycled glass: Effect of glass gradation on flexural strength and microstructure publication-title: Constr. Build. Mater. – volume: 25 start-page: 1988 year: 2023 end-page: 2011 ident: bib11 article-title: Synthesis of artificial aggregates and their impact on performance of concrete: a review publication-title: J. Mater. Cycles Waste Manag. – volume: 2019 start-page: 1 year: 2019 end-page: 15 ident: bib35 article-title: An Efficient Hybrid Optimization Approach Using Adaptive Elitist Differential Evolution and Spherical Quadratic Steepest Descent and Its Application for Clustering publication-title: Sci. Program. – reference: X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the thirteenth international conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249-256. – volume: 162 start-page: 613 year: 2018 end-page: 627 ident: bib12 article-title: Printable properties of cementitious material containing copper tailings for extrusion based 3D printing publication-title: Constr. Build. Mater. – volume: 30 year: 2019 ident: bib5 article-title: Additive manufacturing in construction: a review on processes, applications, and digital planning methods publication-title: Addit. Manuf. – volume: 192 start-page: 194 year: 2018 end-page: 201 ident: bib21 article-title: Effects of steel slag as fine aggregate on static and impact behaviours of concrete publication-title: Constr. Build. Mater. – volume: 87 start-page: 1964 year: 2017 end-page: 1979 ident: bib34 article-title: Modified genetic algorithm-based clustering for probability density functions publication-title: J. Stat. Comput. Simul. – reference: R.M. Neal, Bayesian training of back-propagation networks by the hybrid Monte Carlo method, 1992. – volume: 282 year: 2021 ident: bib20 article-title: Recycling of steel slag aggregate in portland cement concrete: An overview publication-title: J. Clean. Prod. – volume: 198 start-page: 245 year: 2019 end-page: 255 ident: bib22 article-title: Mixture Design Approach to optimize the rheological properties of the material used in 3D cementitious material printing publication-title: Constr. Build. Mater. – volume: 11 year: 2019 ident: bib1 article-title: Additive manufacturing: challenges, trends, and applications publication-title: Adv. Mech. Eng. – volume: 300 year: 2021 ident: bib18 article-title: Experimental measurement on the effects of recycled glass cullets as aggregates for construction 3D printing publication-title: J. Clean. Prod. – volume: 133 year: 2020 ident: bib6 article-title: 3-D printing of concrete: beyond horizons publication-title: Cem. Concr. Res. – volume: 11 start-page: 659 year: 2020 end-page: 675 ident: bib25 article-title: Nature-inspired algorithms for feed-forward neural network classifiers: a survey of one decade of research publication-title: Ain Shams Eng. J. – volume: 13 start-page: 27 issue: 4 year: 1994 ident: 10.1016/j.conbuildmat.2024.136470_bib41 article-title: Feed-forward neural networks publication-title: IEEE Potentials doi: 10.1109/45.329294 – volume: 25 start-page: 1988 issue: 4 year: 2023 ident: 10.1016/j.conbuildmat.2024.136470_bib11 article-title: Synthesis of artificial aggregates and their impact on performance of concrete: a review publication-title: J. Mater. Cycles Waste Manag. doi: 10.1007/s10163-023-01713-9 – volume: 11 start-page: 659 issue: 3 year: 2020 ident: 10.1016/j.conbuildmat.2024.136470_bib25 article-title: Nature-inspired algorithms for feed-forward neural network classifiers: a survey of one decade of research publication-title: Ain Shams Eng. J. doi: 10.1016/j.asej.2020.01.007 – volume: 330 year: 2022 ident: 10.1016/j.conbuildmat.2024.136470_bib9 article-title: Interlayer bonding investigation of 3D printing cementitious materials with fluidity-retaining polycarboxylate superplasticizer and high-dispersion polycarboxylate superplasticizer publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2022.127151 – volume: 282 year: 2021 ident: 10.1016/j.conbuildmat.2024.136470_bib20 article-title: Recycling of steel slag aggregate in portland cement concrete: An overview publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2020.124447 – volume: 297 year: 2024 ident: 10.1016/j.conbuildmat.2024.136470_bib26 article-title: Unraveling seismic uplift behavior of plate anchors in frictional-cohesive soils: A comprehensive analysis through stability factors and machine learning publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2024.116987 – volume: 18 year: 2023 ident: 10.1016/j.conbuildmat.2024.136470_bib24 article-title: Research status and prospect of machine learning in construction 3D printing publication-title: Case Stud. Constr. Mater. – volume: 99 start-page: 92 issue: 1 year: 2021 ident: 10.1016/j.conbuildmat.2024.136470_bib43 article-title: A Bayesian regularization-backpropagation neural network model for peeling computations publication-title: J. Adhes. doi: 10.1080/00218464.2021.2001335 – volume: 21 start-page: 20 issue: 2 year: 2016 ident: 10.1016/j.conbuildmat.2024.136470_bib32 article-title: Predictive Abilities of Bayesian Regularization and Levenberg–Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data publication-title: Math. Comput. Appl. – volume: 314 year: 2022 ident: 10.1016/j.conbuildmat.2024.136470_bib17 article-title: 3D-printed concrete with recycled glass: Effect of glass gradation on flexural strength and microstructure publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.125561 – volume: 192 start-page: 194 year: 2018 ident: 10.1016/j.conbuildmat.2024.136470_bib21 article-title: Effects of steel slag as fine aggregate on static and impact behaviours of concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.10.129 – ident: 10.1016/j.conbuildmat.2024.136470_bib36 doi: 10.1007/978-3-319-47898-2_34 – volume: 200 start-page: 570 year: 2019 ident: 10.1016/j.conbuildmat.2024.136470_bib19 article-title: Investigating the effects of steel slag powder on the properties of self-compacting concrete with recycled aggregates publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.12.150 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 10.1016/j.conbuildmat.2024.136470_bib45 article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces publication-title: J. Glob. Optim. doi: 10.1023/A:1008202821328 – volume: 4 start-page: 448 issue: 3 year: 1992 ident: 10.1016/j.conbuildmat.2024.136470_bib29 article-title: A practical Bayesian framework for backpropagation networks publication-title: Neural Comput. doi: 10.1162/neco.1992.4.3.448 – ident: 10.1016/j.conbuildmat.2024.136470_bib30 – volume: 51 start-page: 1525 year: 2023 ident: 10.1016/j.conbuildmat.2024.136470_bib28 article-title: Corrosion effect on bond behavior between rebar and concrete using Bayesian regularized feed-forward neural network publication-title: Structures doi: 10.1016/j.istruc.2023.03.128 – volume: 304 start-page: 117758 year: 2024 ident: 10.1016/j.conbuildmat.2024.136470_bib49 article-title: Optimizing load-displacement prediction for bored piles with the 3mSOS algorithm and neural networks publication-title: Ocean Eng doi: 10.1016/j.oceaneng.2024.117758 – volume: 70 start-page: 95 year: 2022 ident: 10.1016/j.conbuildmat.2024.136470_bib23 article-title: Applications of machine learning in 3D printing publication-title: Mater. Today.: Proc. – volume: 62 start-page: 167 issue: 3 year: 2017 ident: 10.1016/j.conbuildmat.2024.136470_bib3 article-title: A critical review of 3D concrete printing as a low CO2 concrete approach publication-title: Heron – volume: 11 issue: 2 year: 2019 ident: 10.1016/j.conbuildmat.2024.136470_bib1 article-title: Additive manufacturing: challenges, trends, and applications publication-title: Adv. Mech. Eng. doi: 10.1177/1687814018822880 – volume: 9 start-page: 57 issue: 1 year: 2018 ident: 10.1016/j.conbuildmat.2024.136470_bib4 article-title: Printing architecture: an overview of existing and promising additive manufacturing methods and their application in the building industry publication-title: Int. J. Constr. Environ. doi: 10.18848/2154-8587/CGP/v09i01/57-81 – volume: 300 year: 2021 ident: 10.1016/j.conbuildmat.2024.136470_bib18 article-title: Experimental measurement on the effects of recycled glass cullets as aggregates for construction 3D printing publication-title: J. Clean. Prod. doi: 10.1016/j.jclepro.2021.126919 – volume: 201 start-page: 278 year: 2019 ident: 10.1016/j.conbuildmat.2024.136470_bib8 article-title: Rheological and harden properties of the high-thixotropy 3D printing concrete publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.12.061 – volume: 165 start-page: 59 year: 2016 ident: 10.1016/j.conbuildmat.2024.136470_bib33 article-title: An adaptive elitist differential evolution for optimization of truss structures with discrete design variables publication-title: Comput. Struct. doi: 10.1016/j.compstruc.2015.11.014 – volume: 49 start-page: 666 issue: 5 year: 2018 ident: 10.1016/j.conbuildmat.2024.136470_bib2 article-title: Current challenges and future potential of 3D concrete printing publication-title: Mater. und Werkst. doi: 10.1002/mawe.201700279 – volume: 222 start-page: 302 year: 2013 ident: 10.1016/j.conbuildmat.2024.136470_bib47 article-title: An improved (μ+λ)-constrained differential evolution for constrained optimization publication-title: Inf. Sci. doi: 10.1016/j.ins.2012.01.017 – volume: 18 year: 2023 ident: 10.1016/j.conbuildmat.2024.136470_bib39 article-title: Simplified assessment for one-part 3D-printable geopolymer concrete based on slump and slump flow measurements publication-title: Case Stud. Constr. Mater. – volume: 249 year: 2020 ident: 10.1016/j.conbuildmat.2024.136470_bib13 article-title: Preparation and microstructural characterization of a novel 3D printable building material composed of copper tailings and iron tailings publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118779 – volume: 13 start-page: 398 issue: 2 year: 2009 ident: 10.1016/j.conbuildmat.2024.136470_bib46 article-title: Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2008.927706 – volume: 198 start-page: 245 year: 2019 ident: 10.1016/j.conbuildmat.2024.136470_bib22 article-title: Mixture Design Approach to optimize the rheological properties of the material used in 3D cementitious material printing publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2018.11.252 – volume: 219 year: 2020 ident: 10.1016/j.conbuildmat.2024.136470_bib50 article-title: Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2020.110927 – volume: 458 start-page: 25 year: 2008 ident: 10.1016/j.conbuildmat.2024.136470_bib31 article-title: Bayesian regularization of neural networks publication-title: Methods Mol. Biol. – volume: 2019 start-page: 1 year: 2019 ident: 10.1016/j.conbuildmat.2024.136470_bib35 article-title: An Efficient Hybrid Optimization Approach Using Adaptive Elitist Differential Evolution and Spherical Quadratic Steepest Descent and Its Application for Clustering publication-title: Sci. Program. – volume: 174 year: 2019 ident: 10.1016/j.conbuildmat.2024.136470_bib38 article-title: Printability region for 3D concrete printing using slump and slump flow test publication-title: Compos. Part B: Eng. doi: 10.1016/j.compositesb.2019.106968 – volume: 162 start-page: 613 year: 2018 ident: 10.1016/j.conbuildmat.2024.136470_bib12 article-title: Printable properties of cementitious material containing copper tailings for extrusion based 3D printing publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2017.12.051 – volume: 55 start-page: 771 issue: 4 year: 2012 ident: 10.1016/j.conbuildmat.2024.136470_bib48 article-title: Improving differential evolution through a unified approach publication-title: J. Glob. Optim. doi: 10.1007/s10898-012-9897-0 – volume: 259 year: 2022 ident: 10.1016/j.conbuildmat.2024.136470_bib37 article-title: Analysis and optimal control of smart damping for porous functionally graded magneto-electro-elastic plate using smoothed FEM and metaheuristic algorithm publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.114062 – volume: 274 year: 2023 ident: 10.1016/j.conbuildmat.2024.136470_bib7 article-title: Modelling of 3D-printed bio-inspired Bouligand cementitious structures reinforced with steel fibres publication-title: Eng. Struct. doi: 10.1016/j.engstruct.2022.115123 – volume: 133 year: 2020 ident: 10.1016/j.conbuildmat.2024.136470_bib6 article-title: 3-D printing of concrete: beyond horizons publication-title: Cem. Concr. Res. doi: 10.1016/j.cemconres.2020.106070 – volume: 167 year: 2024 ident: 10.1016/j.conbuildmat.2024.136470_bib27 article-title: Enhanced earth pressure determination with negative wall-soil friction using soft computing publication-title: Comput. Geotech. doi: 10.1016/j.compgeo.2024.106086 – volume: 87 start-page: 1964 issue: 10 year: 2017 ident: 10.1016/j.conbuildmat.2024.136470_bib34 article-title: Modified genetic algorithm-based clustering for probability density functions publication-title: J. Stat. Comput. Simul. doi: 10.1080/00949655.2017.1300663 – volume: 248 year: 2020 ident: 10.1016/j.conbuildmat.2024.136470_bib15 article-title: Mechanical behavior of 3D printed mortar with recycled sand at early ages publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2020.118654 – volume: 30 year: 2019 ident: 10.1016/j.conbuildmat.2024.136470_bib5 article-title: Additive manufacturing in construction: a review on processes, applications, and digital planning methods publication-title: Addit. Manuf. – volume: 62 issue: 5 year: 2022 ident: 10.1016/j.conbuildmat.2024.136470_bib44 article-title: Prediction of axial load bearing capacity of PHC nodular pile using Bayesian regularization artificial neural network publication-title: Soils Found. doi: 10.1016/j.sandf.2022.101203 – volume: 299 year: 2021 ident: 10.1016/j.conbuildmat.2024.136470_bib14 article-title: Stability of steel slag as fine aggregate and its application in 3D printing materials publication-title: Constr. Build. Mater. doi: 10.1016/j.conbuildmat.2021.123938 – volume: 32 year: 2020 ident: 10.1016/j.conbuildmat.2024.136470_bib16 article-title: 3D recycled mortar printing: System development, process design, material properties and on-site printing publication-title: J. Build. Eng. – ident: 10.1016/j.conbuildmat.2024.136470_bib42 – volume: V start-page: 241 issue: II year: 2017 ident: 10.1016/j.conbuildmat.2024.136470_bib10 article-title: Study on Replacement Level of Concrete Waste as Fine Aggregate in Concrete publication-title: Int. J. Res. Appl. Sci. Eng. Technol. doi: 10.22214/ijraset.2017.2038 – volume: 39 start-page: 43 issue: 1 year: 1997 ident: 10.1016/j.conbuildmat.2024.136470_bib40 article-title: Introduction to multi-layer feed-forward neural networks publication-title: Chemom. Intell. Lab. Syst. doi: 10.1016/S0169-7439(97)00061-0 |
| SSID | ssj0006262 |
| Score | 2.5014603 |
| Snippet | This study addresses the growing interest in utilizing steel slag as a sustainable alternative to river sand in additive manufacturing of concrete, driven by... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 136470 |
| SubjectTerms | 3D concrete printing Additive Manufacturing Feature analysis Soft computing approach Steel slag aggregate Workability properties |
| Title | Robust prediction of workability properties for 3D printing with steel slag aggregate using bayesian regularization and evolution algorithm |
| URI | https://dx.doi.org/10.1016/j.conbuildmat.2024.136470 |
| Volume | 431 |
| WOSCitedRecordID | wos001265824100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0950-0618 databaseCode: AIEXJ dateStart: 19950201 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0006262 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhhB7QFzFxkVG4i0KShynTiReJjbEZaoQFNS3yEmcrlNJq66p1t_AL-Dfco4vSbiJIcRL1KayXef7fHx8ci6EPOUxUzLKuQ_SMfB5DgeUBH3cKy5UGatYikgHCp-I0SiZTNJ3g8FXFwuzmYu6Ti4u0uV_hRruAdgYOvsXcLedwg34DKDDFWCH66WAf7_Im_M1Bv-Xs8Lpg-h-ZTJyb9Ela4ne1EqnYvCiIw-Ne-vWKgu4q7kHVJl6cgrHcTS0eY22KeRyq3TU5UqXsF_ZIE79BkJt7LQ8OZ8uVtDT577mi5VBXa5azbfcFuT2QGc2z8WB_wkGwD3UuPV3sWon5o1_s_XfnjYLu-WiIXvabI30HHdcdx2MTmd9ywbj6IEVdpbNNuSm828ydkuslGOFthXh3OwkP20HxjJxBmjWelIwoWc4Ejr3cVOw5Ids2x-wf-weNB1QhsPkCtllIk5BYO4evj6evGm3eTgJMpPI0fyfa-RJ5zz4mwF_rfz0FJrxTXLDnkTooWHQLTJQ9W2y18tPeYd8MVyiHZfooqI9LtGOSxS4RKMj6rhEkUtUc4kil2jLJaq5RB2X6PdcosAl2nKJtly6Sz6-PB6_eOXb6h1-EbFw7UumoiAtheJBKaQM4zIoOKz-KiyqCpTCdChUIYSqZB4WICREyqQqRTUcwoXHQXSP7NSLWt0nVIayYAIOKhJ-SaBpVJZhxOALjCBlsE8S91izwqa2xwor88z5MJ5lPUQyRCQziOwT1jZdmvwul2n03GGXWUXVKKAZEO_PzQ_-rfkDcr1bLQ_JDqxd9YhcLTbr2fnqsaXpN09VyHA |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+prediction+of+workability+properties+for+3D+printing+with+steel+slag+aggregate+using+bayesian+regularization+and+evolution+algorithm&rft.jtitle=Construction+%26+building+materials&rft.au=Van+Tran%2C+Mien&rft.au=Ly%2C+Duy-Khuong&rft.au=Nguyen%2C+Tan&rft.au=Tran%2C+Nhi&rft.date=2024-06-14&rft.pub=Elsevier+Ltd&rft.issn=0950-0618&rft.volume=431&rft_id=info:doi/10.1016%2Fj.conbuildmat.2024.136470&rft.externalDocID=S0950061824016118 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon |