Robust prediction of workability properties for 3D printing with steel slag aggregate using bayesian regularization and evolution algorithm

This study addresses the growing interest in utilizing steel slag as a sustainable alternative to river sand in additive manufacturing of concrete, driven by the increasing scarcity of natural resources. The rheological properties of fresh material significantly impact the quality of 3D-printed fila...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Construction & building materials Ročník 431; s. 136470
Hlavní autori: Van Tran, Mien, Ly, Duy-Khuong, Nguyen, Tan, Tran, Nhi
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 14.06.2024
Predmet:
ISSN:0950-0618
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract This study addresses the growing interest in utilizing steel slag as a sustainable alternative to river sand in additive manufacturing of concrete, driven by the increasing scarcity of natural resources. The rheological properties of fresh material significantly impact the quality of 3D-printed filament, necessitating suitable workability for printability. The research focuses on evaluating the influence of steel slag aggregate and key admixtures, such as silica fume and superplasticizer, on the workability properties of fresh concrete. Through an extensive series of 90 slump tests, optimal combinations ensuring the desired workability for 3D printing applications were identified. To enhance the manufacturing of fresh concrete and develop user-friendly tools, a novel soft computing approach is introduced—Adaptive Elitist Differential Evolution coupled with Bayesian Regularization Artificial Neural Network (aeDE-BRANN). This advanced model considers five critical input parameters: silica fume to Portland cement ratio, steel slag to cement ratio, water to cement ratio, cement content, and superplasticizer dosage. The model outputs crucial workability metrics, including slump flow and slump. In a comprehensive comparative study, the aeDE-BRANN framework demonstrates superior performance in terms of both simplicity and efficiency when compared to other forecasting models. Feature analysis techniques, including Shapley values from game theory and partial dependence plots, provide valuable insights into the intricate relationships between input variables and workability properties. The findings underscore the water to cement ratio as the most influential factor on workability, followed by silica fume to Portland cement ratio and steel slag to cement ratio. This study contributes a reliable tool for predicting workability properties, aiding in the selection of suitable steel slag aggregate and admixtures. Ultimately, it facilitates the sustainable and innovative evolution of 3D concrete printing practices. •aeDE-BRNN Excels in 3D Printing Prediction: Outperforms XGB, DT, SVM, and GD-ANN, enabling practical decisions.•Critical Workability Factors Revealed: SHAP values and Partial Dependence Plots identify key determinants.•Holistic Integration Drives Innovation: aeDE-BRNN, feature analysis, and PDPs synergize for advancements.•Precise Material Optimization: Steel slag aggregate integration and model insights enable enhanced efficiency.
AbstractList This study addresses the growing interest in utilizing steel slag as a sustainable alternative to river sand in additive manufacturing of concrete, driven by the increasing scarcity of natural resources. The rheological properties of fresh material significantly impact the quality of 3D-printed filament, necessitating suitable workability for printability. The research focuses on evaluating the influence of steel slag aggregate and key admixtures, such as silica fume and superplasticizer, on the workability properties of fresh concrete. Through an extensive series of 90 slump tests, optimal combinations ensuring the desired workability for 3D printing applications were identified. To enhance the manufacturing of fresh concrete and develop user-friendly tools, a novel soft computing approach is introduced—Adaptive Elitist Differential Evolution coupled with Bayesian Regularization Artificial Neural Network (aeDE-BRANN). This advanced model considers five critical input parameters: silica fume to Portland cement ratio, steel slag to cement ratio, water to cement ratio, cement content, and superplasticizer dosage. The model outputs crucial workability metrics, including slump flow and slump. In a comprehensive comparative study, the aeDE-BRANN framework demonstrates superior performance in terms of both simplicity and efficiency when compared to other forecasting models. Feature analysis techniques, including Shapley values from game theory and partial dependence plots, provide valuable insights into the intricate relationships between input variables and workability properties. The findings underscore the water to cement ratio as the most influential factor on workability, followed by silica fume to Portland cement ratio and steel slag to cement ratio. This study contributes a reliable tool for predicting workability properties, aiding in the selection of suitable steel slag aggregate and admixtures. Ultimately, it facilitates the sustainable and innovative evolution of 3D concrete printing practices. •aeDE-BRNN Excels in 3D Printing Prediction: Outperforms XGB, DT, SVM, and GD-ANN, enabling practical decisions.•Critical Workability Factors Revealed: SHAP values and Partial Dependence Plots identify key determinants.•Holistic Integration Drives Innovation: aeDE-BRNN, feature analysis, and PDPs synergize for advancements.•Precise Material Optimization: Steel slag aggregate integration and model insights enable enhanced efficiency.
ArticleNumber 136470
Author Van Tran, Mien
Nguyen, Tan
Ly, Duy-Khuong
Tran, Nhi
Author_xml – sequence: 1
  givenname: Mien
  surname: Van Tran
  fullname: Van Tran, Mien
  organization: Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Viet Nam
– sequence: 2
  givenname: Duy-Khuong
  surname: Ly
  fullname: Ly, Duy-Khuong
  organization: Laboratory for Computational Mechanics, Institute for Computational Science and Artificial Intelligence, Van Lang University, Ho Chi Minh City, Viet Nam
– sequence: 3
  givenname: Tan
  orcidid: 0000-0003-4909-4258
  surname: Nguyen
  fullname: Nguyen, Tan
  email: nguyentan@tdtu.edu.vn
  organization: Smart Computing in Civil Engineering Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
– sequence: 4
  givenname: Nhi
  orcidid: 0000-0002-4779-6865
  surname: Tran
  fullname: Tran, Nhi
  organization: Faculty of Civil Engineering, Ho Chi Minh City University of Technology (HCMUT), 268 Ly Thuong Kiet Street, District 10, Ho Chi Minh City 70000, Viet Nam
BookMark eNqNkM1KAzEQx3NQ0KrvEB-gNdmPrHsSqZ9QEETPYTY7WVPTpCRZpb6CL21qPYgnLxNmhvmF_29C9px3SMgpZzPOuDhbzpR33Whsv4I0K1hRzXgpqobtkUPW1mzKBD8_IJMYl4wxUYjikHw--m6Mia4D9kYl4x31mr778AqdsSZt8savMSSDkWofaHmVJ8Yl4wb6btILjQnR0mhhoDAMAQdISMe43XewwWjA0TwdLQTzAd8_gOspvnk77jo7-JBJq2Oyr8FGPPl5j8jzzfXT_G66eLi9n18upqoseJpCgSVr-wYr1jcAvO6ZqmqsNVdaC161okHVNKih46rqiqYtAPtGC5FLVbPyiLQ7rgo-xoBa5kQrCBvJmdyalEv5y6TcmpQ7k_n24s-tMuk7VQpg7L8I8x0Bc8Q3g0FGZdCp7D-gSrL35h-UL9-lob0
CitedBy_id crossref_primary_10_1016_j_jobe_2024_111268
crossref_primary_10_1016_j_cscm_2025_e04254
crossref_primary_10_1016_j_envsoft_2025_106570
crossref_primary_10_1016_j_enganabound_2025_106227
crossref_primary_10_1016_j_jrmge_2024_10_012
crossref_primary_10_1038_s41598_024_79287_1
crossref_primary_10_3390_math12132077
crossref_primary_10_1016_j_istruc_2025_109831
crossref_primary_10_1016_j_istruc_2025_109707
crossref_primary_10_1016_j_conbuildmat_2024_139664
crossref_primary_10_1016_j_susmat_2024_e01164
crossref_primary_10_1038_s41598_025_98945_6
crossref_primary_10_3390_buildings14113422
Cites_doi 10.1109/45.329294
10.1007/s10163-023-01713-9
10.1016/j.asej.2020.01.007
10.1016/j.conbuildmat.2022.127151
10.1016/j.jclepro.2020.124447
10.1016/j.oceaneng.2024.116987
10.1080/00218464.2021.2001335
10.1016/j.conbuildmat.2021.125561
10.1016/j.conbuildmat.2018.10.129
10.1007/978-3-319-47898-2_34
10.1016/j.conbuildmat.2018.12.150
10.1023/A:1008202821328
10.1162/neco.1992.4.3.448
10.1016/j.istruc.2023.03.128
10.1016/j.oceaneng.2024.117758
10.1177/1687814018822880
10.18848/2154-8587/CGP/v09i01/57-81
10.1016/j.jclepro.2021.126919
10.1016/j.conbuildmat.2018.12.061
10.1016/j.compstruc.2015.11.014
10.1002/mawe.201700279
10.1016/j.ins.2012.01.017
10.1016/j.conbuildmat.2020.118779
10.1109/TEVC.2008.927706
10.1016/j.conbuildmat.2018.11.252
10.1016/j.engstruct.2020.110927
10.1016/j.compositesb.2019.106968
10.1016/j.conbuildmat.2017.12.051
10.1007/s10898-012-9897-0
10.1016/j.engstruct.2022.114062
10.1016/j.engstruct.2022.115123
10.1016/j.cemconres.2020.106070
10.1016/j.compgeo.2024.106086
10.1080/00949655.2017.1300663
10.1016/j.conbuildmat.2020.118654
10.1016/j.sandf.2022.101203
10.1016/j.conbuildmat.2021.123938
10.22214/ijraset.2017.2038
10.1016/S0169-7439(97)00061-0
ContentType Journal Article
Copyright 2024 Elsevier Ltd
Copyright_xml – notice: 2024 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conbuildmat.2024.136470
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_conbuildmat_2024_136470
S0950061824016118
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXKI
AAXUO
ABFRF
ABJNI
ABMAC
ABXRA
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEZYN
AFJKZ
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANKPU
AXJTR
BAAKF
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IAO
IEA
IGG
IHE
IHM
IOF
ISM
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N95
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PV9
Q38
ROL
RPZ
RZL
SDF
SDG
SES
SEW
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
XI7
~G-
9DU
AAQXK
AATTM
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEUPX
AFPUW
AHDLI
AI.
AIGII
AIIUN
AKBMS
AKYEP
APXCP
ASPBG
AVWKF
AZFZN
BAIFH
BBTPI
CITATION
EFKBS
EFLBG
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
ITC
R2-
RNS
SET
SMS
VH1
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c321t-a2e309d7e40d7aa15d0c45e5f1cff614967ec77efab1c4b2792aed7f66d7f4503
ISICitedReferencesCount 17
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001265824100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-0618
IngestDate Tue Nov 18 22:14:44 EST 2025
Sat Nov 29 02:16:44 EST 2025
Sat Feb 08 15:52:38 EST 2025
IsPeerReviewed true
IsScholarly true
Keywords Steel slag aggregate
3D concrete printing
Additive Manufacturing
Workability properties
Feature analysis
Soft computing approach
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-a2e309d7e40d7aa15d0c45e5f1cff614967ec77efab1c4b2792aed7f66d7f4503
ORCID 0000-0003-4909-4258
0000-0002-4779-6865
ParticipantIDs crossref_primary_10_1016_j_conbuildmat_2024_136470
crossref_citationtrail_10_1016_j_conbuildmat_2024_136470
elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2024_136470
PublicationCentury 2000
PublicationDate 2024-06-14
PublicationDateYYYYMMDD 2024-06-14
PublicationDate_xml – month: 06
  year: 2024
  text: 2024-06-14
  day: 14
PublicationDecade 2020
PublicationTitle Construction & building materials
PublicationYear 2024
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Dong, Wang, Chen, Tan, Gu (bib20) 2021; 282
Tay, Qian, Tan (bib38) 2019; 174
K. Demertzis, L. Iliadis, Adaptive elitist differential evolution extreme learning machines on big data: intelligent recognition of invasive species, Advances in Big Data: Proceedings of the 2nd INNS Conference on Big Data, October 23-25, 2016, Thessaloniki, Greece 2, Springer, 2017, pp. 333-345.
Geng, Luo, Liu, Li, Hou, Long (bib24) 2023; 18
Nguyen-Thoi, Ly, Truong, Nguyen, Mahesh (bib37) 2022; 259
Zhang, Zhang, She, Yang, Liu, Yang (bib8) 2019; 201
Xiao, Zou, Yu, Wang, Ding, Zhu, Yu, Li, Duan, Wu, Li (bib16) 2020; 32
Vo-Van, Nguyen-Thoi, Vo-Duy, Ho-Huu, Nguyen-Trang (bib34) 2017; 87
Liu, Li, Weng, Wong, Tan (bib22) 2019; 198
Tran, Vu, Nguyen (bib39) 2023; 18
Nguyen-Trang, Nguyen-Thoi, Truong-Khac, Pham-Chau, Ao (bib35) 2019; 2019
X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the thirteenth international conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249-256.
Khan, Sanchez, Zhou (bib6) 2020; 133
R.M. Neal, Bayesian training of back-propagation networks by the hybrid Monte Carlo method, 1992.
Nguyen, Ly, Nguyen-Thoi, Nguyen, Doan (bib44) 2022; 62
MacKay (bib29) 1992; 4
Ma, Li, Wang (bib12) 2018; 162
Padhye, Bhardawaj, Deb (bib48) 2012; 55
Goh, Yeong (bib23) 2022; 70
Shiau, Nguyen, Ly-Khuong (bib26) 2024; 297
Bekkeri, Shetty, Nayak (bib11) 2023; 25
Liu, Li, Gunasekara, Fox, Tran (bib17) 2022; 314
Hemeida, Hassan, Mohamed, Alkhalaf, Mahmoud, Senjyu, El-Din (bib25) 2020; 11
Qin, Huang, Suganthan (bib46) 2009; 13
van Woensel, van Oirschot, Burgmans, Mohammadi, Hermans (bib4) 2018; 9
Marshall Raman (bib10) 2017; V
Burden, Winkler (bib31) 2008; 458
Storn, Price (bib45) 1997; 11
Panda, Tay, Paul, Tan (bib2) 2018; 49
Paolini, Kollmannsberger, Rank (bib5) 2019; 30
Guo, Xie, Zheng, Li (bib21) 2018; 192
Gouravaraju, Narayan, Sauer, Gautam (bib43) 2021; 99
Li, Zhang, Yuan, Wang, Zhang, Chen, Zhang (bib13) 2020; 249
Nguyen, Nguyen, Truong, Doan, Tran (bib28) 2023; 51
Pan, Jiang, Ji (bib9) 2022; 330
Ting, Tay, Tan (bib18) 2021; 300
Nguyen-Van, Liu, Li, Zhang, Nguyen-Xuan, Tran (bib7) 2023; 274
Kayri (bib32) 2016; 21
Mangalathu, Hwang, Jeon (bib50) 2020; 219
Ho-Huu, Nguyen-Thoi, Vo-Duy, Nguyen-Trang (bib33) 2016; 165
Svozil, Kvasnicka, Pospichal (bib40) 1997; 39
Nguyen, Bui-Ngoc, Shiau, Nguyen-Dinh (bib49) 2024; 304
Jia, Wang, Cai, Jin (bib47) 2013; 222
Abdulhameed, Al-Ahmari, Ameen, Mian (bib1) 2019; 11
Bebis, Georgiopoulos (bib41) 1994; 13
Nguyen, Shiau, Ly (bib27) 2024; 167
Chen, Veer, Çopuroğlu (bib3) 2017; 62
Dai, Zhu, Zhai, Wu, Yin, Qian, Hua (bib14) 2021; 299
Ding, Xiao, Qin, Duan (bib15) 2020; 248
Pan, Zhou, Jiang, Xu, Jin, Ma, Zhuang, Diao, Zhang, Si, Chen (bib19) 2019; 200
Burden (10.1016/j.conbuildmat.2024.136470_bib31) 2008; 458
10.1016/j.conbuildmat.2024.136470_bib30
van Woensel (10.1016/j.conbuildmat.2024.136470_bib4) 2018; 9
Nguyen (10.1016/j.conbuildmat.2024.136470_bib44) 2022; 62
Mangalathu (10.1016/j.conbuildmat.2024.136470_bib50) 2020; 219
Shiau (10.1016/j.conbuildmat.2024.136470_bib26) 2024; 297
10.1016/j.conbuildmat.2024.136470_bib36
Goh (10.1016/j.conbuildmat.2024.136470_bib23) 2022; 70
Svozil (10.1016/j.conbuildmat.2024.136470_bib40) 1997; 39
Guo (10.1016/j.conbuildmat.2024.136470_bib21) 2018; 192
Padhye (10.1016/j.conbuildmat.2024.136470_bib48) 2012; 55
Abdulhameed (10.1016/j.conbuildmat.2024.136470_bib1) 2019; 11
Panda (10.1016/j.conbuildmat.2024.136470_bib2) 2018; 49
Bebis (10.1016/j.conbuildmat.2024.136470_bib41) 1994; 13
Nguyen (10.1016/j.conbuildmat.2024.136470_bib28) 2023; 51
Gouravaraju (10.1016/j.conbuildmat.2024.136470_bib43) 2021; 99
Ting (10.1016/j.conbuildmat.2024.136470_bib18) 2021; 300
Nguyen-Thoi (10.1016/j.conbuildmat.2024.136470_bib37) 2022; 259
Paolini (10.1016/j.conbuildmat.2024.136470_bib5) 2019; 30
Li (10.1016/j.conbuildmat.2024.136470_bib13) 2020; 249
Liu (10.1016/j.conbuildmat.2024.136470_bib17) 2022; 314
Bekkeri (10.1016/j.conbuildmat.2024.136470_bib11) 2023; 25
Dai (10.1016/j.conbuildmat.2024.136470_bib14) 2021; 299
Tran (10.1016/j.conbuildmat.2024.136470_bib39) 2023; 18
MacKay (10.1016/j.conbuildmat.2024.136470_bib29) 1992; 4
Chen (10.1016/j.conbuildmat.2024.136470_bib3) 2017; 62
Xiao (10.1016/j.conbuildmat.2024.136470_bib16) 2020; 32
Storn (10.1016/j.conbuildmat.2024.136470_bib45) 1997; 11
Nguyen (10.1016/j.conbuildmat.2024.136470_bib27) 2024; 167
Ma (10.1016/j.conbuildmat.2024.136470_bib12) 2018; 162
Qin (10.1016/j.conbuildmat.2024.136470_bib46) 2009; 13
Pan (10.1016/j.conbuildmat.2024.136470_bib19) 2019; 200
Liu (10.1016/j.conbuildmat.2024.136470_bib22) 2019; 198
Khan (10.1016/j.conbuildmat.2024.136470_bib6) 2020; 133
Ding (10.1016/j.conbuildmat.2024.136470_bib15) 2020; 248
Nguyen (10.1016/j.conbuildmat.2024.136470_bib49) 2024; 304
Marshall Raman (10.1016/j.conbuildmat.2024.136470_bib10) 2017; V
10.1016/j.conbuildmat.2024.136470_bib42
Dong (10.1016/j.conbuildmat.2024.136470_bib20) 2021; 282
Nguyen-Trang (10.1016/j.conbuildmat.2024.136470_bib35) 2019; 2019
Tay (10.1016/j.conbuildmat.2024.136470_bib38) 2019; 174
Nguyen-Van (10.1016/j.conbuildmat.2024.136470_bib7) 2023; 274
Jia (10.1016/j.conbuildmat.2024.136470_bib47) 2013; 222
Geng (10.1016/j.conbuildmat.2024.136470_bib24) 2023; 18
Hemeida (10.1016/j.conbuildmat.2024.136470_bib25) 2020; 11
Vo-Van (10.1016/j.conbuildmat.2024.136470_bib34) 2017; 87
Zhang (10.1016/j.conbuildmat.2024.136470_bib8) 2019; 201
Ho-Huu (10.1016/j.conbuildmat.2024.136470_bib33) 2016; 165
Pan (10.1016/j.conbuildmat.2024.136470_bib9) 2022; 330
Kayri (10.1016/j.conbuildmat.2024.136470_bib32) 2016; 21
References_xml – volume: 200
  start-page: 570
  year: 2019
  end-page: 577
  ident: bib19
  article-title: Investigating the effects of steel slag powder on the properties of self-compacting concrete with recycled aggregates
  publication-title: Constr. Build. Mater.
– volume: 18
  year: 2023
  ident: bib39
  article-title: Simplified assessment for one-part 3D-printable geopolymer concrete based on slump and slump flow measurements
  publication-title: Case Stud. Constr. Mater.
– volume: 55
  start-page: 771
  year: 2012
  end-page: 799
  ident: bib48
  article-title: Improving differential evolution through a unified approach
  publication-title: J. Glob. Optim.
– reference: K. Demertzis, L. Iliadis, Adaptive elitist differential evolution extreme learning machines on big data: intelligent recognition of invasive species, Advances in Big Data: Proceedings of the 2nd INNS Conference on Big Data, October 23-25, 2016, Thessaloniki, Greece 2, Springer, 2017, pp. 333-345.
– volume: 219
  year: 2020
  ident: bib50
  article-title: Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach
  publication-title: Eng. Struct.
– volume: V
  start-page: 241
  year: 2017
  end-page: 246
  ident: bib10
  article-title: Study on Replacement Level of Concrete Waste as Fine Aggregate in Concrete
  publication-title: Int. J. Res. Appl. Sci. Eng. Technol.
– volume: 4
  start-page: 448
  year: 1992
  end-page: 472
  ident: bib29
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neural Comput.
– volume: 49
  start-page: 666
  year: 2018
  end-page: 673
  ident: bib2
  article-title: Current challenges and future potential of 3D concrete printing
  publication-title: Mater. und Werkst.
– volume: 330
  year: 2022
  ident: bib9
  article-title: Interlayer bonding investigation of 3D printing cementitious materials with fluidity-retaining polycarboxylate superplasticizer and high-dispersion polycarboxylate superplasticizer
  publication-title: Constr. Build. Mater.
– volume: 32
  year: 2020
  ident: bib16
  article-title: 3D recycled mortar printing: System development, process design, material properties and on-site printing
  publication-title: J. Build. Eng.
– volume: 51
  start-page: 1525
  year: 2023
  end-page: 1538
  ident: bib28
  article-title: Corrosion effect on bond behavior between rebar and concrete using Bayesian regularized feed-forward neural network
  publication-title: Structures
– volume: 201
  start-page: 278
  year: 2019
  end-page: 285
  ident: bib8
  article-title: Rheological and harden properties of the high-thixotropy 3D printing concrete
  publication-title: Constr. Build. Mater.
– volume: 297
  year: 2024
  ident: bib26
  article-title: Unraveling seismic uplift behavior of plate anchors in frictional-cohesive soils: A comprehensive analysis through stability factors and machine learning
  publication-title: Ocean Eng.
– volume: 458
  start-page: 25
  year: 2008
  end-page: 44
  ident: bib31
  article-title: Bayesian regularization of neural networks
  publication-title: Methods Mol. Biol.
– volume: 13
  start-page: 398
  year: 2009
  end-page: 417
  ident: bib46
  article-title: Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 62
  year: 2022
  ident: bib44
  article-title: Prediction of axial load bearing capacity of PHC nodular pile using Bayesian regularization artificial neural network
  publication-title: Soils Found.
– volume: 99
  start-page: 92
  year: 2021
  end-page: 115
  ident: bib43
  article-title: A Bayesian regularization-backpropagation neural network model for peeling computations
  publication-title: J. Adhes.
– volume: 304
  start-page: 117758
  year: 2024
  ident: bib49
  article-title: Optimizing load-displacement prediction for bored piles with the 3mSOS algorithm and neural networks
  publication-title: Ocean Eng
– volume: 62
  start-page: 167
  year: 2017
  end-page: 194
  ident: bib3
  article-title: A critical review of 3D concrete printing as a low CO2 concrete approach
  publication-title: Heron
– volume: 299
  year: 2021
  ident: bib14
  article-title: Stability of steel slag as fine aggregate and its application in 3D printing materials
  publication-title: Constr. Build. Mater.
– volume: 167
  year: 2024
  ident: bib27
  article-title: Enhanced earth pressure determination with negative wall-soil friction using soft computing
  publication-title: Comput. Geotech.
– volume: 70
  start-page: 95
  year: 2022
  end-page: 100
  ident: bib23
  article-title: Applications of machine learning in 3D printing
  publication-title: Mater. Today.: Proc.
– volume: 249
  year: 2020
  ident: bib13
  article-title: Preparation and microstructural characterization of a novel 3D printable building material composed of copper tailings and iron tailings
  publication-title: Constr. Build. Mater.
– volume: 11
  start-page: 341
  year: 1997
  ident: bib45
  article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
– volume: 18
  year: 2023
  ident: bib24
  article-title: Research status and prospect of machine learning in construction 3D printing
  publication-title: Case Stud. Constr. Mater.
– volume: 248
  year: 2020
  ident: bib15
  article-title: Mechanical behavior of 3D printed mortar with recycled sand at early ages
  publication-title: Constr. Build. Mater.
– volume: 174
  year: 2019
  ident: bib38
  article-title: Printability region for 3D concrete printing using slump and slump flow test
  publication-title: Compos. Part B: Eng.
– volume: 39
  start-page: 43
  year: 1997
  end-page: 62
  ident: bib40
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemom. Intell. Lab. Syst.
– volume: 9
  start-page: 57
  year: 2018
  end-page: 81
  ident: bib4
  article-title: Printing architecture: an overview of existing and promising additive manufacturing methods and their application in the building industry
  publication-title: Int. J. Constr. Environ.
– volume: 21
  start-page: 20
  year: 2016
  ident: bib32
  article-title: Predictive Abilities of Bayesian Regularization and Levenberg–Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data
  publication-title: Math. Comput. Appl.
– volume: 222
  start-page: 302
  year: 2013
  end-page: 322
  ident: bib47
  article-title: An improved (μ+λ)-constrained differential evolution for constrained optimization
  publication-title: Inf. Sci.
– volume: 165
  start-page: 59
  year: 2016
  end-page: 75
  ident: bib33
  article-title: An adaptive elitist differential evolution for optimization of truss structures with discrete design variables
  publication-title: Comput. Struct.
– volume: 259
  year: 2022
  ident: bib37
  article-title: Analysis and optimal control of smart damping for porous functionally graded magneto-electro-elastic plate using smoothed FEM and metaheuristic algorithm
  publication-title: Eng. Struct.
– volume: 13
  start-page: 27
  year: 1994
  end-page: 31
  ident: bib41
  article-title: Feed-forward neural networks
  publication-title: IEEE Potentials
– volume: 274
  year: 2023
  ident: bib7
  article-title: Modelling of 3D-printed bio-inspired Bouligand cementitious structures reinforced with steel fibres
  publication-title: Eng. Struct.
– volume: 314
  year: 2022
  ident: bib17
  article-title: 3D-printed concrete with recycled glass: Effect of glass gradation on flexural strength and microstructure
  publication-title: Constr. Build. Mater.
– volume: 25
  start-page: 1988
  year: 2023
  end-page: 2011
  ident: bib11
  article-title: Synthesis of artificial aggregates and their impact on performance of concrete: a review
  publication-title: J. Mater. Cycles Waste Manag.
– volume: 2019
  start-page: 1
  year: 2019
  end-page: 15
  ident: bib35
  article-title: An Efficient Hybrid Optimization Approach Using Adaptive Elitist Differential Evolution and Spherical Quadratic Steepest Descent and Its Application for Clustering
  publication-title: Sci. Program.
– reference: X. Glorot, Y. Bengio, Understanding the difficulty of training deep feedforward neural networks, Proceedings of the thirteenth international conference on artificial intelligence and statistics, JMLR Workshop and Conference Proceedings, 2010, pp. 249-256.
– volume: 162
  start-page: 613
  year: 2018
  end-page: 627
  ident: bib12
  article-title: Printable properties of cementitious material containing copper tailings for extrusion based 3D printing
  publication-title: Constr. Build. Mater.
– volume: 30
  year: 2019
  ident: bib5
  article-title: Additive manufacturing in construction: a review on processes, applications, and digital planning methods
  publication-title: Addit. Manuf.
– volume: 192
  start-page: 194
  year: 2018
  end-page: 201
  ident: bib21
  article-title: Effects of steel slag as fine aggregate on static and impact behaviours of concrete
  publication-title: Constr. Build. Mater.
– volume: 87
  start-page: 1964
  year: 2017
  end-page: 1979
  ident: bib34
  article-title: Modified genetic algorithm-based clustering for probability density functions
  publication-title: J. Stat. Comput. Simul.
– reference: R.M. Neal, Bayesian training of back-propagation networks by the hybrid Monte Carlo method, 1992.
– volume: 282
  year: 2021
  ident: bib20
  article-title: Recycling of steel slag aggregate in portland cement concrete: An overview
  publication-title: J. Clean. Prod.
– volume: 198
  start-page: 245
  year: 2019
  end-page: 255
  ident: bib22
  article-title: Mixture Design Approach to optimize the rheological properties of the material used in 3D cementitious material printing
  publication-title: Constr. Build. Mater.
– volume: 11
  year: 2019
  ident: bib1
  article-title: Additive manufacturing: challenges, trends, and applications
  publication-title: Adv. Mech. Eng.
– volume: 300
  year: 2021
  ident: bib18
  article-title: Experimental measurement on the effects of recycled glass cullets as aggregates for construction 3D printing
  publication-title: J. Clean. Prod.
– volume: 133
  year: 2020
  ident: bib6
  article-title: 3-D printing of concrete: beyond horizons
  publication-title: Cem. Concr. Res.
– volume: 11
  start-page: 659
  year: 2020
  end-page: 675
  ident: bib25
  article-title: Nature-inspired algorithms for feed-forward neural network classifiers: a survey of one decade of research
  publication-title: Ain Shams Eng. J.
– volume: 13
  start-page: 27
  issue: 4
  year: 1994
  ident: 10.1016/j.conbuildmat.2024.136470_bib41
  article-title: Feed-forward neural networks
  publication-title: IEEE Potentials
  doi: 10.1109/45.329294
– volume: 25
  start-page: 1988
  issue: 4
  year: 2023
  ident: 10.1016/j.conbuildmat.2024.136470_bib11
  article-title: Synthesis of artificial aggregates and their impact on performance of concrete: a review
  publication-title: J. Mater. Cycles Waste Manag.
  doi: 10.1007/s10163-023-01713-9
– volume: 11
  start-page: 659
  issue: 3
  year: 2020
  ident: 10.1016/j.conbuildmat.2024.136470_bib25
  article-title: Nature-inspired algorithms for feed-forward neural network classifiers: a survey of one decade of research
  publication-title: Ain Shams Eng. J.
  doi: 10.1016/j.asej.2020.01.007
– volume: 330
  year: 2022
  ident: 10.1016/j.conbuildmat.2024.136470_bib9
  article-title: Interlayer bonding investigation of 3D printing cementitious materials with fluidity-retaining polycarboxylate superplasticizer and high-dispersion polycarboxylate superplasticizer
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2022.127151
– volume: 282
  year: 2021
  ident: 10.1016/j.conbuildmat.2024.136470_bib20
  article-title: Recycling of steel slag aggregate in portland cement concrete: An overview
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2020.124447
– volume: 297
  year: 2024
  ident: 10.1016/j.conbuildmat.2024.136470_bib26
  article-title: Unraveling seismic uplift behavior of plate anchors in frictional-cohesive soils: A comprehensive analysis through stability factors and machine learning
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2024.116987
– volume: 18
  year: 2023
  ident: 10.1016/j.conbuildmat.2024.136470_bib24
  article-title: Research status and prospect of machine learning in construction 3D printing
  publication-title: Case Stud. Constr. Mater.
– volume: 99
  start-page: 92
  issue: 1
  year: 2021
  ident: 10.1016/j.conbuildmat.2024.136470_bib43
  article-title: A Bayesian regularization-backpropagation neural network model for peeling computations
  publication-title: J. Adhes.
  doi: 10.1080/00218464.2021.2001335
– volume: 21
  start-page: 20
  issue: 2
  year: 2016
  ident: 10.1016/j.conbuildmat.2024.136470_bib32
  article-title: Predictive Abilities of Bayesian Regularization and Levenberg–Marquardt Algorithms in Artificial Neural Networks: A Comparative Empirical Study on Social Data
  publication-title: Math. Comput. Appl.
– volume: 314
  year: 2022
  ident: 10.1016/j.conbuildmat.2024.136470_bib17
  article-title: 3D-printed concrete with recycled glass: Effect of glass gradation on flexural strength and microstructure
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.125561
– volume: 192
  start-page: 194
  year: 2018
  ident: 10.1016/j.conbuildmat.2024.136470_bib21
  article-title: Effects of steel slag as fine aggregate on static and impact behaviours of concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.10.129
– ident: 10.1016/j.conbuildmat.2024.136470_bib36
  doi: 10.1007/978-3-319-47898-2_34
– volume: 200
  start-page: 570
  year: 2019
  ident: 10.1016/j.conbuildmat.2024.136470_bib19
  article-title: Investigating the effects of steel slag powder on the properties of self-compacting concrete with recycled aggregates
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.12.150
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 10.1016/j.conbuildmat.2024.136470_bib45
  article-title: Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces
  publication-title: J. Glob. Optim.
  doi: 10.1023/A:1008202821328
– volume: 4
  start-page: 448
  issue: 3
  year: 1992
  ident: 10.1016/j.conbuildmat.2024.136470_bib29
  article-title: A practical Bayesian framework for backpropagation networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1992.4.3.448
– ident: 10.1016/j.conbuildmat.2024.136470_bib30
– volume: 51
  start-page: 1525
  year: 2023
  ident: 10.1016/j.conbuildmat.2024.136470_bib28
  article-title: Corrosion effect on bond behavior between rebar and concrete using Bayesian regularized feed-forward neural network
  publication-title: Structures
  doi: 10.1016/j.istruc.2023.03.128
– volume: 304
  start-page: 117758
  year: 2024
  ident: 10.1016/j.conbuildmat.2024.136470_bib49
  article-title: Optimizing load-displacement prediction for bored piles with the 3mSOS algorithm and neural networks
  publication-title: Ocean Eng
  doi: 10.1016/j.oceaneng.2024.117758
– volume: 70
  start-page: 95
  year: 2022
  ident: 10.1016/j.conbuildmat.2024.136470_bib23
  article-title: Applications of machine learning in 3D printing
  publication-title: Mater. Today.: Proc.
– volume: 62
  start-page: 167
  issue: 3
  year: 2017
  ident: 10.1016/j.conbuildmat.2024.136470_bib3
  article-title: A critical review of 3D concrete printing as a low CO2 concrete approach
  publication-title: Heron
– volume: 11
  issue: 2
  year: 2019
  ident: 10.1016/j.conbuildmat.2024.136470_bib1
  article-title: Additive manufacturing: challenges, trends, and applications
  publication-title: Adv. Mech. Eng.
  doi: 10.1177/1687814018822880
– volume: 9
  start-page: 57
  issue: 1
  year: 2018
  ident: 10.1016/j.conbuildmat.2024.136470_bib4
  article-title: Printing architecture: an overview of existing and promising additive manufacturing methods and their application in the building industry
  publication-title: Int. J. Constr. Environ.
  doi: 10.18848/2154-8587/CGP/v09i01/57-81
– volume: 300
  year: 2021
  ident: 10.1016/j.conbuildmat.2024.136470_bib18
  article-title: Experimental measurement on the effects of recycled glass cullets as aggregates for construction 3D printing
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.126919
– volume: 201
  start-page: 278
  year: 2019
  ident: 10.1016/j.conbuildmat.2024.136470_bib8
  article-title: Rheological and harden properties of the high-thixotropy 3D printing concrete
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.12.061
– volume: 165
  start-page: 59
  year: 2016
  ident: 10.1016/j.conbuildmat.2024.136470_bib33
  article-title: An adaptive elitist differential evolution for optimization of truss structures with discrete design variables
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2015.11.014
– volume: 49
  start-page: 666
  issue: 5
  year: 2018
  ident: 10.1016/j.conbuildmat.2024.136470_bib2
  article-title: Current challenges and future potential of 3D concrete printing
  publication-title: Mater. und Werkst.
  doi: 10.1002/mawe.201700279
– volume: 222
  start-page: 302
  year: 2013
  ident: 10.1016/j.conbuildmat.2024.136470_bib47
  article-title: An improved (μ+λ)-constrained differential evolution for constrained optimization
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2012.01.017
– volume: 18
  year: 2023
  ident: 10.1016/j.conbuildmat.2024.136470_bib39
  article-title: Simplified assessment for one-part 3D-printable geopolymer concrete based on slump and slump flow measurements
  publication-title: Case Stud. Constr. Mater.
– volume: 249
  year: 2020
  ident: 10.1016/j.conbuildmat.2024.136470_bib13
  article-title: Preparation and microstructural characterization of a novel 3D printable building material composed of copper tailings and iron tailings
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118779
– volume: 13
  start-page: 398
  issue: 2
  year: 2009
  ident: 10.1016/j.conbuildmat.2024.136470_bib46
  article-title: Differential Evolution Algorithm With Strategy Adaptation for Global Numerical Optimization
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2008.927706
– volume: 198
  start-page: 245
  year: 2019
  ident: 10.1016/j.conbuildmat.2024.136470_bib22
  article-title: Mixture Design Approach to optimize the rheological properties of the material used in 3D cementitious material printing
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2018.11.252
– volume: 219
  year: 2020
  ident: 10.1016/j.conbuildmat.2024.136470_bib50
  article-title: Failure mode and effects analysis of RC members based on machine-learning-based SHapley Additive exPlanations (SHAP) approach
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2020.110927
– volume: 458
  start-page: 25
  year: 2008
  ident: 10.1016/j.conbuildmat.2024.136470_bib31
  article-title: Bayesian regularization of neural networks
  publication-title: Methods Mol. Biol.
– volume: 2019
  start-page: 1
  year: 2019
  ident: 10.1016/j.conbuildmat.2024.136470_bib35
  article-title: An Efficient Hybrid Optimization Approach Using Adaptive Elitist Differential Evolution and Spherical Quadratic Steepest Descent and Its Application for Clustering
  publication-title: Sci. Program.
– volume: 174
  year: 2019
  ident: 10.1016/j.conbuildmat.2024.136470_bib38
  article-title: Printability region for 3D concrete printing using slump and slump flow test
  publication-title: Compos. Part B: Eng.
  doi: 10.1016/j.compositesb.2019.106968
– volume: 162
  start-page: 613
  year: 2018
  ident: 10.1016/j.conbuildmat.2024.136470_bib12
  article-title: Printable properties of cementitious material containing copper tailings for extrusion based 3D printing
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2017.12.051
– volume: 55
  start-page: 771
  issue: 4
  year: 2012
  ident: 10.1016/j.conbuildmat.2024.136470_bib48
  article-title: Improving differential evolution through a unified approach
  publication-title: J. Glob. Optim.
  doi: 10.1007/s10898-012-9897-0
– volume: 259
  year: 2022
  ident: 10.1016/j.conbuildmat.2024.136470_bib37
  article-title: Analysis and optimal control of smart damping for porous functionally graded magneto-electro-elastic plate using smoothed FEM and metaheuristic algorithm
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.114062
– volume: 274
  year: 2023
  ident: 10.1016/j.conbuildmat.2024.136470_bib7
  article-title: Modelling of 3D-printed bio-inspired Bouligand cementitious structures reinforced with steel fibres
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2022.115123
– volume: 133
  year: 2020
  ident: 10.1016/j.conbuildmat.2024.136470_bib6
  article-title: 3-D printing of concrete: beyond horizons
  publication-title: Cem. Concr. Res.
  doi: 10.1016/j.cemconres.2020.106070
– volume: 167
  year: 2024
  ident: 10.1016/j.conbuildmat.2024.136470_bib27
  article-title: Enhanced earth pressure determination with negative wall-soil friction using soft computing
  publication-title: Comput. Geotech.
  doi: 10.1016/j.compgeo.2024.106086
– volume: 87
  start-page: 1964
  issue: 10
  year: 2017
  ident: 10.1016/j.conbuildmat.2024.136470_bib34
  article-title: Modified genetic algorithm-based clustering for probability density functions
  publication-title: J. Stat. Comput. Simul.
  doi: 10.1080/00949655.2017.1300663
– volume: 248
  year: 2020
  ident: 10.1016/j.conbuildmat.2024.136470_bib15
  article-title: Mechanical behavior of 3D printed mortar with recycled sand at early ages
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2020.118654
– volume: 30
  year: 2019
  ident: 10.1016/j.conbuildmat.2024.136470_bib5
  article-title: Additive manufacturing in construction: a review on processes, applications, and digital planning methods
  publication-title: Addit. Manuf.
– volume: 62
  issue: 5
  year: 2022
  ident: 10.1016/j.conbuildmat.2024.136470_bib44
  article-title: Prediction of axial load bearing capacity of PHC nodular pile using Bayesian regularization artificial neural network
  publication-title: Soils Found.
  doi: 10.1016/j.sandf.2022.101203
– volume: 299
  year: 2021
  ident: 10.1016/j.conbuildmat.2024.136470_bib14
  article-title: Stability of steel slag as fine aggregate and its application in 3D printing materials
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.123938
– volume: 32
  year: 2020
  ident: 10.1016/j.conbuildmat.2024.136470_bib16
  article-title: 3D recycled mortar printing: System development, process design, material properties and on-site printing
  publication-title: J. Build. Eng.
– ident: 10.1016/j.conbuildmat.2024.136470_bib42
– volume: V
  start-page: 241
  issue: II
  year: 2017
  ident: 10.1016/j.conbuildmat.2024.136470_bib10
  article-title: Study on Replacement Level of Concrete Waste as Fine Aggregate in Concrete
  publication-title: Int. J. Res. Appl. Sci. Eng. Technol.
  doi: 10.22214/ijraset.2017.2038
– volume: 39
  start-page: 43
  issue: 1
  year: 1997
  ident: 10.1016/j.conbuildmat.2024.136470_bib40
  article-title: Introduction to multi-layer feed-forward neural networks
  publication-title: Chemom. Intell. Lab. Syst.
  doi: 10.1016/S0169-7439(97)00061-0
SSID ssj0006262
Score 2.501533
Snippet This study addresses the growing interest in utilizing steel slag as a sustainable alternative to river sand in additive manufacturing of concrete, driven by...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 136470
SubjectTerms 3D concrete printing
Additive Manufacturing
Feature analysis
Soft computing approach
Steel slag aggregate
Workability properties
Title Robust prediction of workability properties for 3D printing with steel slag aggregate using bayesian regularization and evolution algorithm
URI https://dx.doi.org/10.1016/j.conbuildmat.2024.136470
Volume 431
WOSCitedRecordID wos001265824100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0950-0618
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0006262
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhhB7QFzFxkVG4i0Kys11IvEysSEuU4WgoL5FjmN3nUpadU21_gZ-Af-Wc2I7CTcxhHiJqkh2mnxffD6fnAshTzVnTIDS9cGWMz_JlPCFktofBmVQFqkGk9YkCp_w0SidTLJ3g8FXlwuzmfOqSi8usuV_hRrOAdiYOvsXcLeTwgn4DaDDEWCH46WAf78o6vM1Jv-XM-n0IIZfmYrcWwzJWmI0tWpKMXjxkYfOvXXrlQXc1dwDqkw9MYXtODravLrxKRRiq5qsy1XTwn5lkzibLxBqY2_LE_PpYgUzfe4rX-wM6mrVNnwrbENuDzSzeS4O_E9wAbShJqy_y1U7MV_8663_9rReWJOLjuxpvTWr57jjuptgdDrrezaiBCOwws6z2abcdPFNxm-JnXLsom2X8MRYkp_MgfFMnAGaVXNTcEPP8EoY3JeYhiU_VNv-gPPj9KB0QAyH6RWyG3GWwYK5e_j6ePKmNfOwE4xMIUfzf66RJ13w4G8u-Gvx0xM045vkht2J0EPDoFtkoKrbZK9Xn_IO-WK4RDsu0YWmPS7RjksUuETjI-q4RJFLtOESRS7Rlku04RJ1XKLfc4kCl2jLJdpy6S75-PJ4_OKVb7t3-DKOwrUvIhUHWclVEpRciJCVgUyYYjqUWoMozIZcSc6VFkUokwILWQpVcj0cwiFhQXyP7FSLSt0nNIRHnTAZyjRD-c9TVkQqKzRYSNCnkdonqXusubSl7bHDyjx3MYxneQ-RHBHJDSL7JGqHLk19l8sMeu6wy61QNQI0B-L9efjBvw1_QK53b8tDsgPvrnpErsrNena-emxp-g3U48iB
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Robust+prediction+of+workability+properties+for+3D+printing+with+steel+slag+aggregate+using+bayesian+regularization+and+evolution+algorithm&rft.jtitle=Construction+%26+building+materials&rft.au=Van+Tran%2C+Mien&rft.au=Ly%2C+Duy-Khuong&rft.au=Nguyen%2C+Tan&rft.au=Tran%2C+Nhi&rft.date=2024-06-14&rft.pub=Elsevier+Ltd&rft.issn=0950-0618&rft.volume=431&rft_id=info:doi/10.1016%2Fj.conbuildmat.2024.136470&rft.externalDocID=S0950061824016118
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon