Hierarchical Spectral Consensus Clustering for Group Analysis of Functional Brain Networks

A central question in cognitive neuroscience is how cognitive functions depend on the integration of specialized widely distributed brain regions. In recent years, graph theoretical methods have been used to characterize the structure of the brain functional connectivity. In order to understand the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on biomedical engineering Ročník 62; číslo 9; s. 2158 - 2169
Hlavní autoři: Ozdemir, Alp, Bolanos, Marcos, Bernat, Edward, Aviyente, Selin
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States IEEE 01.09.2015
Témata:
ISSN:0018-9294, 1558-2531, 1558-2531
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract A central question in cognitive neuroscience is how cognitive functions depend on the integration of specialized widely distributed brain regions. In recent years, graph theoretical methods have been used to characterize the structure of the brain functional connectivity. In order to understand the organization of functional connectivity networks, it is important to determine the community structure underlying these complex networks. Moreover, the study of brain functional networks is confounded by the fact that most neurophysiological studies consists of data collected from multiple subjects; thus, it is important to identify communities representative of all subjects. Typically, this problem is addressed by averaging the data across subjects which omits the variability across subjects or using voting methods, which requires a priori knowledge of cluster labels. In this paper, we propose a hierarchical consensus spectral clustering approach to address these problems. Furthermore, new information-theoretic criteria are introduced for selecting the optimal community structure. The proposed framework is applied to electroencephalogram data collected during a study of error-related negativity to better understand the community structure of functional networks involved in the cognitive control.
AbstractList A central question in cognitive neuroscience is how cognitive functions depend on the integration of specialized widely distributed brain regions. In recent years, graph theoretical methods have been used to characterize the structure of the brain functional connectivity. In order to understand the organization of functional connectivity networks, it is important to determine the community structure underlying these complex networks. Moreover, the study of brain functional networks is confounded by the fact that most neurophysiological studies consists of data collected from multiple subjects; thus, it is important to identify communities representative of all subjects. Typically, this problem is addressed by averaging the data across subjects which omits the variability across subjects or using voting methods, which requires a priori knowledge of cluster labels. In this paper, we propose a hierarchical consensus spectral clustering approach to address these problems. Furthermore, new information-theoretic criteria are introduced for selecting the optimal community structure. The proposed framework is applied to electroencephalogram data collected during a study of error-related negativity to better understand the community structure of functional networks involved in the cognitive control.
A central question in cognitive neuroscience is how cognitive functions depend on the integration of specialized widely distributed brain regions. In recent years, graph theoretical methods have been used to characterize the structure of the brain functional connectivity. In order to understand the organization of functional connectivity networks, it is important to determine the community structure underlying these complex networks. Moreover, the study of brain functional networks is confounded by the fact that most neurophysiological studies consists of data collected from multiple subjects; thus, it is important to identify communities representative of all subjects. Typically, this problem is addressed by averaging the data across subjects which omits the variability across subjects or using voting methods, which requires a priori knowledge of cluster labels. In this paper, we propose a hierarchical consensus spectral clustering approach to address these problems. Furthermore, new information-theoretic criteria are introduced for selecting the optimal community structure. The proposed framework is applied to electroencephalogram data collected during a study of error-related negativity to better understand the community structure of functional networks involved in the cognitive control.A central question in cognitive neuroscience is how cognitive functions depend on the integration of specialized widely distributed brain regions. In recent years, graph theoretical methods have been used to characterize the structure of the brain functional connectivity. In order to understand the organization of functional connectivity networks, it is important to determine the community structure underlying these complex networks. Moreover, the study of brain functional networks is confounded by the fact that most neurophysiological studies consists of data collected from multiple subjects; thus, it is important to identify communities representative of all subjects. Typically, this problem is addressed by averaging the data across subjects which omits the variability across subjects or using voting methods, which requires a priori knowledge of cluster labels. In this paper, we propose a hierarchical consensus spectral clustering approach to address these problems. Furthermore, new information-theoretic criteria are introduced for selecting the optimal community structure. The proposed framework is applied to electroencephalogram data collected during a study of error-related negativity to better understand the community structure of functional networks involved in the cognitive control.
Author Bernat, Edward
Aviyente, Selin
Bolanos, Marcos
Ozdemir, Alp
Author_xml – sequence: 1
  givenname: Alp
  surname: Ozdemir
  fullname: Ozdemir, Alp
  email: ozdemira@msu.edu
  organization: Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
– sequence: 2
  givenname: Marcos
  surname: Bolanos
  fullname: Bolanos, Marcos
  email: bolanosm@cna.org
  organization: CNA Corporation
– sequence: 3
  givenname: Edward
  surname: Bernat
  fullname: Bernat, Edward
  email: ebernat@umd.edu
  organization: Department of Psychology, University of Maryland, 1147 Biology/Psychology Building College Park, MD
– sequence: 4
  givenname: Selin
  surname: Aviyente
  fullname: Aviyente, Selin
  email: aviyente@egr.msu.edu
  organization: Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25807564$$D View this record in MEDLINE/PubMed
BookMark eNp9kMFuGyEURVHlqrbTfkAVKWKZzbg8YBhmmViOHSltF0033YwwftOQjMGBGVX--2LZySKLrB7v6lxAZ0pGPngk5CuwGQCrv91ff1_MOINyxiWUlRAfyATKUhe8FDAiE8ZAFzWv5ZhMU3rMq9RSfSJjXmpWlUpOyJ-Vw2iifXDWdPTXDm0f82EefEKfhkTn3ZB6jM7_pW2IdBnDsKNX3nT75BINLb0ZvO1dyAm9jsZ5-gP7fyE-pc_kY2u6hF9O84z8vlncz1fF3c_l7fzqrrCCQ1_oWmiwbK21YspUG4NGG63qNaoWeKuAMcE3xgjD2g0XFUi1loDacGSqzPkZuTzeu4vhecDUN1uXLHad8RiG1EDFFM9oJTN6cUKH9RY3zS66rYn75sVHBuAI2BhSiti-IsCag_Pm4Lw5OG9OznOnetOxrjcHJVml695tnh-bDhFfX8rflarW4j8fm45K
CODEN IEBEAX
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3567703
crossref_primary_10_3389_fninf_2018_00048
crossref_primary_10_1109_TBME_2016_2616474
crossref_primary_10_1371_journal_pone_0212470
crossref_primary_10_1016_j_compbiomed_2024_109435
crossref_primary_10_1016_j_jii_2017_02_005
crossref_primary_10_1016_j_ijpsycho_2018_04_013
crossref_primary_10_1016_j_jnca_2022_103513
crossref_primary_10_1109_MSP_2022_3149471
crossref_primary_10_1016_j_bspc_2024_106763
crossref_primary_10_1109_TCYB_2020_2974776
crossref_primary_10_1371_journal_pcbi_1012765
crossref_primary_10_1038_s41598_023_35232_2
crossref_primary_10_1109_TSIPN_2017_2668146
crossref_primary_10_1038_s41598_021_85210_9
crossref_primary_10_1002_hbm_25545
crossref_primary_10_1016_j_neuroimage_2022_119082
crossref_primary_10_1109_TSP_2016_2529586
crossref_primary_10_1109_TSIPN_2017_2707662
crossref_primary_10_1007_s41109_016_0007_y
crossref_primary_10_1088_1741_2552_aaac36
crossref_primary_10_1109_TNSE_2018_2869862
crossref_primary_10_1109_TSIPN_2025_3527888
Cites_doi 10.1016/j.physd.2006.09.008
10.1073/pnas.0601602103
10.1016/j.clinph.2005.08.033
10.1137/1.9781611972757.25
10.21136/CMJ.1975.101357
10.1093/cercor/bhq291
10.1103/PhysRevLett.97.238103
10.1109/ICDM.2004.10100
10.1016/S0987-7053(02)00301-5
10.1002/hbm.20353
10.1093/brain/awp086
10.1109/92.748202
10.1016/j.patrec.2009.11.001
10.1093/brain/awn018
10.1007/s11222-007-9033-z
10.1109/TSP.2011.2144589
10.1109/ICDM.2007.73
10.1109/TIT.1968.1054157
10.1016/0165-0173(94)00016-I
10.1093/bioinformatics/btq569
10.1093/cercor/bhr269
10.3389/neuro.11.037.2009
10.1038/35067550
10.1103/PhysRevLett.104.118701
10.1371/journal.pone.0013701
10.1038/nrn2575
10.1109/18.61115
10.1007/BFb0097982
10.1186/1471-2105-6-260
10.1002/hbm.21000
10.1093/cercor/bhn216
10.1371/journal.pcbi.0010042
10.1016/S0730-725X(99)00102-2
10.1142/S0218127407019251
10.1371/journal.pcbi.1000100
10.1016/j.neurobiolaging.2008.07.019
10.1093/brain/awn262
10.1002/hbm.21030
10.1038/17120
10.1016/j.clinph.2012.06.005
10.1103/PhysRevLett.81.3291
10.1137/1.9781611972740.35
10.1016/S1388-2457(02)00322-X
10.1016/S1053-8119(03)00062-4
10.1186/1753-4631-1-3
10.1016/j.neuropsychologia.2010.11.024
10.1109/ICDMW.2010.63
10.1111/j.1467-9280.1993.tb00586.x
10.1523/JNEUROSCI.4137-08.2009
10.1073/pnas.95.15.8420
10.1016/j.jneumeth.2012.10.004
10.1016/j.clinph.2004.06.001
10.1111/j.1467-9280.2007.01899.x
10.1177/001316446002000104
10.1016/0013-4694(91)90062-9
10.1016/j.jneumeth.2007.09.026
10.1145/1015330.1015407
10.1016/j.ejor.2010.08.012
10.3389/fnins.2010.00200
10.1016/j.patrec.2009.09.011
10.1145/1217299.1217303
10.1063/1.3129783
10.1038/nature03288
10.1073/pnas.0605965104
10.1016/S0165-0270(01)00372-7
10.1002/sim.4780100512
10.1016/j.clinph.2009.12.010
10.1523/JNEUROSCI.0333-10.2010
10.1148/radiol.11110380
10.1142/S0129065707000932
10.1016/j.tics.2004.06.006
10.1109/TITB.2004.834406
10.1016/j.neuroimage.2010.03.081
ContentType Journal Article
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1109/TBME.2015.2415733
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Xplore
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-2531
EndPage 2169
ExternalDocumentID 25807564
10_1109_TBME_2015_2415733
7064698
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: CCF-0728984; CAREER CCF-0746971; CCF-1218377
  funderid: 10.13039/100000001
GroupedDBID ---
-~X
.55
.DC
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IF
6IK
6IL
6IN
85S
97E
AAJGR
AARMG
AASAJ
AAWTH
AAYJJ
ABAZT
ABJNI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACKIV
ACNCT
ACPRK
ADZIZ
AENEX
AETIX
AFFNX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CHZPO
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IAAWW
IBMZZ
ICLAB
IDIHD
IEGSK
IFIPE
IFJZH
IPLJI
JAVBF
LAI
MS~
O9-
OCL
P2P
RIA
RIE
RIL
RNS
TAE
TN5
VH1
VJK
X7M
ZGI
ZXP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
7X8
ID FETCH-LOGICAL-c321t-89381c0b88606a7daea8a869be6f12f610032daa3a0fd237146b41e8a2e065aa3
IEDL.DBID RIE
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000360394900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0018-9294
1558-2531
IngestDate Sat Sep 27 23:00:11 EDT 2025
Wed Feb 19 02:07:57 EST 2025
Tue Nov 18 21:36:21 EST 2025
Sat Nov 29 05:34:17 EST 2025
Wed Aug 27 02:53:45 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords functional connectivity
Fiedler vector
Consensus clustering
electroencephalogram (EEG)
spectral clustering
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-89381c0b88606a7daea8a869be6f12f610032daa3a0fd237146b41e8a2e065aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 25807564
PQID 1706206574
PQPubID 23479
PageCount 12
ParticipantIDs proquest_miscellaneous_1706206574
pubmed_primary_25807564
crossref_primary_10_1109_TBME_2015_2415733
ieee_primary_7064698
crossref_citationtrail_10_1109_TBME_2015_2415733
PublicationCentury 2000
PublicationDate 2015-Sept.
2015-9-00
2015-Sep
20150901
PublicationDateYYYYMMDD 2015-09-01
PublicationDate_xml – month: 09
  year: 2015
  text: 2015-Sept.
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle IEEE transactions on biomedical engineering
PublicationTitleAbbrev TBME
PublicationTitleAlternate IEEE Trans Biomed Eng
PublicationYear 2015
Publisher IEEE
Publisher_xml – name: IEEE
References ref57
ref13
ref56
ref12
ref59
ref15
ref58
ref14
ref55
ref11
ref54
ng (ref52) 2001
ref10
ref17
ref16
ref19
ref18
frackowiak (ref26) 2003
rosenberg (ref66) 0
ref51
ref50
ref46
ref45
ref48
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
lin (ref53) 0
ref3
ref6
ref5
ref79
ref35
fiedler (ref39) 1975; 25
ref34
ref36
ref75
ref31
ref74
ref30
ref77
ref33
ref76
ref32
ref2
ref1
ref38
rodriguez (ref40) 1999; 397
strehl (ref37) 2003; 3
rijsbergen (ref65) 1979; 30
ref71
ref70
ref73
ref72
ref68
ref24
ref67
ref23
ref69
ref25
ref64
ref20
ref63
ref22
ref21
michel (ref78) 2004; 115
ref28
ref27
ref29
ref60
ref62
ref61
References_xml – ident: ref35
  doi: 10.1016/j.physd.2006.09.008
– ident: ref60
  doi: 10.1073/pnas.0601602103
– ident: ref73
  doi: 10.1016/j.clinph.2005.08.033
– ident: ref50
  doi: 10.1137/1.9781611972757.25
– volume: 25
  start-page: 619
  year: 1975
  ident: ref39
  article-title: A property of eigenvectors of nonnegative symmetric matrices and its application to graph theory
  publication-title: Czechoslovak Math J
  doi: 10.21136/CMJ.1975.101357
– ident: ref17
  doi: 10.1093/cercor/bhq291
– ident: ref34
  doi: 10.1103/PhysRevLett.97.238103
– ident: ref57
  doi: 10.1109/ICDM.2004.10100
– ident: ref43
  doi: 10.1016/S0987-7053(02)00301-5
– ident: ref20
  doi: 10.1002/hbm.20353
– ident: ref7
  doi: 10.1093/brain/awp086
– ident: ref59
  doi: 10.1109/92.748202
– ident: ref61
  doi: 10.1016/j.patrec.2009.11.001
– ident: ref18
  doi: 10.1093/brain/awn018
– ident: ref31
  doi: 10.1007/s11222-007-9033-z
– ident: ref45
  doi: 10.1109/TSP.2011.2144589
– ident: ref56
  doi: 10.1109/ICDM.2007.73
– ident: ref46
  doi: 10.1109/TIT.1968.1054157
– ident: ref28
  doi: 10.1016/0165-0173(94)00016-I
– ident: ref69
  doi: 10.1093/bioinformatics/btq569
– volume: 30
  start-page: 374
  year: 1979
  ident: ref65
  article-title: Information retrieval
  publication-title: J Amer Soc Inf Sci
– ident: ref14
  doi: 10.1093/cercor/bhr269
– start-page: 410
  year: 0
  ident: ref66
  article-title: V-measure: A conditional entropy-based external cluster evaluation measure
  publication-title: Proc Joint Conf Empirical Methods Natural Lang Process Comput Natural Lang Learn
– ident: ref33
  doi: 10.3389/neuro.11.037.2009
– ident: ref3
  doi: 10.1038/35067550
– volume: 3
  start-page: 583
  year: 2003
  ident: ref37
  article-title: Cluster ensembles-A knowledge reuse framework for combining multiple partitions
  publication-title: J Mach Learn Res
– ident: ref22
  doi: 10.1103/PhysRevLett.104.118701
– ident: ref13
  doi: 10.1371/journal.pone.0013701
– ident: ref48
  doi: 10.1038/nrn2575
– ident: ref67
  doi: 10.1109/18.61115
– ident: ref55
  doi: 10.1007/BFb0097982
– ident: ref49
  doi: 10.1186/1471-2105-6-260
– ident: ref44
  doi: 10.1002/hbm.21000
– ident: ref5
  doi: 10.1093/cercor/bhn216
– ident: ref27
  doi: 10.1371/journal.pcbi.0010042
– ident: ref29
  doi: 10.1016/S0730-725X(99)00102-2
– ident: ref32
  doi: 10.1142/S0218127407019251
– ident: ref21
  doi: 10.1371/journal.pcbi.1000100
– ident: ref10
  doi: 10.1016/j.neurobiolaging.2008.07.019
– ident: ref2
  doi: 10.1093/brain/awn262
– ident: ref15
  doi: 10.1002/hbm.21030
– volume: 397
  start-page: 430
  year: 1999
  ident: ref40
  article-title: Perception's shadow: Long-distance synchronization of human brain activity
  publication-title: Nature
  doi: 10.1038/17120
– start-page: 849
  year: 2001
  ident: ref52
  article-title: On spectral clustering: Analysis and an algorithm
  publication-title: Advances in neural information processing systems
– ident: ref74
  doi: 10.1016/j.clinph.2012.06.005
– ident: ref42
  doi: 10.1103/PhysRevLett.81.3291
– ident: ref58
  doi: 10.1137/1.9781611972740.35
– ident: ref9
  doi: 10.1016/S1388-2457(02)00322-X
– ident: ref1
  doi: 10.1016/S1053-8119(03)00062-4
– ident: ref47
  doi: 10.1186/1753-4631-1-3
– ident: ref19
  doi: 10.1016/j.neuropsychologia.2010.11.024
– ident: ref62
  doi: 10.1109/ICDMW.2010.63
– ident: ref71
  doi: 10.1111/j.1467-9280.1993.tb00586.x
– ident: ref76
  doi: 10.1523/JNEUROSCI.4137-08.2009
– ident: ref25
  doi: 10.1073/pnas.95.15.8420
– ident: ref75
  doi: 10.1016/j.jneumeth.2012.10.004
– volume: 115
  start-page: 2195
  year: 2004
  ident: ref78
  article-title: EEG source imaging
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2004.06.001
– ident: ref72
  doi: 10.1111/j.1467-9280.2007.01899.x
– ident: ref63
  doi: 10.1177/001316446002000104
– ident: ref70
  doi: 10.1016/0013-4694(91)90062-9
– ident: ref11
  doi: 10.1016/j.jneumeth.2007.09.026
– ident: ref54
  doi: 10.1145/1015330.1015407
– ident: ref68
  doi: 10.1016/j.ejor.2010.08.012
– ident: ref36
  doi: 10.3389/fnins.2010.00200
– ident: ref51
  doi: 10.1016/j.patrec.2009.09.011
– ident: ref38
  doi: 10.1145/1217299.1217303
– ident: ref23
  doi: 10.1063/1.3129783
– ident: ref24
  doi: 10.1038/nature03288
– ident: ref77
  doi: 10.1073/pnas.0605965104
– year: 2003
  ident: ref26
  publication-title: Human Brain Function
– start-page: 655
  year: 0
  ident: ref53
  article-title: Power iteration clustering
  publication-title: Proc 27th Int Conf Mach Learn
– ident: ref41
  doi: 10.1016/S0165-0270(01)00372-7
– ident: ref64
  doi: 10.1002/sim.4780100512
– ident: ref8
  doi: 10.1016/j.clinph.2009.12.010
– ident: ref16
  doi: 10.1523/JNEUROSCI.0333-10.2010
– ident: ref12
  doi: 10.1148/radiol.11110380
– ident: ref6
  doi: 10.1142/S0129065707000932
– ident: ref79
  doi: 10.1016/j.tics.2004.06.006
– ident: ref30
  doi: 10.1109/TITB.2004.834406
– ident: ref4
  doi: 10.1016/j.neuroimage.2010.03.081
SSID ssj0014846
Score 2.3431697
Snippet A central question in cognitive neuroscience is how cognitive functions depend on the integration of specialized widely distributed brain regions. In recent...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2158
SubjectTerms Algorithms
Biomedical measurement
Brain - physiology
Brain Mapping - methods
Cluster Analysis
Clustering algorithms
Communities
Consensus clustering
electroencephalogram (EEG)
Electroencephalography
Female
Fiedler vector
functional connectivity
Humans
Male
Nerve Net - physiology
Partitioning algorithms
spectral clustering
Symmetric matrices
Vectors
Title Hierarchical Spectral Consensus Clustering for Group Analysis of Functional Brain Networks
URI https://ieeexplore.ieee.org/document/7064698
https://www.ncbi.nlm.nih.gov/pubmed/25807564
https://www.proquest.com/docview/1706206574
Volume 62
WOSCitedRecordID wos000360394900008&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-2531
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014846
  issn: 0018-9294
  databaseCode: RIE
  dateStart: 19640101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LSwMxEB6qiOjB96O-iOBJXJtN001ytKWllxYPCsXLkmazIJRWbOvvdya7XRRU8LYsm-zjm-x8yUzmA7iRce5cJi3-_YSPpOU8sjqREVJZQXw1U5kNYhNqONSjkXmswV21F8Z7H5LP_D0dhlh-NnNLWiprKPSfidFrsKaUKvZqVREDqYtNOTzGASyMLCOYMTeNp_agS0lcrXtyV6pJ2jmiRVV4E_nNHQV9ld-pZnA5vd3_Pewe7JTUkj0UtrAPNT89gO0vBQcPYHNQhtIP4aX_SnuPgxTKhJEMPa15MBLwJPWLOetMllREAdsxJLYsLFKxVQ0TNstZD11isZLI2iQ0wYZFSvn8CJ573adOPyqFFiLXFPEiQs6iY8fHWuN0xiI63mpEzIx9ksciR4bFmyKztml5ngmq8ZeMZey1FR4ZDJ4_hvXpbOpPgQmkgKYlfGKNl9xZg50Zp7RDIqpyw-vAV987dWUVchLDmKRhNsJNSmilhFZaolWH26rJW1GC46-LDwmK6sIShTpcr0BNcfxQUMRO_Ww5T6l8kMC3ULIOJwXaVeOVkZz93Ok5bNGti4yzC1hfvC_9JWy4j8Xr_P0KjXSkr4KRfgLds9_U
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFD54w8uDt3mZ1wg-iXVplrXJo4pjohs-TBBfSpamIIxNdvH3e07aFQUVfCulCWm_pOfLOTnnAziXYWZtKg3-_YQLpOE8MCqSAVJZQXw1jVPjxSbiTke9vOinObgsc2Gcc_7wmbuiSx_LT4d2Sq6yWoz2M9JqHhYbUoowz9YqYwZS5Wk5PMQlLLQsYpgh17XuTfuOjnE1rshgxXVSzxENqsMbyW8GySus_E42vdFpbvxvuJuwXpBLdp3Phi2Yc4NtWPtScnAblttFML0Cr603yj72Yih9RkL05PVgJOFJ-hdjdtufUhkFbMeQ2jLvpmKzKiZsmLEmGsXcl8huSGqCdfJD5eMdeG7edW9bQSG1ENi6CCcBshYVWt5TCjc0BvFxRiFmuueiLBQZcixeF6kxdcOzVFCVv6gnQ6eMcMhh8P4uLAyGA7cPTCAJ1A3hIqOd5NZo7EzbWFmkonGmeRX47HsntqhDTnIY_cTvR7hOCK2E0EoKtKpwUTZ5z4tw_PVwhaAoHyxQqMLZDNQEVxCFRczADafjhAoICXyLWFZhL0e7bDybJAc_d3oKK61u-zF5vO88HMIqDSM_f3YEC5PR1B3Dkv2YvI1HJ36qfgJjPOIz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Hierarchical+Spectral+Consensus+Clustering+for+Group+Analysis+of+Functional+Brain+Networks&rft.jtitle=IEEE+transactions+on+biomedical+engineering&rft.au=Ozdemir%2C+Alp&rft.au=Bolanos%2C+Marcos&rft.au=Bernat%2C+Edward&rft.au=Aviyente%2C+Selin&rft.date=2015-09-01&rft.issn=0018-9294&rft.eissn=1558-2531&rft.volume=62&rft.issue=9&rft.spage=2158&rft.epage=2169&rft_id=info:doi/10.1109%2FTBME.2015.2415733&rft.externalDBID=n%2Fa&rft.externalDocID=10_1109_TBME_2015_2415733
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0018-9294&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0018-9294&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0018-9294&client=summon