Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration

Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as bredigite have importance roles in bone regeneration. We synthesized a novel strontium (Sr) doped bredigite (Bre) nanoparticles (BreSr) and the...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of biological macromolecules Ročník 219; s. 1319 - 1336
Hlavní autori: Nadi, Akram, Khodaei, Mohammad, Javdani, Moosa, Mirzaei, Seyed Abbas, Soleimannejad, Mostafa, Tayebi, Lobat, Asadpour, Shiva
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: 31.10.2022
Predmet:
ISSN:0141-8130, 1879-0003, 1879-0003
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as bredigite have importance roles in bone regeneration. We synthesized a novel strontium (Sr) doped bredigite (Bre) nanoparticles (BreSr) and then developed new nanocomposite scaffolds using polycaprolactone (PCL), poly lactic acid (PLA) by the 3D-printing technique. Novel functional nanoparticles were synthesized and characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS: map). The nanoparticles were uniformly distributed in the polymer matrix composites. The 3D- printed scaffolds were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection-fourier transform infrared (ATR-FTIR), degradation rate porosity, mechanical tests, apatite formation and cell culture. Degradation rate and mechanical strength were increased in the PLA/PCL/Bre-5%Sr nanocopmposite scaffolds. Hydroxyapatite crystals were also created on the scaffold surface in the bioactivity test. The scaffolds supported viability and proliferation of human osteoblasts. Gene expression and calcium deposition in the samples containing nanoparticles indicated statistical different than the scaffolds without nanoparticles. The nanocomposite scaffolds were implanted into the critical-sized calvarial defects in rat for 3 months. The scaffolds containing Bre-Sr ceramic nanoparticles exhibited the best potential to regenerate bone tissue.Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as bredigite have importance roles in bone regeneration. We synthesized a novel strontium (Sr) doped bredigite (Bre) nanoparticles (BreSr) and then developed new nanocomposite scaffolds using polycaprolactone (PCL), poly lactic acid (PLA) by the 3D-printing technique. Novel functional nanoparticles were synthesized and characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS: map). The nanoparticles were uniformly distributed in the polymer matrix composites. The 3D- printed scaffolds were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection-fourier transform infrared (ATR-FTIR), degradation rate porosity, mechanical tests, apatite formation and cell culture. Degradation rate and mechanical strength were increased in the PLA/PCL/Bre-5%Sr nanocopmposite scaffolds. Hydroxyapatite crystals were also created on the scaffold surface in the bioactivity test. The scaffolds supported viability and proliferation of human osteoblasts. Gene expression and calcium deposition in the samples containing nanoparticles indicated statistical different than the scaffolds without nanoparticles. The nanocomposite scaffolds were implanted into the critical-sized calvarial defects in rat for 3 months. The scaffolds containing Bre-Sr ceramic nanoparticles exhibited the best potential to regenerate bone tissue.
AbstractList Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as bredigite have importance roles in bone regeneration. We synthesized a novel strontium (Sr) doped bredigite (Bre) nanoparticles (BreSr) and then developed new nanocomposite scaffolds using polycaprolactone (PCL), poly lactic acid (PLA) by the 3D-printing technique. Novel functional nanoparticles were synthesized and characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS: map). The nanoparticles were uniformly distributed in the polymer matrix composites. The 3D- printed scaffolds were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection-fourier transform infrared (ATR-FTIR), degradation rate porosity, mechanical tests, apatite formation and cell culture. Degradation rate and mechanical strength were increased in the PLA/PCL/Bre-5%Sr nanocopmposite scaffolds. Hydroxyapatite crystals were also created on the scaffold surface in the bioactivity test. The scaffolds supported viability and proliferation of human osteoblasts. Gene expression and calcium deposition in the samples containing nanoparticles indicated statistical different than the scaffolds without nanoparticles. The nanocomposite scaffolds were implanted into the critical-sized calvarial defects in rat for 3 months. The scaffolds containing Bre-Sr ceramic nanoparticles exhibited the best potential to regenerate bone tissue.Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as bredigite have importance roles in bone regeneration. We synthesized a novel strontium (Sr) doped bredigite (Bre) nanoparticles (BreSr) and then developed new nanocomposite scaffolds using polycaprolactone (PCL), poly lactic acid (PLA) by the 3D-printing technique. Novel functional nanoparticles were synthesized and characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS: map). The nanoparticles were uniformly distributed in the polymer matrix composites. The 3D- printed scaffolds were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection-fourier transform infrared (ATR-FTIR), degradation rate porosity, mechanical tests, apatite formation and cell culture. Degradation rate and mechanical strength were increased in the PLA/PCL/Bre-5%Sr nanocopmposite scaffolds. Hydroxyapatite crystals were also created on the scaffold surface in the bioactivity test. The scaffolds supported viability and proliferation of human osteoblasts. Gene expression and calcium deposition in the samples containing nanoparticles indicated statistical different than the scaffolds without nanoparticles. The nanocomposite scaffolds were implanted into the critical-sized calvarial defects in rat for 3 months. The scaffolds containing Bre-Sr ceramic nanoparticles exhibited the best potential to regenerate bone tissue.
Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as bredigite have importance roles in bone regeneration. We synthesized a novel strontium (Sr) doped bredigite (Bre) nanoparticles (BreSr) and then developed new nanocomposite scaffolds using polycaprolactone (PCL), poly lactic acid (PLA) by the 3D-printing technique. Novel functional nanoparticles were synthesized and characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS: map). The nanoparticles were uniformly distributed in the polymer matrix composites. The 3D- printed scaffolds were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection-fourier transform infrared (ATR-FTIR), degradation rate porosity, mechanical tests, apatite formation and cell culture. Degradation rate and mechanical strength were increased in the PLA/PCL/Bre-5%Sr nanocopmposite scaffolds. Hydroxyapatite crystals were also created on the scaffold surface in the bioactivity test. The scaffolds supported viability and proliferation of human osteoblasts. Gene expression and calcium deposition in the samples containing nanoparticles indicated statistical different than the scaffolds without nanoparticles. The nanocomposite scaffolds were implanted into the critical-sized calvarial defects in rat for 3 months. The scaffolds containing Bre-Sr ceramic nanoparticles exhibited the best potential to regenerate bone tissue.
Author Soleimannejad, Mostafa
Tayebi, Lobat
Nadi, Akram
Khodaei, Mohammad
Mirzaei, Seyed Abbas
Asadpour, Shiva
Javdani, Moosa
Author_xml – sequence: 1
  givenname: Akram
  surname: Nadi
  fullname: Nadi, Akram
– sequence: 2
  givenname: Mohammad
  orcidid: 0000-0002-0598-8543
  surname: Khodaei
  fullname: Khodaei, Mohammad
– sequence: 3
  givenname: Moosa
  orcidid: 0000-0003-0975-2295
  surname: Javdani
  fullname: Javdani, Moosa
– sequence: 4
  givenname: Seyed Abbas
  orcidid: 0000-0003-0307-3750
  surname: Mirzaei
  fullname: Mirzaei, Seyed Abbas
– sequence: 5
  givenname: Mostafa
  surname: Soleimannejad
  fullname: Soleimannejad, Mostafa
– sequence: 6
  givenname: Lobat
  orcidid: 0000-0003-1947-5658
  surname: Tayebi
  fullname: Tayebi, Lobat
– sequence: 7
  givenname: Shiva
  orcidid: 0000-0001-5574-7142
  surname: Asadpour
  fullname: Asadpour, Shiva
BookMark eNqNkc1u1TAQhS1UJG4Lr4C8ZJPUP7mJI7FBhQJSJTawtib2-MpXiR1sB6lPxSvi3MKGDaw8Hn3naGbONbkKMSAhrzlrOeP97bn158nHBUwrmBAtUy2X_TNy4GoYG8aYvCIHxjveKC7ZC3Kd87l2-yNXB_LzHqbkDRQfA42Oui2YvYaZQrA0QIhNNTdxWWP2BWk24FycbaZb9uFEc0kxFL8tjY0rWjoltP60k7t2hVS8mTHfrnF-NLCmOIMpdYFLg-4fbygYb-kPD1S-p2vy1a86u5joVEma8IQB02XGl-S5gznjq9_vDfl2_-Hr3afm4cvHz3fvHhojBS-NUkMPbHK2m9Rg-OCMEBYl62QnrFW9wpFP4zAKhQ7UkXUGnULlYHIO7dHJG_LmybdO_H3DXPTis8F5hoBxy1oMXMlBHYX8D5SNgxx71Ve0f0JNijkndLpuu0B61JzpPUx91n_C1HuYmildw6zCt38JjS-Xg5QEfv6X_BeuyrI7
CitedBy_id crossref_primary_10_1007_s12633_024_03083_9
crossref_primary_10_1016_j_matdes_2025_114508
crossref_primary_10_1016_j_ijbiomac_2024_130602
crossref_primary_10_1007_s40883_025_00482_1
crossref_primary_10_1016_j_ijbiomac_2024_136160
crossref_primary_10_3390_biomimetics10050317
crossref_primary_10_3390_biomimetics8010094
crossref_primary_10_1016_j_ijbiomac_2024_138682
crossref_primary_10_1016_j_jddst_2024_106171
crossref_primary_10_1016_j_ijpharm_2024_123978
crossref_primary_10_1016_j_ijbiomac_2025_139883
crossref_primary_10_1016_j_matlet_2025_138808
crossref_primary_10_1002_smll_202405311
crossref_primary_10_1016_j_colsurfb_2025_114505
crossref_primary_10_56171_ojn_1611817
crossref_primary_10_3390_jfb15030057
crossref_primary_10_1016_j_ceramint_2024_09_294
crossref_primary_10_1016_j_polymertesting_2023_108155
crossref_primary_10_1016_j_ijbiomac_2025_142578
crossref_primary_10_3390_cells13121065
crossref_primary_10_3390_ma16113946
crossref_primary_10_1002_admt_202402054
crossref_primary_10_1002_pat_70076
crossref_primary_10_1007_s13726_023_01276_4
Cites_doi 10.1016/j.ceramint.2020.05.178
10.1016/j.jare.2019.06.001
10.1002/cbin.11478
10.1038/s41598-018-26452-y
10.1016/j.msec.2011.10.007
10.1016/j.ceramint.2018.03.173
10.1016/j.mattod.2013.11.017
10.1016/j.ceramint.2019.09.238
10.1016/j.jallcom.2017.10.138
10.1080/14712598.2019.1650912
10.1038/s41598-018-32794-4
10.1016/j.biomaterials.2006.01.017
10.1021/acsbiomaterials.9b01931
10.1016/j.msec.2019.01.061
10.1016/j.jcis.2019.03.024
10.3389/fbioe.2019.00161
10.3390/ma14081843
10.1016/j.matdes.2018.06.009
10.3390/ijms20112729
10.1007/s10853-018-2321-5
10.1016/j.ceramint.2017.11.082
10.1002/jemt.23282
10.1021/acsbiomaterials.8b00908
10.1016/j.polymertesting.2020.106341
10.1016/j.jallcom.2017.07.288
10.1016/j.addr.2012.01.016
10.1016/j.ijbiomac.2021.02.052
10.1088/1748-605X/aa6987
10.1007/s12015-020-10060-3
10.1002/biof.1717
10.1016/j.ijbiomac.2014.06.004
10.1016/j.biomaterials.2005.08.006
10.1016/j.actbio.2010.08.031
10.1016/j.msec.2021.112482
10.1007/s12010-018-2922-0
10.3390/pharmaceutics10030130
10.1016/j.addr.2021.05.007
10.1039/C4NR05060F
10.1016/j.nano.2018.06.007
10.1021/acsbiomaterials.8b00848
10.1016/j.ijbiomac.2019.11.003
10.1088/1748-605X/ab4e23
10.1016/j.gene.2020.144855
10.1016/j.msec.2021.112470
10.1016/j.colsurfb.2015.04.006
10.1088/1748-605X/aaa8b6
10.1016/j.ijbiomac.2021.04.151
10.1016/j.ijpharm.2018.06.020
10.1016/j.msec.2020.111359
10.1016/j.msec.2019.03.056
10.1016/j.biomaterials.2019.03.035
10.1088/1748-6041/6/1/015007
10.1016/j.cej.2019.01.015
10.1016/j.msec.2016.06.030
10.1038/boneres.2016.36
10.1016/j.msec.2019.109960
10.1016/j.matdes.2020.108825
10.1515/ntrev-2020-0076
10.1039/C5TB01244A
10.1021/acsbiomaterials.9b01381
10.1177/19476035211035418
10.1016/j.ijbiomac.2022.05.140
ContentType Journal Article
Copyright Copyright © 2022 Elsevier B.V. All rights reserved.
Copyright_xml – notice: Copyright © 2022 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
7S9
L.6
DOI 10.1016/j.ijbiomac.2022.08.136
DatabaseName CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1879-0003
EndPage 1336
ExternalDocumentID 10_1016_j_ijbiomac_2022_08_136
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1RT
1~.
1~5
29J
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
9DU
9JM
AAEDT
AAEDW
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
AAYXX
ABFNM
ABFRF
ABGSF
ABJNI
ABMAC
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACLOT
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEFWE
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CITATION
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HLW
HVGLF
HZ~
IHE
J1W
KOM
LX3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SBG
SCC
SDF
SDG
SDP
SES
SEW
SPCBC
SSU
SSZ
T5K
UHS
UNMZH
WUQ
~02
~G-
~HD
7X8
7S9
L.6
ID FETCH-LOGICAL-c321t-8876a0bfd4b87c17fc22de304342dd868e91b97928efa8504cef8e8fabffed5f3
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861506400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0141-8130
1879-0003
IngestDate Thu Oct 02 21:42:00 EDT 2025
Sun Sep 28 00:39:31 EDT 2025
Sat Nov 29 07:24:51 EST 2025
Tue Nov 18 21:18:26 EST 2025
IsPeerReviewed true
IsScholarly true
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-8876a0bfd4b87c17fc22de304342dd868e91b97928efa8504cef8e8fabffed5f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0307-3750
0000-0003-1947-5658
0000-0002-0598-8543
0000-0001-5574-7142
0000-0003-0975-2295
PQID 2709739686
PQPubID 23479
PageCount 18
ParticipantIDs proquest_miscellaneous_2718378523
proquest_miscellaneous_2709739686
crossref_primary_10_1016_j_ijbiomac_2022_08_136
crossref_citationtrail_10_1016_j_ijbiomac_2022_08_136
PublicationCentury 2000
PublicationDate 2022-10-31
PublicationDateYYYYMMDD 2022-10-31
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-31
  day: 31
PublicationDecade 2020
PublicationTitle International journal of biological macromolecules
PublicationYear 2022
References Gao (10.1016/j.ijbiomac.2022.08.136_bb0125) 2019; 20
Shahrezaee (10.1016/j.ijbiomac.2022.08.136_bb0035) 2018; 14
Oladapo (10.1016/j.ijbiomac.2022.08.136_bb0290) 2020; 83
Chiu (10.1016/j.ijbiomac.2022.08.136_bb0230) 2019; 20
Tian (10.1016/j.ijbiomac.2022.08.136_bb0360) 2015; 3
Wei (10.1016/j.ijbiomac.2022.08.136_bb0180) 2019; 4
Dai (10.1016/j.ijbiomac.2022.08.136_bb0020) 2020; 6
Ghodrat (10.1016/j.ijbiomac.2022.08.136_bb0370) 2021; 47
Sahmani (10.1016/j.ijbiomac.2022.08.136_bb0090) 2020; 46
Asadpour (10.1016/j.ijbiomac.2022.08.136_bb0220) 2018; 53
Sun (10.1016/j.ijbiomac.2022.08.136_bb0330) 2021; 131
Asadpour (10.1016/j.ijbiomac.2022.08.136_bb0215) 2018; 13
Saberi (10.1016/j.ijbiomac.2022.08.136_bb0305) 2020; 147
Wang (10.1016/j.ijbiomac.2022.08.136_bb0010) 2021; 174
Liu (10.1016/j.ijbiomac.2022.08.136_bb0325) 2019; 362
Kargozar (10.1016/j.ijbiomac.2022.08.136_bb0065) 2019; 19
Huang (10.1016/j.ijbiomac.2022.08.136_bb0235) 2020; 36
Hassanajili (10.1016/j.ijbiomac.2022.08.136_bb0075) 2019; 104
Najafinezhad (10.1016/j.ijbiomac.2022.08.136_bb0145) 2018; 734
Anitua (10.1016/j.ijbiomac.2022.08.136_bb0355) 2015; 130
Kokubo (10.1016/j.ijbiomac.2022.08.136_bb0210) 2006; 27
Asadpour (10.1016/j.ijbiomac.2022.08.136_bb0205) 2019; 15
Autefage (10.1016/j.ijbiomac.2022.08.136_bb0310) 2019; 209
Zhang (10.1016/j.ijbiomac.2022.08.136_bb0040) 2018; 5
Qiu (10.1016/j.ijbiomac.2022.08.136_bb0320) 2006; 27
Feng (10.1016/j.ijbiomac.2022.08.136_bb0255) 2011; 6
Fernandes (10.1016/j.ijbiomac.2022.08.136_bb0185) 2016; 4
Yoo (10.1016/j.ijbiomac.2022.08.136_bb0365) 2021; 14
Loh (10.1016/j.ijbiomac.2022.08.136_bb0245) 2013
Shokraei (10.1016/j.ijbiomac.2022.08.136_bb0225) 2019; 82
Mirhadi (10.1016/j.ijbiomac.2022.08.136_bb0100) 2012; 32
Lou (10.1016/j.ijbiomac.2022.08.136_bb0295) 2014; 69
Safari (10.1016/j.ijbiomac.2022.08.136_bb0300) 2021; 175
Asadpour (10.1016/j.ijbiomac.2022.08.136_bb0080) 2018; 4
Safari (10.1016/j.ijbiomac.2022.08.136_bb0165) 2021; 175
Keihan (10.1016/j.ijbiomac.2022.08.136_bb0120) 2020; 46
Cai (10.1016/j.ijbiomac.2022.08.136_bb0280) 2020; 9
No (10.1016/j.ijbiomac.2022.08.136_bb0140) 2017; 12
Suvarnapathaki (10.1016/j.ijbiomac.2022.08.136_bb0050) 2022; 13
Hasanzadeh (10.1016/j.ijbiomac.2022.08.136_bb0060) 2021; 45
Nanaki (10.1016/j.ijbiomac.2022.08.136_bb0265) 2018; 10
Monavari (10.1016/j.ijbiomac.2022.08.136_bb0025) 2021; 131
Przekora (10.1016/j.ijbiomac.2022.08.136_bb0055) 2019; 97
Bose (10.1016/j.ijbiomac.2022.08.136_bb0005) 2013; 16
Hasan (10.1016/j.ijbiomac.2022.08.136_bb0260) 2018; 8
Kunchala (10.1016/j.ijbiomac.2022.08.136_bb0270) 2018; 155
Nadi (10.1016/j.ijbiomac.2022.08.136_bb0070) 2020; 16
Kargozar (10.1016/j.ijbiomac.2022.08.136_bb0135) 2019; 7
Abpeikar (10.1016/j.ijbiomac.2022.08.136_bb0155) 2021; 183
Khandan (10.1016/j.ijbiomac.2022.08.136_bb0190) 2017; 726
Qiao (10.1016/j.ijbiomac.2022.08.136_bb0240) 2020; 194
Vimalraj (10.1016/j.ijbiomac.2022.08.136_bb0335) 2020; 754
Abpeikar (10.1016/j.ijbiomac.2022.08.136_bb0150) 2021; 13
Li (10.1016/j.ijbiomac.2022.08.136_bb0030) 2020; 6
Zhang (10.1016/j.ijbiomac.2022.08.136_bb0315) 2011; 7
Kumar (10.1016/j.ijbiomac.2022.08.136_bb0285) 2015; 7
Cheng (10.1016/j.ijbiomac.2022.08.136_bb0175) 2018; 547
Eilbagi (10.1016/j.ijbiomac.2022.08.136_bb0275) 2016; 68
Kouhi (10.1016/j.ijbiomac.2022.08.136_bb0130) 2018; 5
Cheng (10.1016/j.ijbiomac.2022.08.136_bb0250) 2016; 6
Zhu (10.1016/j.ijbiomac.2022.08.136_bb0045) 2021; 6
Vo (10.1016/j.ijbiomac.2022.08.136_bb0170) 2012; 64
Abpeikar (10.1016/j.ijbiomac.2022.08.136_bb0085) 2022; 213
Martin (10.1016/j.ijbiomac.2022.08.136_bb0345) 2019; 101
Abpeikar (10.1016/j.ijbiomac.2022.08.136_bb0095) 2021; 1–12
Karamian (10.1016/j.ijbiomac.2022.08.136_bb0115) 2017; 4
Arastouei (10.1016/j.ijbiomac.2022.08.136_bb0350) 2021; 27
Lu (10.1016/j.ijbiomac.2022.08.136_bb0015) 2020; 117
Carvalho (10.1016/j.ijbiomac.2022.08.136_bb0340) 2018; 8
Khandan (10.1016/j.ijbiomac.2022.08.136_bb0195) 2018; 44
Kouhi (10.1016/j.ijbiomac.2022.08.136_bb0105) 2019; 188
Asadpour (10.1016/j.ijbiomac.2022.08.136_bb0200) 2020; 154
Sahmani (10.1016/j.ijbiomac.2022.08.136_bb0110) 2018; 44
Hu (10.1016/j.ijbiomac.2022.08.136_bb0160) 2019; 545
References_xml – volume: 6
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0250
  article-title: A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration
  publication-title: Sci. Rep.
– volume: 46
  start-page: 21056
  issue: 13
  year: 2020
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0120
  article-title: Biomineralization, strength and cytocompatibility improvement of bredigite scaffolds through doping/coating
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2020.05.178
– volume: 20
  start-page: 91
  year: 2019
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0125
  article-title: Highly biodegradable and bioactive Fe-Pd-bredigite biocomposites prepared by selective laser melting
  publication-title: J. Adv. Res.
  doi: 10.1016/j.jare.2019.06.001
– volume: 45
  start-page: 140
  issue: 1
  year: 2021
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0060
  article-title: Defining the role of 17β-estradiol in human endometrial stem cells differentiation into neuron-like cells
  publication-title: Cell Biol. Int.
  doi: 10.1002/cbin.11478
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0260
  article-title: Fabrication and in vitro characterization of a tissue engineered PCL-PLLA heart valve
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-26452-y
– volume: 147
  year: 2020
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0305
  article-title: A study on the corrosion behavior and biological properties of polycaprolactone/bredigite composite coating on biodegradable Mg-Zn-Ca-GNP nanocomposite
  publication-title: Prog. Org. Coat.
– volume: 32
  start-page: 133
  issue: 2
  year: 2012
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0100
  article-title: Synthesis, characterization and formation mechanism of single-phase nanostructure bredigite powder
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2011.10.007
– volume: 44
  start-page: 11282
  issue: 10
  year: 2018
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0110
  article-title: Vibrations of beam-type implants made of 3D printed bredigite-magnetite bio-nanocomposite scaffolds under axial compression: application, communication and simulation
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.03.173
– volume: 16
  start-page: 496
  issue: 12
  year: 2013
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0005
  article-title: Bone tissue engineering using 3D printing
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2013.11.017
– volume: 46
  start-page: 2447
  issue: 2
  year: 2020
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0090
  article-title: Calcium phosphate-PLA scaffolds fabricated by fused deposition modeling technique for bone tissue applications: fabrication, characterization and simulation
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2019.09.238
– volume: 734
  start-page: 290
  year: 2018
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0145
  article-title: Hydroxyapatite-M-type strontium hexaferrite: a new composite for hyperthermia applications
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.10.138
– volume: 19
  start-page: 1199
  issue: 11
  year: 2019
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0065
  article-title: Curcumin: footprints on cardiac tissue engineering
  publication-title: Expert. Opin. Biol. Ther.
  doi: 10.1080/14712598.2019.1650912
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0340
  article-title: Biomimetic matrices for rapidly forming mineralized bone tissue based on stem cell-mediated osteogenesis
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-32794-4
– volume: 27
  start-page: 2907
  issue: 15
  year: 2006
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0210
  article-title: How useful is SBF in predicting in vivo bone bioactivity?
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2006.01.017
– volume: 6
  start-page: 3015
  issue: 5
  year: 2020
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0030
  article-title: Bioactive three-dimensional graphene oxide foam/polydimethylsiloxane/zinc silicate scaffolds with enhanced osteoinductivity for bone regeneration
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b01931
– volume: 97
  start-page: 1036
  year: 2019
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0055
  article-title: The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.01.061
– volume: 545
  start-page: 104
  year: 2019
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0160
  article-title: Facile preparation of bioactive nanoparticle/poly (ε-caprolactone) hierarchical porous scaffolds via 3D printing of high internal phase Pickering emulsions
  publication-title: J. Colloid Interface Sci.
  doi: 10.1016/j.jcis.2019.03.024
– volume: 7
  start-page: 161
  year: 2019
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0135
  article-title: Multiple and promising applications of strontium (Sr)-containing bioactive glasses in bone tissue engineering
  publication-title: Front. Bioeng. Biotechnol.
  doi: 10.3389/fbioe.2019.00161
– volume: 14
  start-page: 1843
  issue: 8
  year: 2021
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0365
  article-title: Physicochemical and biological properties of mg-doped calcium silicate endodontic cement
  publication-title: Materials
  doi: 10.3390/ma14081843
– volume: 155
  start-page: 443
  year: 2018
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0270
  article-title: 3D printing high density ceramics using binder jetting with nanoparticle densifiers
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2018.06.009
– volume: 20
  start-page: 2729
  issue: 11
  year: 2019
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0230
  article-title: Effect of strontium substitution on the physicochemical properties and bone regeneration potential of 3D printed calcium silicate scaffolds
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms20112729
– volume: 6
  start-page: 4110
  issue: 11
  year: 2021
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0045
  article-title: Bone physiological microenvironment and healing mechanism: basis for future bone-tissue engineering scaffolds
  publication-title: Bioact. Mater.
– volume: 53
  start-page: 9913
  issue: 14
  year: 2018
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0220
  article-title: A novel polyurethane modified with biomacromolecules for small-diameter vascular graft applications
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-018-2321-5
– volume: 44
  start-page: 3141
  issue: 3
  year: 2018
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0195
  article-title: On the mechanical and biological properties of bredigite-magnetite (Ca7MgSi4O16-Fe3O4) nanocomposite scaffolds
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2017.11.082
– volume: 82
  start-page: 1316
  issue: 8
  year: 2019
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0225
  article-title: Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering
  publication-title: Microsc. Res. Tech.
  doi: 10.1002/jemt.23282
– volume: 5
  start-page: 294
  issue: 1
  year: 2018
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0040
  article-title: Novel hierarchical nitrogen-doped multiwalled carbon nanotubes/cellulose/nanohydroxyapatite nanocomposite as an osteoinductive scaffold for enhancing bone regeneration
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b00908
– volume: 83
  year: 2020
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0290
  article-title: Microanalysis of hybrid characterization of PLA/cHA polymer scaffolds for bone regeneration
  publication-title: Polym. Test.
  doi: 10.1016/j.polymertesting.2020.106341
– volume: 726
  start-page: 729
  year: 2017
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0190
  article-title: Bredigite-magnetite (Ca7MgSi4O16-Fe3O4) nanoparticles: a study on their magnetic properties
  publication-title: J. Alloys Compd.
  doi: 10.1016/j.jallcom.2017.07.288
– volume: 64
  start-page: 1292
  issue: 12
  year: 2012
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0170
  article-title: Strategies for controlled delivery of growth factors and cells for bone regeneration
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2012.01.016
– volume: 175
  start-page: 544
  year: 2021
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0165
  article-title: Osteogenic potential of the growth factors and bioactive molecules in bone regeneration
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.02.052
– volume: 12
  issue: 3
  year: 2017
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0140
  article-title: Strontium-doped calcium silicate bioceramic with enhanced in vitro osteogenic properties
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-605X/aa6987
– volume: 16
  start-page: 1092
  issue: 6
  year: 2020
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0070
  article-title: Stem cells and hydrogels for liver tissue engineering: synergistic cure for liver regeneration
  publication-title: Stem Cell Rev. Rep.
  doi: 10.1007/s12015-020-10060-3
– volume: 47
  start-page: 270
  issue: 3
  year: 2021
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0370
  article-title: Stem cell-based therapies for cardiac diseases: the critical role of angiogenic exosomes
  publication-title: Biofactors
  doi: 10.1002/biof.1717
– volume: 175
  start-page: 544
  year: 2021
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0300
  article-title: Osteogenic potential of the growth factors and bioactive molecules in bone regeneration
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.02.052
– volume: 36
  year: 2020
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0235
  article-title: Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration
  publication-title: Addit. Manuf.
– volume: 69
  start-page: 464
  year: 2014
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0295
  article-title: Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2014.06.004
– volume: 4
  start-page: 256
  year: 2019
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0180
  article-title: 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering
  publication-title: Bioact. Mater.
– volume: 27
  start-page: 1277
  issue: 8
  year: 2006
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0320
  article-title: Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2005.08.006
– volume: 5
  start-page: 15702
  issue: 7
  year: 2018
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0130
  article-title: Enhanced proliferation and mineralization of human fetal osteoblast cells on PHBV-bredigite nanofibrous scaffolds
  publication-title: Mater. Today: Proc.
– volume: 13
  start-page: 64
  year: 2022
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0050
  article-title: Oxygen generating scaffolds regenerate critical size bone defects
  publication-title: Bioact. Mater.
– volume: 7
  start-page: 800
  issue: 2
  year: 2011
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0315
  article-title: Effects of strontium in modified biomaterials
  publication-title: Acta Biomater.
  doi: 10.1016/j.actbio.2010.08.031
– volume: 131
  year: 2021
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0330
  article-title: A polydopamine-assisted strontium-substituted apatite coating for titanium promotes osteogenesis and angiogenesis via FAK/MAPK and PI3K/AKT signaling pathways
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2021.112482
– volume: 188
  start-page: 357
  issue: 2
  year: 2019
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0105
  article-title: GPTMS-modified bredigite/PHBV nanofibrous bone scaffolds with enhanced mechanical and biological properties
  publication-title: Appl. Biochem. Biotechnol.
  doi: 10.1007/s12010-018-2922-0
– volume: 10
  start-page: 130
  issue: 3
  year: 2018
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0265
  article-title: Risperidone controlled release microspheres based on poly (lactic acid)-poly (propylene adipate) novel polymer blends appropriate for long acting injectable formulations
  publication-title: Pharmaceutics
  doi: 10.3390/pharmaceutics10030130
– volume: 174
  start-page: 504
  year: 2021
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0010
  article-title: Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration
  publication-title: Adv. Drug Deliv. Rev.
  doi: 10.1016/j.addr.2021.05.007
– volume: 7
  start-page: 2023
  issue: 5
  year: 2015
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0285
  article-title: Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold
  publication-title: Nanoscale
  doi: 10.1039/C4NR05060F
– volume: 14
  start-page: 2061
  issue: 7
  year: 2018
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0035
  article-title: In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects
  publication-title: Nanomedicine
  doi: 10.1016/j.nano.2018.06.007
– volume: 4
  start-page: 4299
  issue: 12
  year: 2018
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0080
  article-title: Polyurethane-polycaprolactone blend patches: scaffold characterization and cardiomyoblast adhesion, proliferation, and function
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.8b00848
– volume: 4
  start-page: 177
  issue: 3
  year: 2017
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0115
  article-title: Fabrication of hydroxyapatite-baghdadite nanocomposite scaffolds coated by PCL/Bioglass with polyurethane polymeric sponge technique
  publication-title: Nanomed. J.
– volume: 154
  start-page: 1285
  year: 2020
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0200
  article-title: Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2019.11.003
– volume: 15
  issue: 1
  year: 2019
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0205
  article-title: Resveratrol-loaded polyurethane nanofibrous scaffold: viability of endothelial and smooth muscle cells
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-605X/ab4e23
– year: 2013
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0245
– volume: 754
  year: 2020
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0335
  article-title: Alkaline phosphatase: structure, expression and its function in bone mineralization
  publication-title: Gene
  doi: 10.1016/j.gene.2020.144855
– volume: 131
  year: 2021
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0025
  article-title: 3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO2-CaO nanoparticles for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2021.112470
– volume: 130
  start-page: 173
  year: 2015
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0355
  article-title: Effects of calcium ions on titanium surfaces for bone regeneration
  publication-title: Colloids Surf. B: Biointerfaces
  doi: 10.1016/j.colsurfb.2015.04.006
– volume: 13
  issue: 3
  year: 2018
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0215
  article-title: In vitro physical and biological characterization of biodegradable elastic polyurethane containing ferulic acid for small-caliber vascular grafts
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-605X/aaa8b6
– volume: 183
  start-page: 1327
  year: 2021
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0155
  article-title: Macroporous scaffold surface modified with biological macromolecules and piroxicam-loaded gelatin nanofibers toward meniscus cartilage repair
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2021.04.151
– volume: 547
  start-page: 656
  issue: 1–2
  year: 2018
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0175
  article-title: Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering
  publication-title: Int. J. Pharm.
  doi: 10.1016/j.ijpharm.2018.06.020
– volume: 117
  year: 2020
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0015
  article-title: Electrospun highly porous poly (L-lactic acid)-dopamine-SiO2 fibrous membrane for bone regeneration
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2020.111359
– volume: 101
  start-page: 15
  year: 2019
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0345
  article-title: Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.03.056
– volume: 209
  start-page: 152
  year: 2019
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0310
  article-title: Multiscale analyses reveal native-like lamellar bone repair and near perfect bone-contact with porous strontium-loaded bioactive glass
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.03.035
– volume: 1–12
  year: 2021
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0095
  article-title: Influence of pore sizes in 3D-scaffolds on mechanical properties of scaffolds and survival, distribution, and proliferation of human chondrocytes
  publication-title: Mech. Adv. Mater. Struct.
– volume: 6
  issue: 1
  year: 2011
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0255
  article-title: The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo
  publication-title: Biomed. Mater.
  doi: 10.1088/1748-6041/6/1/015007
– volume: 362
  start-page: 269
  year: 2019
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0325
  article-title: 3D printed PCL/SrHA scaffold for enhanced bone regeneration
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2019.01.015
– volume: 68
  start-page: 603
  year: 2016
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0275
  article-title: Mechanical and cytotoxicity evaluation of nanostructured hydroxyapatite-bredigite scaffolds for bone regeneration
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2016.06.030
– volume: 4
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0185
  article-title: Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering
  publication-title: Bone Res.
  doi: 10.1038/boneres.2016.36
– volume: 104
  year: 2019
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0075
  article-title: Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering
  publication-title: Mater. Sci. Eng. C
  doi: 10.1016/j.msec.2019.109960
– volume: 194
  year: 2020
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0240
  article-title: 3D-printed Ti6Al4V scaffolds coated with freeze-dried platelet-rich plasma as bioactive interface for enhancing osseointegration in osteoporosis
  publication-title: Mater. Des.
  doi: 10.1016/j.matdes.2020.108825
– volume: 9
  start-page: 971
  issue: 1
  year: 2020
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0280
  article-title: Recent advance in surface modification for regulating cell adhesion and behaviors
  publication-title: Nanotechnol. Rev.
  doi: 10.1515/ntrev-2020-0076
– volume: 3
  start-page: 6773
  issue: 33
  year: 2015
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0360
  article-title: Novel co-akermanite (Ca 2 CoSi 2 O 7) bioceramics with the activity to stimulate osteogenesis and angiogenesis
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB01244A
– volume: 6
  start-page: 575
  issue: 1
  year: 2020
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0020
  article-title: Three-dimensional high-porosity chitosan/honeycomb porous carbon/hydroxyapatite scaffold with enhanced osteoinductivity for bone regeneration
  publication-title: ACS Biomater. Sci. Eng.
  doi: 10.1021/acsbiomaterials.9b01381
– volume: 27
  year: 2021
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0350
  article-title: The in-vitro biological properties of 3D printed poly lactic acid/akermanite composite porous scaffold for bone tissue engineering
  publication-title: Mater. Today Commun.
– volume: 13
  start-page: 1583S
  issue: 2_suppl
  year: 2021
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0150
  article-title: Characterization of macroporous polycaprolactone/silk fibroin/gelatin/ascorbic acid composite scaffolds and in vivo results in a rabbit model for meniscus cartilage repair
  publication-title: Cartilage
  doi: 10.1177/19476035211035418
– volume: 213
  start-page: 498
  year: 2022
  ident: 10.1016/j.ijbiomac.2022.08.136_bb0085
  article-title: Development of meniscus cartilage using polycaprolactone and decellularized meniscus surface modified by gelatin, hyaluronic acid biomacromolecules: a rabbit model
  publication-title: Int. J. Biol. Macromol.
  doi: 10.1016/j.ijbiomac.2022.05.140
SSID ssj0006518
Score 2.5000613
Snippet Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1319
SubjectTerms bioactive properties
bones
calcium
cell culture
ceramics
electron microscopy
energy-dispersive X-ray analysis
gene expression
humans
hydroxyapatite
nanocomposites
nanoparticles
osteoblasts
polymers
porosity
rats
strength (mechanics)
strontium
viability
X-ray diffraction
Title Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration
URI https://www.proquest.com/docview/2709739686
https://www.proquest.com/docview/2718378523
Volume 219
WOSCitedRecordID wos000861506400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0003
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006518
  issn: 0141-8130
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfWDgEviE8xPiYj8RaFJXbSOI_VtgqQViExpL5FTmxvKW1SJW218U_xL3J2vtpuGuyBl6hxbSfN_Xp3vpx_h9BH6YFZdhS3Q-op2yOJsmNOpD2grsvjgScTR5hiE8F4zCaT8Nte72GzF2Y9C7KMXV2Fi_8qamgDYeuts_cQdzspNMBnEDocQexw_CfBj3hc1IE47Qlqw1XH-3SMPONZDqvhXKeS63wtaZUJVyqfidJalVVwQXMapKu5LfKF9k8LsG8Xuqceu2gz6chokc-uEw4qeKaL9ujQqGmyZmbjlcWTVFjrlFv0xNLhw2WTtBlDX6uQF4bxugXGtMup70KUG8QWFV2UwdScmyxCU9i3y4Ecc2FSE4Y_Cz5vDcllLrg07Wf5JZ_PuWiThvhaVBWt4Ku8bO3TWVr8qod8l9fwBIZxzLfCI7Cy7uxKEzF1bebWL39qld-o6Uppu7Q-lfVpRclyw7hUcY7pp3SqqRG4JsAkRBPAuvQWNu8dK9vmPjZpddOomSfS80QOi2CeHtongR-yPtoffjmdfG29ioFvYtXtz9nY7X77HW07Wtt-hnGezp-iJ_WqBw8r7DxDezJ7jh4dN8UGX6DfG6jFucIdajGgFt9ALW5Riw1q8Q5qcYtavIXao13MmgZcIRZrxGJALKYnuEEsBsRijVi8idiX6Mfo9Pz4s13XErETStylDbZ0wJ1YCS9mQeIGKiFESOp41CNCsAGToRuHQUiYVJz5jpdIxSRTPFZKCl_RV6ifwbVeI5ww4VMnlK7wQZe5MvZ8SRxKwG3wwb_mB8hvHnyU1ET7ut7LLLpb9AfoqB23qKhm_jriQyPXCOSlX_XxTOarMiKBpuEKB-zOPq6uJuET-ubeV36LHnd_tneovyxW8j16kKyXaVkcol4wYYc1gv8A-vj4YQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+functional+and+nano-biocomposite+scaffolds+using+strontium-doped+bredigite+nanoparticles%2Fpolycaprolactone%2Fpoly+lactic+acid+via+3D+printing+for+bone+regeneration&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Nadi%2C+Akram&rft.au=Khodaei%2C+Mohammad&rft.au=Javdani%2C+Moosa&rft.au=Mirzaei%2C+Seyed+Abbas&rft.date=2022-10-31&rft.issn=0141-8130&rft.volume=219&rft.spage=1319&rft.epage=1336&rft_id=info:doi/10.1016%2Fj.ijbiomac.2022.08.136&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijbiomac_2022_08_136
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon