Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration
Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as bredigite have importance roles in bone regeneration. We synthesized a novel strontium (Sr) doped bredigite (Bre) nanoparticles (BreSr) and the...
Uložené v:
| Vydané v: | International journal of biological macromolecules Ročník 219; s. 1319 - 1336 |
|---|---|
| Hlavní autori: | , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
31.10.2022
|
| Predmet: | |
| ISSN: | 0141-8130, 1879-0003, 1879-0003 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as bredigite have importance roles in bone regeneration. We synthesized a novel strontium (Sr) doped bredigite (Bre) nanoparticles (BreSr) and then developed new nanocomposite scaffolds using polycaprolactone (PCL), poly lactic acid (PLA) by the 3D-printing technique. Novel functional nanoparticles were synthesized and characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS: map). The nanoparticles were uniformly distributed in the polymer matrix composites. The 3D- printed scaffolds were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection-fourier transform infrared (ATR-FTIR), degradation rate porosity, mechanical tests, apatite formation and cell culture. Degradation rate and mechanical strength were increased in the PLA/PCL/Bre-5%Sr nanocopmposite scaffolds. Hydroxyapatite crystals were also created on the scaffold surface in the bioactivity test. The scaffolds supported viability and proliferation of human osteoblasts. Gene expression and calcium deposition in the samples containing nanoparticles indicated statistical different than the scaffolds without nanoparticles. The nanocomposite scaffolds were implanted into the critical-sized calvarial defects in rat for 3 months. The scaffolds containing Bre-Sr ceramic nanoparticles exhibited the best potential to regenerate bone tissue.Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as bredigite have importance roles in bone regeneration. We synthesized a novel strontium (Sr) doped bredigite (Bre) nanoparticles (BreSr) and then developed new nanocomposite scaffolds using polycaprolactone (PCL), poly lactic acid (PLA) by the 3D-printing technique. Novel functional nanoparticles were synthesized and characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS: map). The nanoparticles were uniformly distributed in the polymer matrix composites. The 3D- printed scaffolds were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection-fourier transform infrared (ATR-FTIR), degradation rate porosity, mechanical tests, apatite formation and cell culture. Degradation rate and mechanical strength were increased in the PLA/PCL/Bre-5%Sr nanocopmposite scaffolds. Hydroxyapatite crystals were also created on the scaffold surface in the bioactivity test. The scaffolds supported viability and proliferation of human osteoblasts. Gene expression and calcium deposition in the samples containing nanoparticles indicated statistical different than the scaffolds without nanoparticles. The nanocomposite scaffolds were implanted into the critical-sized calvarial defects in rat for 3 months. The scaffolds containing Bre-Sr ceramic nanoparticles exhibited the best potential to regenerate bone tissue. |
|---|---|
| AbstractList | Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as bredigite have importance roles in bone regeneration. We synthesized a novel strontium (Sr) doped bredigite (Bre) nanoparticles (BreSr) and then developed new nanocomposite scaffolds using polycaprolactone (PCL), poly lactic acid (PLA) by the 3D-printing technique. Novel functional nanoparticles were synthesized and characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS: map). The nanoparticles were uniformly distributed in the polymer matrix composites. The 3D- printed scaffolds were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection-fourier transform infrared (ATR-FTIR), degradation rate porosity, mechanical tests, apatite formation and cell culture. Degradation rate and mechanical strength were increased in the PLA/PCL/Bre-5%Sr nanocopmposite scaffolds. Hydroxyapatite crystals were also created on the scaffold surface in the bioactivity test. The scaffolds supported viability and proliferation of human osteoblasts. Gene expression and calcium deposition in the samples containing nanoparticles indicated statistical different than the scaffolds without nanoparticles. The nanocomposite scaffolds were implanted into the critical-sized calvarial defects in rat for 3 months. The scaffolds containing Bre-Sr ceramic nanoparticles exhibited the best potential to regenerate bone tissue.Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as bredigite have importance roles in bone regeneration. We synthesized a novel strontium (Sr) doped bredigite (Bre) nanoparticles (BreSr) and then developed new nanocomposite scaffolds using polycaprolactone (PCL), poly lactic acid (PLA) by the 3D-printing technique. Novel functional nanoparticles were synthesized and characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS: map). The nanoparticles were uniformly distributed in the polymer matrix composites. The 3D- printed scaffolds were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection-fourier transform infrared (ATR-FTIR), degradation rate porosity, mechanical tests, apatite formation and cell culture. Degradation rate and mechanical strength were increased in the PLA/PCL/Bre-5%Sr nanocopmposite scaffolds. Hydroxyapatite crystals were also created on the scaffold surface in the bioactivity test. The scaffolds supported viability and proliferation of human osteoblasts. Gene expression and calcium deposition in the samples containing nanoparticles indicated statistical different than the scaffolds without nanoparticles. The nanocomposite scaffolds were implanted into the critical-sized calvarial defects in rat for 3 months. The scaffolds containing Bre-Sr ceramic nanoparticles exhibited the best potential to regenerate bone tissue. Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as bredigite have importance roles in bone regeneration. We synthesized a novel strontium (Sr) doped bredigite (Bre) nanoparticles (BreSr) and then developed new nanocomposite scaffolds using polycaprolactone (PCL), poly lactic acid (PLA) by the 3D-printing technique. Novel functional nanoparticles were synthesized and characterized using field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), and energy dispersive spectroscopy (EDS: map). The nanoparticles were uniformly distributed in the polymer matrix composites. The 3D- printed scaffolds were investigated using scanning electron microscopy (SEM), X-ray diffraction (XRD), attenuated total reflection-fourier transform infrared (ATR-FTIR), degradation rate porosity, mechanical tests, apatite formation and cell culture. Degradation rate and mechanical strength were increased in the PLA/PCL/Bre-5%Sr nanocopmposite scaffolds. Hydroxyapatite crystals were also created on the scaffold surface in the bioactivity test. The scaffolds supported viability and proliferation of human osteoblasts. Gene expression and calcium deposition in the samples containing nanoparticles indicated statistical different than the scaffolds without nanoparticles. The nanocomposite scaffolds were implanted into the critical-sized calvarial defects in rat for 3 months. The scaffolds containing Bre-Sr ceramic nanoparticles exhibited the best potential to regenerate bone tissue. |
| Author | Soleimannejad, Mostafa Tayebi, Lobat Nadi, Akram Khodaei, Mohammad Mirzaei, Seyed Abbas Asadpour, Shiva Javdani, Moosa |
| Author_xml | – sequence: 1 givenname: Akram surname: Nadi fullname: Nadi, Akram – sequence: 2 givenname: Mohammad orcidid: 0000-0002-0598-8543 surname: Khodaei fullname: Khodaei, Mohammad – sequence: 3 givenname: Moosa orcidid: 0000-0003-0975-2295 surname: Javdani fullname: Javdani, Moosa – sequence: 4 givenname: Seyed Abbas orcidid: 0000-0003-0307-3750 surname: Mirzaei fullname: Mirzaei, Seyed Abbas – sequence: 5 givenname: Mostafa surname: Soleimannejad fullname: Soleimannejad, Mostafa – sequence: 6 givenname: Lobat orcidid: 0000-0003-1947-5658 surname: Tayebi fullname: Tayebi, Lobat – sequence: 7 givenname: Shiva orcidid: 0000-0001-5574-7142 surname: Asadpour fullname: Asadpour, Shiva |
| BookMark | eNqNkc1u1TAQhS1UJG4Lr4C8ZJPUP7mJI7FBhQJSJTawtib2-MpXiR1sB6lPxSvi3MKGDaw8Hn3naGbONbkKMSAhrzlrOeP97bn158nHBUwrmBAtUy2X_TNy4GoYG8aYvCIHxjveKC7ZC3Kd87l2-yNXB_LzHqbkDRQfA42Oui2YvYaZQrA0QIhNNTdxWWP2BWk24FycbaZb9uFEc0kxFL8tjY0rWjoltP60k7t2hVS8mTHfrnF-NLCmOIMpdYFLg-4fbygYb-kPD1S-p2vy1a86u5joVEma8IQB02XGl-S5gznjq9_vDfl2_-Hr3afm4cvHz3fvHhojBS-NUkMPbHK2m9Rg-OCMEBYl62QnrFW9wpFP4zAKhQ7UkXUGnULlYHIO7dHJG_LmybdO_H3DXPTis8F5hoBxy1oMXMlBHYX8D5SNgxx71Ve0f0JNijkndLpuu0B61JzpPUx91n_C1HuYmildw6zCt38JjS-Xg5QEfv6X_BeuyrI7 |
| CitedBy_id | crossref_primary_10_1007_s12633_024_03083_9 crossref_primary_10_1016_j_matdes_2025_114508 crossref_primary_10_1016_j_ijbiomac_2024_130602 crossref_primary_10_1007_s40883_025_00482_1 crossref_primary_10_1016_j_ijbiomac_2024_136160 crossref_primary_10_3390_biomimetics10050317 crossref_primary_10_3390_biomimetics8010094 crossref_primary_10_1016_j_ijbiomac_2024_138682 crossref_primary_10_1016_j_jddst_2024_106171 crossref_primary_10_1016_j_ijpharm_2024_123978 crossref_primary_10_1016_j_ijbiomac_2025_139883 crossref_primary_10_1016_j_matlet_2025_138808 crossref_primary_10_1002_smll_202405311 crossref_primary_10_1016_j_colsurfb_2025_114505 crossref_primary_10_56171_ojn_1611817 crossref_primary_10_3390_jfb15030057 crossref_primary_10_1016_j_ceramint_2024_09_294 crossref_primary_10_1016_j_polymertesting_2023_108155 crossref_primary_10_1016_j_ijbiomac_2025_142578 crossref_primary_10_3390_cells13121065 crossref_primary_10_3390_ma16113946 crossref_primary_10_1002_admt_202402054 crossref_primary_10_1002_pat_70076 crossref_primary_10_1007_s13726_023_01276_4 |
| Cites_doi | 10.1016/j.ceramint.2020.05.178 10.1016/j.jare.2019.06.001 10.1002/cbin.11478 10.1038/s41598-018-26452-y 10.1016/j.msec.2011.10.007 10.1016/j.ceramint.2018.03.173 10.1016/j.mattod.2013.11.017 10.1016/j.ceramint.2019.09.238 10.1016/j.jallcom.2017.10.138 10.1080/14712598.2019.1650912 10.1038/s41598-018-32794-4 10.1016/j.biomaterials.2006.01.017 10.1021/acsbiomaterials.9b01931 10.1016/j.msec.2019.01.061 10.1016/j.jcis.2019.03.024 10.3389/fbioe.2019.00161 10.3390/ma14081843 10.1016/j.matdes.2018.06.009 10.3390/ijms20112729 10.1007/s10853-018-2321-5 10.1016/j.ceramint.2017.11.082 10.1002/jemt.23282 10.1021/acsbiomaterials.8b00908 10.1016/j.polymertesting.2020.106341 10.1016/j.jallcom.2017.07.288 10.1016/j.addr.2012.01.016 10.1016/j.ijbiomac.2021.02.052 10.1088/1748-605X/aa6987 10.1007/s12015-020-10060-3 10.1002/biof.1717 10.1016/j.ijbiomac.2014.06.004 10.1016/j.biomaterials.2005.08.006 10.1016/j.actbio.2010.08.031 10.1016/j.msec.2021.112482 10.1007/s12010-018-2922-0 10.3390/pharmaceutics10030130 10.1016/j.addr.2021.05.007 10.1039/C4NR05060F 10.1016/j.nano.2018.06.007 10.1021/acsbiomaterials.8b00848 10.1016/j.ijbiomac.2019.11.003 10.1088/1748-605X/ab4e23 10.1016/j.gene.2020.144855 10.1016/j.msec.2021.112470 10.1016/j.colsurfb.2015.04.006 10.1088/1748-605X/aaa8b6 10.1016/j.ijbiomac.2021.04.151 10.1016/j.ijpharm.2018.06.020 10.1016/j.msec.2020.111359 10.1016/j.msec.2019.03.056 10.1016/j.biomaterials.2019.03.035 10.1088/1748-6041/6/1/015007 10.1016/j.cej.2019.01.015 10.1016/j.msec.2016.06.030 10.1038/boneres.2016.36 10.1016/j.msec.2019.109960 10.1016/j.matdes.2020.108825 10.1515/ntrev-2020-0076 10.1039/C5TB01244A 10.1021/acsbiomaterials.9b01381 10.1177/19476035211035418 10.1016/j.ijbiomac.2022.05.140 |
| ContentType | Journal Article |
| Copyright | Copyright © 2022 Elsevier B.V. All rights reserved. |
| Copyright_xml | – notice: Copyright © 2022 Elsevier B.V. All rights reserved. |
| DBID | AAYXX CITATION 7X8 7S9 L.6 |
| DOI | 10.1016/j.ijbiomac.2022.08.136 |
| DatabaseName | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry |
| EISSN | 1879-0003 |
| EndPage | 1336 |
| ExternalDocumentID | 10_1016_j_ijbiomac_2022_08_136 |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1RT 1~. 1~5 29J 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ 9DU 9JM AAEDT AAEDW AAHBH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYWO AAYXX ABFNM ABFRF ABGSF ABJNI ABMAC ABUDA ABWVN ABXDB ACDAQ ACGFO ACGFS ACIUM ACLOT ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADMUD ADNMO ADUVX AEBSH AEFWE AEHWI AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGHFR AGQPQ AGRDE AGUBO AGYEJ AHHHB AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CITATION CS3 DU5 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HLW HVGLF HZ~ IHE J1W KOM LX3 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SBG SCC SDF SDG SDP SES SEW SPCBC SSU SSZ T5K UHS UNMZH WUQ ~02 ~G- ~HD 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c321t-8876a0bfd4b87c17fc22de304342dd868e91b97928efa8504cef8e8fabffed5f3 |
| ISICitedReferencesCount | 30 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000861506400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0141-8130 1879-0003 |
| IngestDate | Thu Oct 02 21:42:00 EDT 2025 Sun Sep 28 00:39:31 EDT 2025 Sat Nov 29 07:24:51 EST 2025 Tue Nov 18 21:18:26 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c321t-8876a0bfd4b87c17fc22de304342dd868e91b97928efa8504cef8e8fabffed5f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0003-0307-3750 0000-0003-1947-5658 0000-0002-0598-8543 0000-0001-5574-7142 0000-0003-0975-2295 |
| PQID | 2709739686 |
| PQPubID | 23479 |
| PageCount | 18 |
| ParticipantIDs | proquest_miscellaneous_2718378523 proquest_miscellaneous_2709739686 crossref_primary_10_1016_j_ijbiomac_2022_08_136 crossref_citationtrail_10_1016_j_ijbiomac_2022_08_136 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-10-31 |
| PublicationDateYYYYMMDD | 2022-10-31 |
| PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-31 day: 31 |
| PublicationDecade | 2020 |
| PublicationTitle | International journal of biological macromolecules |
| PublicationYear | 2022 |
| References | Gao (10.1016/j.ijbiomac.2022.08.136_bb0125) 2019; 20 Shahrezaee (10.1016/j.ijbiomac.2022.08.136_bb0035) 2018; 14 Oladapo (10.1016/j.ijbiomac.2022.08.136_bb0290) 2020; 83 Chiu (10.1016/j.ijbiomac.2022.08.136_bb0230) 2019; 20 Tian (10.1016/j.ijbiomac.2022.08.136_bb0360) 2015; 3 Wei (10.1016/j.ijbiomac.2022.08.136_bb0180) 2019; 4 Dai (10.1016/j.ijbiomac.2022.08.136_bb0020) 2020; 6 Ghodrat (10.1016/j.ijbiomac.2022.08.136_bb0370) 2021; 47 Sahmani (10.1016/j.ijbiomac.2022.08.136_bb0090) 2020; 46 Asadpour (10.1016/j.ijbiomac.2022.08.136_bb0220) 2018; 53 Sun (10.1016/j.ijbiomac.2022.08.136_bb0330) 2021; 131 Asadpour (10.1016/j.ijbiomac.2022.08.136_bb0215) 2018; 13 Saberi (10.1016/j.ijbiomac.2022.08.136_bb0305) 2020; 147 Wang (10.1016/j.ijbiomac.2022.08.136_bb0010) 2021; 174 Liu (10.1016/j.ijbiomac.2022.08.136_bb0325) 2019; 362 Kargozar (10.1016/j.ijbiomac.2022.08.136_bb0065) 2019; 19 Huang (10.1016/j.ijbiomac.2022.08.136_bb0235) 2020; 36 Hassanajili (10.1016/j.ijbiomac.2022.08.136_bb0075) 2019; 104 Najafinezhad (10.1016/j.ijbiomac.2022.08.136_bb0145) 2018; 734 Anitua (10.1016/j.ijbiomac.2022.08.136_bb0355) 2015; 130 Kokubo (10.1016/j.ijbiomac.2022.08.136_bb0210) 2006; 27 Asadpour (10.1016/j.ijbiomac.2022.08.136_bb0205) 2019; 15 Autefage (10.1016/j.ijbiomac.2022.08.136_bb0310) 2019; 209 Zhang (10.1016/j.ijbiomac.2022.08.136_bb0040) 2018; 5 Qiu (10.1016/j.ijbiomac.2022.08.136_bb0320) 2006; 27 Feng (10.1016/j.ijbiomac.2022.08.136_bb0255) 2011; 6 Fernandes (10.1016/j.ijbiomac.2022.08.136_bb0185) 2016; 4 Yoo (10.1016/j.ijbiomac.2022.08.136_bb0365) 2021; 14 Loh (10.1016/j.ijbiomac.2022.08.136_bb0245) 2013 Shokraei (10.1016/j.ijbiomac.2022.08.136_bb0225) 2019; 82 Mirhadi (10.1016/j.ijbiomac.2022.08.136_bb0100) 2012; 32 Lou (10.1016/j.ijbiomac.2022.08.136_bb0295) 2014; 69 Safari (10.1016/j.ijbiomac.2022.08.136_bb0300) 2021; 175 Asadpour (10.1016/j.ijbiomac.2022.08.136_bb0080) 2018; 4 Safari (10.1016/j.ijbiomac.2022.08.136_bb0165) 2021; 175 Keihan (10.1016/j.ijbiomac.2022.08.136_bb0120) 2020; 46 Cai (10.1016/j.ijbiomac.2022.08.136_bb0280) 2020; 9 No (10.1016/j.ijbiomac.2022.08.136_bb0140) 2017; 12 Suvarnapathaki (10.1016/j.ijbiomac.2022.08.136_bb0050) 2022; 13 Hasanzadeh (10.1016/j.ijbiomac.2022.08.136_bb0060) 2021; 45 Nanaki (10.1016/j.ijbiomac.2022.08.136_bb0265) 2018; 10 Monavari (10.1016/j.ijbiomac.2022.08.136_bb0025) 2021; 131 Przekora (10.1016/j.ijbiomac.2022.08.136_bb0055) 2019; 97 Bose (10.1016/j.ijbiomac.2022.08.136_bb0005) 2013; 16 Hasan (10.1016/j.ijbiomac.2022.08.136_bb0260) 2018; 8 Kunchala (10.1016/j.ijbiomac.2022.08.136_bb0270) 2018; 155 Nadi (10.1016/j.ijbiomac.2022.08.136_bb0070) 2020; 16 Kargozar (10.1016/j.ijbiomac.2022.08.136_bb0135) 2019; 7 Abpeikar (10.1016/j.ijbiomac.2022.08.136_bb0155) 2021; 183 Khandan (10.1016/j.ijbiomac.2022.08.136_bb0190) 2017; 726 Qiao (10.1016/j.ijbiomac.2022.08.136_bb0240) 2020; 194 Vimalraj (10.1016/j.ijbiomac.2022.08.136_bb0335) 2020; 754 Abpeikar (10.1016/j.ijbiomac.2022.08.136_bb0150) 2021; 13 Li (10.1016/j.ijbiomac.2022.08.136_bb0030) 2020; 6 Zhang (10.1016/j.ijbiomac.2022.08.136_bb0315) 2011; 7 Kumar (10.1016/j.ijbiomac.2022.08.136_bb0285) 2015; 7 Cheng (10.1016/j.ijbiomac.2022.08.136_bb0175) 2018; 547 Eilbagi (10.1016/j.ijbiomac.2022.08.136_bb0275) 2016; 68 Kouhi (10.1016/j.ijbiomac.2022.08.136_bb0130) 2018; 5 Cheng (10.1016/j.ijbiomac.2022.08.136_bb0250) 2016; 6 Zhu (10.1016/j.ijbiomac.2022.08.136_bb0045) 2021; 6 Vo (10.1016/j.ijbiomac.2022.08.136_bb0170) 2012; 64 Abpeikar (10.1016/j.ijbiomac.2022.08.136_bb0085) 2022; 213 Martin (10.1016/j.ijbiomac.2022.08.136_bb0345) 2019; 101 Abpeikar (10.1016/j.ijbiomac.2022.08.136_bb0095) 2021; 1–12 Karamian (10.1016/j.ijbiomac.2022.08.136_bb0115) 2017; 4 Arastouei (10.1016/j.ijbiomac.2022.08.136_bb0350) 2021; 27 Lu (10.1016/j.ijbiomac.2022.08.136_bb0015) 2020; 117 Carvalho (10.1016/j.ijbiomac.2022.08.136_bb0340) 2018; 8 Khandan (10.1016/j.ijbiomac.2022.08.136_bb0195) 2018; 44 Kouhi (10.1016/j.ijbiomac.2022.08.136_bb0105) 2019; 188 Asadpour (10.1016/j.ijbiomac.2022.08.136_bb0200) 2020; 154 Sahmani (10.1016/j.ijbiomac.2022.08.136_bb0110) 2018; 44 Hu (10.1016/j.ijbiomac.2022.08.136_bb0160) 2019; 545 |
| References_xml | – volume: 6 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.ijbiomac.2022.08.136_bb0250 article-title: A novel open-porous magnesium scaffold with controllable microstructures and properties for bone regeneration publication-title: Sci. Rep. – volume: 46 start-page: 21056 issue: 13 year: 2020 ident: 10.1016/j.ijbiomac.2022.08.136_bb0120 article-title: Biomineralization, strength and cytocompatibility improvement of bredigite scaffolds through doping/coating publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.05.178 – volume: 20 start-page: 91 year: 2019 ident: 10.1016/j.ijbiomac.2022.08.136_bb0125 article-title: Highly biodegradable and bioactive Fe-Pd-bredigite biocomposites prepared by selective laser melting publication-title: J. Adv. Res. doi: 10.1016/j.jare.2019.06.001 – volume: 45 start-page: 140 issue: 1 year: 2021 ident: 10.1016/j.ijbiomac.2022.08.136_bb0060 article-title: Defining the role of 17β-estradiol in human endometrial stem cells differentiation into neuron-like cells publication-title: Cell Biol. Int. doi: 10.1002/cbin.11478 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.ijbiomac.2022.08.136_bb0260 article-title: Fabrication and in vitro characterization of a tissue engineered PCL-PLLA heart valve publication-title: Sci. Rep. doi: 10.1038/s41598-018-26452-y – volume: 147 year: 2020 ident: 10.1016/j.ijbiomac.2022.08.136_bb0305 article-title: A study on the corrosion behavior and biological properties of polycaprolactone/bredigite composite coating on biodegradable Mg-Zn-Ca-GNP nanocomposite publication-title: Prog. Org. Coat. – volume: 32 start-page: 133 issue: 2 year: 2012 ident: 10.1016/j.ijbiomac.2022.08.136_bb0100 article-title: Synthesis, characterization and formation mechanism of single-phase nanostructure bredigite powder publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2011.10.007 – volume: 44 start-page: 11282 issue: 10 year: 2018 ident: 10.1016/j.ijbiomac.2022.08.136_bb0110 article-title: Vibrations of beam-type implants made of 3D printed bredigite-magnetite bio-nanocomposite scaffolds under axial compression: application, communication and simulation publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.03.173 – volume: 16 start-page: 496 issue: 12 year: 2013 ident: 10.1016/j.ijbiomac.2022.08.136_bb0005 article-title: Bone tissue engineering using 3D printing publication-title: Mater. Today doi: 10.1016/j.mattod.2013.11.017 – volume: 46 start-page: 2447 issue: 2 year: 2020 ident: 10.1016/j.ijbiomac.2022.08.136_bb0090 article-title: Calcium phosphate-PLA scaffolds fabricated by fused deposition modeling technique for bone tissue applications: fabrication, characterization and simulation publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2019.09.238 – volume: 734 start-page: 290 year: 2018 ident: 10.1016/j.ijbiomac.2022.08.136_bb0145 article-title: Hydroxyapatite-M-type strontium hexaferrite: a new composite for hyperthermia applications publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.10.138 – volume: 19 start-page: 1199 issue: 11 year: 2019 ident: 10.1016/j.ijbiomac.2022.08.136_bb0065 article-title: Curcumin: footprints on cardiac tissue engineering publication-title: Expert. Opin. Biol. Ther. doi: 10.1080/14712598.2019.1650912 – volume: 8 start-page: 1 issue: 1 year: 2018 ident: 10.1016/j.ijbiomac.2022.08.136_bb0340 article-title: Biomimetic matrices for rapidly forming mineralized bone tissue based on stem cell-mediated osteogenesis publication-title: Sci. Rep. doi: 10.1038/s41598-018-32794-4 – volume: 27 start-page: 2907 issue: 15 year: 2006 ident: 10.1016/j.ijbiomac.2022.08.136_bb0210 article-title: How useful is SBF in predicting in vivo bone bioactivity? publication-title: Biomaterials doi: 10.1016/j.biomaterials.2006.01.017 – volume: 6 start-page: 3015 issue: 5 year: 2020 ident: 10.1016/j.ijbiomac.2022.08.136_bb0030 article-title: Bioactive three-dimensional graphene oxide foam/polydimethylsiloxane/zinc silicate scaffolds with enhanced osteoinductivity for bone regeneration publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.9b01931 – volume: 97 start-page: 1036 year: 2019 ident: 10.1016/j.ijbiomac.2022.08.136_bb0055 article-title: The summary of the most important cell-biomaterial interactions that need to be considered during in vitro biocompatibility testing of bone scaffolds for tissue engineering applications publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.01.061 – volume: 545 start-page: 104 year: 2019 ident: 10.1016/j.ijbiomac.2022.08.136_bb0160 article-title: Facile preparation of bioactive nanoparticle/poly (ε-caprolactone) hierarchical porous scaffolds via 3D printing of high internal phase Pickering emulsions publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2019.03.024 – volume: 7 start-page: 161 year: 2019 ident: 10.1016/j.ijbiomac.2022.08.136_bb0135 article-title: Multiple and promising applications of strontium (Sr)-containing bioactive glasses in bone tissue engineering publication-title: Front. Bioeng. Biotechnol. doi: 10.3389/fbioe.2019.00161 – volume: 14 start-page: 1843 issue: 8 year: 2021 ident: 10.1016/j.ijbiomac.2022.08.136_bb0365 article-title: Physicochemical and biological properties of mg-doped calcium silicate endodontic cement publication-title: Materials doi: 10.3390/ma14081843 – volume: 155 start-page: 443 year: 2018 ident: 10.1016/j.ijbiomac.2022.08.136_bb0270 article-title: 3D printing high density ceramics using binder jetting with nanoparticle densifiers publication-title: Mater. Des. doi: 10.1016/j.matdes.2018.06.009 – volume: 20 start-page: 2729 issue: 11 year: 2019 ident: 10.1016/j.ijbiomac.2022.08.136_bb0230 article-title: Effect of strontium substitution on the physicochemical properties and bone regeneration potential of 3D printed calcium silicate scaffolds publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms20112729 – volume: 6 start-page: 4110 issue: 11 year: 2021 ident: 10.1016/j.ijbiomac.2022.08.136_bb0045 article-title: Bone physiological microenvironment and healing mechanism: basis for future bone-tissue engineering scaffolds publication-title: Bioact. Mater. – volume: 53 start-page: 9913 issue: 14 year: 2018 ident: 10.1016/j.ijbiomac.2022.08.136_bb0220 article-title: A novel polyurethane modified with biomacromolecules for small-diameter vascular graft applications publication-title: J. Mater. Sci. doi: 10.1007/s10853-018-2321-5 – volume: 44 start-page: 3141 issue: 3 year: 2018 ident: 10.1016/j.ijbiomac.2022.08.136_bb0195 article-title: On the mechanical and biological properties of bredigite-magnetite (Ca7MgSi4O16-Fe3O4) nanocomposite scaffolds publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2017.11.082 – volume: 82 start-page: 1316 issue: 8 year: 2019 ident: 10.1016/j.ijbiomac.2022.08.136_bb0225 article-title: Development of electrically conductive hybrid nanofibers based on CNT-polyurethane nanocomposite for cardiac tissue engineering publication-title: Microsc. Res. Tech. doi: 10.1002/jemt.23282 – volume: 5 start-page: 294 issue: 1 year: 2018 ident: 10.1016/j.ijbiomac.2022.08.136_bb0040 article-title: Novel hierarchical nitrogen-doped multiwalled carbon nanotubes/cellulose/nanohydroxyapatite nanocomposite as an osteoinductive scaffold for enhancing bone regeneration publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b00908 – volume: 83 year: 2020 ident: 10.1016/j.ijbiomac.2022.08.136_bb0290 article-title: Microanalysis of hybrid characterization of PLA/cHA polymer scaffolds for bone regeneration publication-title: Polym. Test. doi: 10.1016/j.polymertesting.2020.106341 – volume: 726 start-page: 729 year: 2017 ident: 10.1016/j.ijbiomac.2022.08.136_bb0190 article-title: Bredigite-magnetite (Ca7MgSi4O16-Fe3O4) nanoparticles: a study on their magnetic properties publication-title: J. Alloys Compd. doi: 10.1016/j.jallcom.2017.07.288 – volume: 64 start-page: 1292 issue: 12 year: 2012 ident: 10.1016/j.ijbiomac.2022.08.136_bb0170 article-title: Strategies for controlled delivery of growth factors and cells for bone regeneration publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2012.01.016 – volume: 175 start-page: 544 year: 2021 ident: 10.1016/j.ijbiomac.2022.08.136_bb0165 article-title: Osteogenic potential of the growth factors and bioactive molecules in bone regeneration publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.02.052 – volume: 12 issue: 3 year: 2017 ident: 10.1016/j.ijbiomac.2022.08.136_bb0140 article-title: Strontium-doped calcium silicate bioceramic with enhanced in vitro osteogenic properties publication-title: Biomed. Mater. doi: 10.1088/1748-605X/aa6987 – volume: 16 start-page: 1092 issue: 6 year: 2020 ident: 10.1016/j.ijbiomac.2022.08.136_bb0070 article-title: Stem cells and hydrogels for liver tissue engineering: synergistic cure for liver regeneration publication-title: Stem Cell Rev. Rep. doi: 10.1007/s12015-020-10060-3 – volume: 47 start-page: 270 issue: 3 year: 2021 ident: 10.1016/j.ijbiomac.2022.08.136_bb0370 article-title: Stem cell-based therapies for cardiac diseases: the critical role of angiogenic exosomes publication-title: Biofactors doi: 10.1002/biof.1717 – volume: 175 start-page: 544 year: 2021 ident: 10.1016/j.ijbiomac.2022.08.136_bb0300 article-title: Osteogenic potential of the growth factors and bioactive molecules in bone regeneration publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.02.052 – volume: 36 year: 2020 ident: 10.1016/j.ijbiomac.2022.08.136_bb0235 article-title: Engineered dual-scale poly (ε-caprolactone) scaffolds using 3D printing and rotational electrospinning for bone tissue regeneration publication-title: Addit. Manuf. – volume: 69 start-page: 464 year: 2014 ident: 10.1016/j.ijbiomac.2022.08.136_bb0295 article-title: Fabrication of PLLA/β-TCP nanocomposite scaffolds with hierarchical porosity for bone tissue engineering publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2014.06.004 – volume: 4 start-page: 256 year: 2019 ident: 10.1016/j.ijbiomac.2022.08.136_bb0180 article-title: 3D printing of silk fibroin-based hybrid scaffold treated with platelet rich plasma for bone tissue engineering publication-title: Bioact. Mater. – volume: 27 start-page: 1277 issue: 8 year: 2006 ident: 10.1016/j.ijbiomac.2022.08.136_bb0320 article-title: Effect of strontium ions on the growth of ROS17/2.8 cells on porous calcium polyphosphate scaffolds publication-title: Biomaterials doi: 10.1016/j.biomaterials.2005.08.006 – volume: 5 start-page: 15702 issue: 7 year: 2018 ident: 10.1016/j.ijbiomac.2022.08.136_bb0130 article-title: Enhanced proliferation and mineralization of human fetal osteoblast cells on PHBV-bredigite nanofibrous scaffolds publication-title: Mater. Today: Proc. – volume: 13 start-page: 64 year: 2022 ident: 10.1016/j.ijbiomac.2022.08.136_bb0050 article-title: Oxygen generating scaffolds regenerate critical size bone defects publication-title: Bioact. Mater. – volume: 7 start-page: 800 issue: 2 year: 2011 ident: 10.1016/j.ijbiomac.2022.08.136_bb0315 article-title: Effects of strontium in modified biomaterials publication-title: Acta Biomater. doi: 10.1016/j.actbio.2010.08.031 – volume: 131 year: 2021 ident: 10.1016/j.ijbiomac.2022.08.136_bb0330 article-title: A polydopamine-assisted strontium-substituted apatite coating for titanium promotes osteogenesis and angiogenesis via FAK/MAPK and PI3K/AKT signaling pathways publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2021.112482 – volume: 188 start-page: 357 issue: 2 year: 2019 ident: 10.1016/j.ijbiomac.2022.08.136_bb0105 article-title: GPTMS-modified bredigite/PHBV nanofibrous bone scaffolds with enhanced mechanical and biological properties publication-title: Appl. Biochem. Biotechnol. doi: 10.1007/s12010-018-2922-0 – volume: 10 start-page: 130 issue: 3 year: 2018 ident: 10.1016/j.ijbiomac.2022.08.136_bb0265 article-title: Risperidone controlled release microspheres based on poly (lactic acid)-poly (propylene adipate) novel polymer blends appropriate for long acting injectable formulations publication-title: Pharmaceutics doi: 10.3390/pharmaceutics10030130 – volume: 174 start-page: 504 year: 2021 ident: 10.1016/j.ijbiomac.2022.08.136_bb0010 article-title: Pharmaceutical electrospinning and 3D printing scaffold design for bone regeneration publication-title: Adv. Drug Deliv. Rev. doi: 10.1016/j.addr.2021.05.007 – volume: 7 start-page: 2023 issue: 5 year: 2015 ident: 10.1016/j.ijbiomac.2022.08.136_bb0285 article-title: Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold publication-title: Nanoscale doi: 10.1039/C4NR05060F – volume: 14 start-page: 2061 issue: 7 year: 2018 ident: 10.1016/j.ijbiomac.2022.08.136_bb0035 article-title: In vitro and in vivo investigation of PLA/PCL scaffold coated with metformin-loaded gelatin nanocarriers in regeneration of critical-sized bone defects publication-title: Nanomedicine doi: 10.1016/j.nano.2018.06.007 – volume: 4 start-page: 4299 issue: 12 year: 2018 ident: 10.1016/j.ijbiomac.2022.08.136_bb0080 article-title: Polyurethane-polycaprolactone blend patches: scaffold characterization and cardiomyoblast adhesion, proliferation, and function publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.8b00848 – volume: 4 start-page: 177 issue: 3 year: 2017 ident: 10.1016/j.ijbiomac.2022.08.136_bb0115 article-title: Fabrication of hydroxyapatite-baghdadite nanocomposite scaffolds coated by PCL/Bioglass with polyurethane polymeric sponge technique publication-title: Nanomed. J. – volume: 154 start-page: 1285 year: 2020 ident: 10.1016/j.ijbiomac.2022.08.136_bb0200 article-title: Natural biomacromolecule based composite scaffolds from silk fibroin, gelatin and chitosan toward tissue engineering applications publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2019.11.003 – volume: 15 issue: 1 year: 2019 ident: 10.1016/j.ijbiomac.2022.08.136_bb0205 article-title: Resveratrol-loaded polyurethane nanofibrous scaffold: viability of endothelial and smooth muscle cells publication-title: Biomed. Mater. doi: 10.1088/1748-605X/ab4e23 – year: 2013 ident: 10.1016/j.ijbiomac.2022.08.136_bb0245 – volume: 754 year: 2020 ident: 10.1016/j.ijbiomac.2022.08.136_bb0335 article-title: Alkaline phosphatase: structure, expression and its function in bone mineralization publication-title: Gene doi: 10.1016/j.gene.2020.144855 – volume: 131 year: 2021 ident: 10.1016/j.ijbiomac.2022.08.136_bb0025 article-title: 3D printing of alginate dialdehyde-gelatin (ADA-GEL) hydrogels incorporating phytotherapeutic icariin loaded mesoporous SiO2-CaO nanoparticles for bone tissue engineering publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2021.112470 – volume: 130 start-page: 173 year: 2015 ident: 10.1016/j.ijbiomac.2022.08.136_bb0355 article-title: Effects of calcium ions on titanium surfaces for bone regeneration publication-title: Colloids Surf. B: Biointerfaces doi: 10.1016/j.colsurfb.2015.04.006 – volume: 13 issue: 3 year: 2018 ident: 10.1016/j.ijbiomac.2022.08.136_bb0215 article-title: In vitro physical and biological characterization of biodegradable elastic polyurethane containing ferulic acid for small-caliber vascular grafts publication-title: Biomed. Mater. doi: 10.1088/1748-605X/aaa8b6 – volume: 183 start-page: 1327 year: 2021 ident: 10.1016/j.ijbiomac.2022.08.136_bb0155 article-title: Macroporous scaffold surface modified with biological macromolecules and piroxicam-loaded gelatin nanofibers toward meniscus cartilage repair publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2021.04.151 – volume: 547 start-page: 656 issue: 1–2 year: 2018 ident: 10.1016/j.ijbiomac.2022.08.136_bb0175 article-title: Incorporating platelet-rich plasma into coaxial electrospun nanofibers for bone tissue engineering publication-title: Int. J. Pharm. doi: 10.1016/j.ijpharm.2018.06.020 – volume: 117 year: 2020 ident: 10.1016/j.ijbiomac.2022.08.136_bb0015 article-title: Electrospun highly porous poly (L-lactic acid)-dopamine-SiO2 fibrous membrane for bone regeneration publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2020.111359 – volume: 101 start-page: 15 year: 2019 ident: 10.1016/j.ijbiomac.2022.08.136_bb0345 article-title: Engineering a multifunctional 3D-printed PLA-collagen-minocycline-nanoHydroxyapatite scaffold with combined antimicrobial and osteogenic effects for bone regeneration publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.03.056 – volume: 209 start-page: 152 year: 2019 ident: 10.1016/j.ijbiomac.2022.08.136_bb0310 article-title: Multiscale analyses reveal native-like lamellar bone repair and near perfect bone-contact with porous strontium-loaded bioactive glass publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.03.035 – volume: 1–12 year: 2021 ident: 10.1016/j.ijbiomac.2022.08.136_bb0095 article-title: Influence of pore sizes in 3D-scaffolds on mechanical properties of scaffolds and survival, distribution, and proliferation of human chondrocytes publication-title: Mech. Adv. Mater. Struct. – volume: 6 issue: 1 year: 2011 ident: 10.1016/j.ijbiomac.2022.08.136_bb0255 article-title: The effect of pore size on tissue ingrowth and neovascularization in porous bioceramics of controlled architecture in vivo publication-title: Biomed. Mater. doi: 10.1088/1748-6041/6/1/015007 – volume: 362 start-page: 269 year: 2019 ident: 10.1016/j.ijbiomac.2022.08.136_bb0325 article-title: 3D printed PCL/SrHA scaffold for enhanced bone regeneration publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.01.015 – volume: 68 start-page: 603 year: 2016 ident: 10.1016/j.ijbiomac.2022.08.136_bb0275 article-title: Mechanical and cytotoxicity evaluation of nanostructured hydroxyapatite-bredigite scaffolds for bone regeneration publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2016.06.030 – volume: 4 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.ijbiomac.2022.08.136_bb0185 article-title: Application of platelet-rich plasma with stem cells in bone and periodontal tissue engineering publication-title: Bone Res. doi: 10.1038/boneres.2016.36 – volume: 104 year: 2019 ident: 10.1016/j.ijbiomac.2022.08.136_bb0075 article-title: Preparation and characterization of PLA/PCL/HA composite scaffolds using indirect 3D printing for bone tissue engineering publication-title: Mater. Sci. Eng. C doi: 10.1016/j.msec.2019.109960 – volume: 194 year: 2020 ident: 10.1016/j.ijbiomac.2022.08.136_bb0240 article-title: 3D-printed Ti6Al4V scaffolds coated with freeze-dried platelet-rich plasma as bioactive interface for enhancing osseointegration in osteoporosis publication-title: Mater. Des. doi: 10.1016/j.matdes.2020.108825 – volume: 9 start-page: 971 issue: 1 year: 2020 ident: 10.1016/j.ijbiomac.2022.08.136_bb0280 article-title: Recent advance in surface modification for regulating cell adhesion and behaviors publication-title: Nanotechnol. Rev. doi: 10.1515/ntrev-2020-0076 – volume: 3 start-page: 6773 issue: 33 year: 2015 ident: 10.1016/j.ijbiomac.2022.08.136_bb0360 article-title: Novel co-akermanite (Ca 2 CoSi 2 O 7) bioceramics with the activity to stimulate osteogenesis and angiogenesis publication-title: J. Mater. Chem. B doi: 10.1039/C5TB01244A – volume: 6 start-page: 575 issue: 1 year: 2020 ident: 10.1016/j.ijbiomac.2022.08.136_bb0020 article-title: Three-dimensional high-porosity chitosan/honeycomb porous carbon/hydroxyapatite scaffold with enhanced osteoinductivity for bone regeneration publication-title: ACS Biomater. Sci. Eng. doi: 10.1021/acsbiomaterials.9b01381 – volume: 27 year: 2021 ident: 10.1016/j.ijbiomac.2022.08.136_bb0350 article-title: The in-vitro biological properties of 3D printed poly lactic acid/akermanite composite porous scaffold for bone tissue engineering publication-title: Mater. Today Commun. – volume: 13 start-page: 1583S issue: 2_suppl year: 2021 ident: 10.1016/j.ijbiomac.2022.08.136_bb0150 article-title: Characterization of macroporous polycaprolactone/silk fibroin/gelatin/ascorbic acid composite scaffolds and in vivo results in a rabbit model for meniscus cartilage repair publication-title: Cartilage doi: 10.1177/19476035211035418 – volume: 213 start-page: 498 year: 2022 ident: 10.1016/j.ijbiomac.2022.08.136_bb0085 article-title: Development of meniscus cartilage using polycaprolactone and decellularized meniscus surface modified by gelatin, hyaluronic acid biomacromolecules: a rabbit model publication-title: Int. J. Biol. Macromol. doi: 10.1016/j.ijbiomac.2022.05.140 |
| SSID | ssj0006518 |
| Score | 2.5000613 |
| Snippet | Bone tissue engineering is a field to manufacture scaffolds for bone defects that cannot repair without medical interventions. Ceramic nanoparticles such as... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1319 |
| SubjectTerms | bioactive properties bones calcium cell culture ceramics electron microscopy energy-dispersive X-ray analysis gene expression humans hydroxyapatite nanocomposites nanoparticles osteoblasts polymers porosity rats strength (mechanics) strontium viability X-ray diffraction |
| Title | Fabrication of functional and nano-biocomposite scaffolds using strontium-doped bredigite nanoparticles/polycaprolactone/poly lactic acid via 3D printing for bone regeneration |
| URI | https://www.proquest.com/docview/2709739686 https://www.proquest.com/docview/2718378523 |
| Volume | 219 |
| WOSCitedRecordID | wos000861506400002&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-0003 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0006518 issn: 0141-8130 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3db9MwELfWDgEviE8xPiYj8RaFJXbSOI_VtgqQViExpL5FTmxvKW1SJW218U_xL3J2vtpuGuyBl6hxbSfN_Xp3vpx_h9BH6YFZdhS3Q-op2yOJsmNOpD2grsvjgScTR5hiE8F4zCaT8Nte72GzF2Y9C7KMXV2Fi_8qamgDYeuts_cQdzspNMBnEDocQexw_CfBj3hc1IE47Qlqw1XH-3SMPONZDqvhXKeS63wtaZUJVyqfidJalVVwQXMapKu5LfKF9k8LsG8Xuqceu2gz6chokc-uEw4qeKaL9ujQqGmyZmbjlcWTVFjrlFv0xNLhw2WTtBlDX6uQF4bxugXGtMup70KUG8QWFV2UwdScmyxCU9i3y4Ecc2FSE4Y_Cz5vDcllLrg07Wf5JZ_PuWiThvhaVBWt4Ku8bO3TWVr8qod8l9fwBIZxzLfCI7Cy7uxKEzF1bebWL39qld-o6Uppu7Q-lfVpRclyw7hUcY7pp3SqqRG4JsAkRBPAuvQWNu8dK9vmPjZpddOomSfS80QOi2CeHtongR-yPtoffjmdfG29ioFvYtXtz9nY7X77HW07Wtt-hnGezp-iJ_WqBw8r7DxDezJ7jh4dN8UGX6DfG6jFucIdajGgFt9ALW5Riw1q8Q5qcYtavIXao13MmgZcIRZrxGJALKYnuEEsBsRijVi8idiX6Mfo9Pz4s13XErETStylDbZ0wJ1YCS9mQeIGKiFESOp41CNCsAGToRuHQUiYVJz5jpdIxSRTPFZKCl_RV6ifwbVeI5ww4VMnlK7wQZe5MvZ8SRxKwG3wwb_mB8hvHnyU1ET7ut7LLLpb9AfoqB23qKhm_jriQyPXCOSlX_XxTOarMiKBpuEKB-zOPq6uJuET-ubeV36LHnd_tneovyxW8j16kKyXaVkcol4wYYc1gv8A-vj4YQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fabrication+of+functional+and+nano-biocomposite+scaffolds+using+strontium-doped+bredigite+nanoparticles%2Fpolycaprolactone%2Fpoly+lactic+acid+via+3D+printing+for+bone+regeneration&rft.jtitle=International+journal+of+biological+macromolecules&rft.au=Nadi%2C+Akram&rft.au=Khodaei%2C+Mohammad&rft.au=Javdani%2C+Moosa&rft.au=Mirzaei%2C+Seyed+Abbas&rft.date=2022-10-31&rft.issn=0141-8130&rft.volume=219&rft.spage=1319&rft.epage=1336&rft_id=info:doi/10.1016%2Fj.ijbiomac.2022.08.136&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijbiomac_2022_08_136 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0141-8130&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0141-8130&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0141-8130&client=summon |