Efficient Multigrid Algorithms for Three-Dimensional Electromagnetic Forward Modeling
Multigrid (MG) methods solve large linear equations on fine grids by projecting them onto progressively coarser grids, on which the problem can be solved more cheaply. They have become among the most effective and prospective solvers for large linear systems. However, due to the abundant null soluti...
Uloženo v:
| Vydáno v: | Surveys in geophysics Ročník 46; číslo 3; s. 555 - 593 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Dordrecht
Springer Netherlands
01.06.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0169-3298, 1573-0956 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Multigrid (MG) methods solve large linear equations on fine grids by projecting them onto progressively coarser grids, on which the problem can be solved more cheaply. They have become among the most effective and prospective solvers for large linear systems. However, due to the abundant null solution space and the inclusion of the air layer, traditional MG methods struggle to converge in three-dimensional (3D) electromagnetic (EM) numerical forward modeling. Served as one major contribution of this review, we provide a complete review on strategies, introduced in recent decades to develop efficient MG algorithms for EM forward modeling. We focus on how these strategies handle the convergence difficulties encountered in EM numerical forward modeling. Another observation is that most state-of-the-art MG solvers have been developed and examined against traditional Krylov subspace iterative solvers, but there is little knowledge on the numerical performance of different strategies. Therefore, another primary contribution of this work is to provide a complete review of the numerical performance of different strategies used in MG solvers for 3D EM forward modeling in geophysical applications. For this purpose, firstly, we briefly introduce on finite difference and finite element numerical discretization of the electrical field partial differential equations to demonstrate why EM forward modeling is challenging to solve. Subsequently, some background information on MG methods is provided to show how they can be implemented in general. Then, different strategies used in different MG methods are introduced in great detail to address the convergence issues encountered in EM forward modeling in geophysical applications, caused by the abundant null solution space and the inclusion of the air layer. Finally, we present four newly developed MG algorithms and compare their overall numerical performance in terms of their parallel ability, stability, efficiency and memory cost by using two increasingly complex models. Since one major motivation for improving the EM forward modeling efficiency is to speed up the inversion process, their perspective of efficiency improvement in EM inversions has been discussed. On this basis, authors and researchers can choose one particular MG solver for their own EM forward modeling problems. |
|---|---|
| AbstractList | Multigrid (MG) methods solve large linear equations on fine grids by projecting them onto progressively coarser grids, on which the problem can be solved more cheaply. They have become among the most effective and prospective solvers for large linear systems. However, due to the abundant null solution space and the inclusion of the air layer, traditional MG methods struggle to converge in three-dimensional (3D) electromagnetic (EM) numerical forward modeling. Served as one major contribution of this review, we provide a complete review on strategies, introduced in recent decades to develop efficient MG algorithms for EM forward modeling. We focus on how these strategies handle the convergence difficulties encountered in EM numerical forward modeling. Another observation is that most state-of-the-art MG solvers have been developed and examined against traditional Krylov subspace iterative solvers, but there is little knowledge on the numerical performance of different strategies. Therefore, another primary contribution of this work is to provide a complete review of the numerical performance of different strategies used in MG solvers for 3D EM forward modeling in geophysical applications. For this purpose, firstly, we briefly introduce on finite difference and finite element numerical discretization of the electrical field partial differential equations to demonstrate why EM forward modeling is challenging to solve. Subsequently, some background information on MG methods is provided to show how they can be implemented in general. Then, different strategies used in different MG methods are introduced in great detail to address the convergence issues encountered in EM forward modeling in geophysical applications, caused by the abundant null solution space and the inclusion of the air layer. Finally, we present four newly developed MG algorithms and compare their overall numerical performance in terms of their parallel ability, stability, efficiency and memory cost by using two increasingly complex models. Since one major motivation for improving the EM forward modeling efficiency is to speed up the inversion process, their perspective of efficiency improvement in EM inversions has been discussed. On this basis, authors and researchers can choose one particular MG solver for their own EM forward modeling problems. |
| Author | Liu, Jianxin Wang, Yongfei Guo, Rongwen |
| Author_xml | – sequence: 1 givenname: Yongfei surname: Wang fullname: Wang, Yongfei organization: School of Geoscience and Info-Physics, Central South University, Department of Mathematical Sciences, Tsinghua University – sequence: 2 givenname: Jianxin surname: Liu fullname: Liu, Jianxin organization: School of Geoscience and Info-Physics, Central South University, Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Central South University, Key Laboratory of Metallogenic Prediction of Nonferrous Metals, Ministry of Education, Central South University – sequence: 3 givenname: Rongwen orcidid: 0000-0002-0363-4653 surname: Guo fullname: Guo, Rongwen email: rongwenguo@csu.edu.cn organization: School of Geoscience and Info-Physics, Central South University, Laboratory of Non-Ferrous Resources and Geological Hazard Detection, Central South University, Key Laboratory of Metallogenic Prediction of Nonferrous Metals, Ministry of Education, Central South University |
| BookMark | eNp9kF9LwzAUxYMouE2_gE8Fn6v50zbp45ibChu-bM8hTW-6jLaZSYb47a1WEHzY0-XC-d1z7pmiy971gNAdwQ8EY_4YCOaEppjmKS4FL1N-gSYk52xY8-ISTTApypTRUlyjaQgHjLEoSjZBu6UxVlvoY7I5tdE23tbJvG2ct3HfhcQ4n2z3HiB9sh30wbpetcmyBR2961TTQ7Q6WTn_oXydbFwNre2bG3RlVBvg9nfO0G613C5e0vXb8-tivk41oySmIq9FUTOtIWNlrVTBKGYVA4MrKJQmeaYYCCJUbbiBWpuy1IbmGa8qbCgAm6H78e7Ru_cThCgP7uSHhEEOBhmlec7poKKjSnsXggcjj952yn9KguV3fXKsTw71yZ_6JB8g8Q_SNqo4_B-9su15lI1oGHz6BvxfqjPUF6-RiIg |
| CitedBy_id | crossref_primary_10_1016_j_cageo_2025_106019 |
| Cites_doi | 10.1007/978-3-0348-5712-3_13 10.1109/LGRS.2019.2913896 10.1190/1.1442065 10.1093/gji/ggt465 10.1111/j.1365-246X.2011.05127.x 10.1142/S0129626419500014 10.1093/gji/ggab072 10.1190/1.1442077 10.1016/j.pepi.2009.01.013 10.1190/geo2013-0376.1 10.1109/TMAG.2009.2012627 10.1190/1.3483451 10.1016/j.camwa.2021.05.009 10.1016/j.jappgeo.2018.11.012 10.1093/gji/ggx149 10.1007/s10712-017-9413-7 10.1093/gji/ggz530 10.1111/j.1365-246X.2007.03481.x 10.1190/geo2023-0702.1 10.1190/1.1440151 10.1139/e73-050 10.1137/0152092 10.1002/nla.665 10.1016/0041-5553(66)90118-2 10.1016/S0167-8191(01)00115-6 10.1016/j.jappgeo.2017.12.009 10.1016/j.cageo.2020.104477 10.1029/2022JB024659 10.1007/BF02252378 10.1016/S0926-9851(00)00012-4 10.1029/2018JB016505 10.1190/1.2430647 10.1007/s10712-019-09567-3 10.1021/acs.jctc.7b01274 10.1111/j.1365-246X.1972.tb06103.x 10.1016/j.jocs.2022.101813 10.1007/s10712-017-9435-1 10.1007/s10712-013-9232-4 10.1007/PL00005386 10.1190/geo2020-0621.1 10.1190/geo2021-0319.1 10.1007/s10712-017-9439-x 10.1007/978-3-662-02427-0 10.1006/jcph.1998.5982 10.1006/jcph.1996.5442 10.1007/s10712-011-9122-6 10.1093/gji/ggw352 10.1002/nme.2579 10.1190/geo2017-0502.1 10.1109/LGRS.2023.3330867 10.1029/94RS00326 10.1088/1742-2132/6/2/005 10.1190/1.1443407 10.1007/BF01389668 10.1007/s10712-017-9422-6 10.1007/s10712-017-9426-2 10.1016/j.epsl.2015.04.006 10.1007/s00024-019-02365-3 10.1111/j.1365-2478.1995.tb00294.x 10.1007/s10712-023-09793-w 10.1080/08123985.2018.1564274 10.1016/j.jappgeo.2023.105083 10.1190/geo2023-0280.1 10.1016/j.jappgeo.2024.105397 10.1016/j.jappgeo.2008.02.002 10.1190/1.3196241 10.1093/gji/ggac152 10.1111/j.1365-246X.2008.03930.x 10.1111/j.1365-2478.2006.00558.x 10.1190/geo2013-0172.1 10.1190/geo2015-0013.1 10.1190/geo2017-0515.1 10.1016/j.jappgeo.2021.104438 10.1016/j.cageo.2021.104975 10.1016/j.cageo.2022.105035 10.2118/18409-MS 10.1093/gji/ggab238 10.3390/en15041272 10.1190/geo2019-0202.1 10.1007/s10712-005-1836-x 10.1190/1.1441422 10.1137/100798508 10.1093/gji/ggu086 10.1190/geo2017-0406.1 10.1016/j.cageo.2016.11.009 10.1007/s10712-023-09813-9 10.1093/gji/ggz285 10.1016/j.jappgeo.2021.104384 10.1007/3-540-47789-6_66 10.1190/geo2021-0480.1 10.1016/j.jcp.2017.04.069 10.1016/j.cageo.2023.105403 10.1137/0913082 10.1093/gji/ggy462 10.1137/1.9780898719505 10.1007/s10712-011-9139-x 10.1016/0926-9851(96)00020-1 10.1093/gji/ggu268 10.1016/j.jappgeo.2011.09.025 10.1016/0021-9991(82)90057-2 10.1006/jcph.2002.7049 10.1016/j.future.2003.07.011 10.1046/j.1365-246x.2000.00007.x 10.1007/978-94-015-8527-9 10.1007/s10712-017-9454-y 10.1007/s10712-015-9340-4 10.1109/LGRS.2020.3011743 10.1016/j.pepi.2021.106651 10.1190/1.2348091 10.1137/S1064827501387358 10.1190/1.1444054 10.1093/jge/gxz085 10.1137/1.9780898718003 10.1016/j.jappgeo.2013.06.014 10.1016/S0021-9991(03)00194-3 10.1190/1.1649380 10.1109/TAP.1966.1138693 10.1007/s12206-022-1019-4 10.1190/geo2023-0365.1 10.1007/BF02343542 10.1109/TGRS.2024.3509985 10.1016/S0377-0427(96)00117-3 10.1093/gji/ggab524 10.1190/geo2020-0461.1 10.1007/s10712-023-09794-9 10.1190/geo2021-0275.1 10.1016/j.parco.2005.07.004 10.1016/0021-9991(75)90072-8 10.3390/rs15020537 10.1029/2008GL035326 10.1190/1.1441562 10.1093/gji/ggt154 10.1093/gji/ggu119 10.1190/1.1440527 10.1190/1.2432262 10.1137/060660588 10.1007/978-3-540-75199-1_13 10.1016/j.cageo.2018.07.005 10.1016/j.jappgeo.2020.104202 10.1007/s11425-008-0119-7 10.1002/0471786381 10.1016/j.jcp.2007.03.033 10.1007/s10712-009-9087-x 10.1007/s10712-023-09808-6 10.1190/geo2020-0520.1 10.1007/s10712-022-09716-1 10.1016/j.cageo.2021.104686 10.1016/j.parco.2012.05.004 10.4208/jcm.2009.27.5.013 10.1111/j.1365-2478.2007.00614.x 10.1190/geo2023-0037.1 10.1093/gji/ggy153 10.1007/s10712-022-09699-z 10.1186/s40623-018-0876-7 10.1038/s41561-022-00981-8 10.1016/j.cageo.2021.105030 10.1186/BF03351724 10.1111/j.1365-246X.1976.tb03669.x 10.1007/s10712-015-9336-0 10.1190/1.2358403 10.1007/s10712-013-9234-2 10.1093/gji/ggt066 10.1007/s10712-013-9260-0 10.1190/geo2018-0208.1 10.1190/1.1444055 10.1109/HPEC.2015.7322480 10.1017/CBO9781139020138 10.1190/geo2023-0004.1 10.1016/0041-5553(64)90253-8 10.1016/j.jappgeo.2021.104324 10.1111/j.1365-246X.2011.05347.x 10.1016/j.cpc.2019.106866 10.1007/s002110050234 10.1093/gji/ggad207 10.1109/5.18628 10.1145/2629697 10.1109/TMAG.2004.825189 10.1109/TMAG.2006.872464 10.1007/s10712-013-9236-0 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer Nature B.V. 2025 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Copyright Springer Nature B.V. Jun 2025 |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025 corrected publication 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: Copyright Springer Nature B.V. Jun 2025 |
| DBID | AAYXX CITATION 7TG 7TN 7UA 8FD C1K F1W H8D H96 KL. L.G L7M |
| DOI | 10.1007/s10712-025-09879-7 |
| DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Aerospace Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1573-0956 |
| EndPage | 593 |
| ExternalDocumentID | 10_1007_s10712_025_09879_7 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42130810; 42174171; 42474112 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Deep Earth Probe and Mineral Resources Exploration - National Science and Technology Major Project grantid: 2024ZD1002100 |
| GroupedDBID | -Y2 -~C -~X .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29Q 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 78A 7XC 88I 8FE 8FG 8FH 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABLJU ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFDZB AFEXP AFGCZ AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ATCPS ATHPR AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP D1K DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K6- KDC KOV KOW L8X LAK LK5 LLZTM M2P M4Y M7R MA- MM- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P62 PATMY PCBAR PF0 PHGZM PHGZT PMFND PQQKQ PROAC PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RIG RNI ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 YLTOR Z45 ZMTXR ~02 ~A9 ~EX AAFWJ AAYXX ABFSG ABRTQ ABUFD ACSTC AEZWR AFFHD AFHIU AHWEU AIXLP CITATION PQGLB 7TG 7TN 7UA 8FD C1K F1W H8D H96 KL. L.G L7M |
| ID | FETCH-LOGICAL-c321t-85d86d3cce439daa63203b3ef0be6ac154a3e818adf7fedcf99cf2547bb0f2ee3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001448902200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0169-3298 |
| IngestDate | Wed Nov 05 08:05:28 EST 2025 Sat Nov 29 07:45:00 EST 2025 Tue Nov 18 22:10:51 EST 2025 Sun Jun 01 01:14:13 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | Finite element method Electromagnetic Multigrid Forward modeling Finite difference method |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c321t-85d86d3cce439daa63203b3ef0be6ac154a3e818adf7fedcf99cf2547bb0f2ee3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-0363-4653 |
| PQID | 3214225572 |
| PQPubID | 54152 |
| PageCount | 39 |
| ParticipantIDs | proquest_journals_3214225572 crossref_primary_10_1007_s10712_025_09879_7 crossref_citationtrail_10_1007_s10712_025_09879_7 springer_journals_10_1007_s10712_025_09879_7 |
| PublicationCentury | 2000 |
| PublicationDate | 20250600 2025-06-00 20250601 |
| PublicationDateYYYYMMDD | 2025-06-01 |
| PublicationDate_xml | – month: 6 year: 2025 text: 20250600 |
| PublicationDecade | 2020 |
| PublicationPlace | Dordrecht |
| PublicationPlace_xml | – name: Dordrecht |
| PublicationSubtitle | An International Review Journal Covering the Entire Field of Earth and Space Sciences |
| PublicationTitle | Surveys in geophysics |
| PublicationTitleAbbrev | Surv Geophys |
| PublicationYear | 2025 |
| Publisher | Springer Netherlands Springer Nature B.V |
| Publisher_xml | – name: Springer Netherlands – name: Springer Nature B.V |
| References | FI Zyserman (9879_CR206) 2000; 44 Y Li (9879_CR88) 2007; 72 DB Avdeev (9879_CR8) 2005; 26 CW Oosterlee (9879_CR123) 1997; 130 M Cherevatova (9879_CR30) 2018; 214 C Qiu (9879_CR137) 2023; 214 O Castillo-Reyes (9879_CR24) 2022; 160 T Washio (9879_CR179) 1998; 19 JT Smith (9879_CR155) 1996; 61 D Varılsüha (9879_CR167) 2018; 83 G Li (9879_CR93) 2022; 43 Y Liu (9879_CR97) 2013; 96 9879_CR51 C Qin (9879_CR135) 2024; 89 9879_CR50 9879_CR54 MS Zhdanov (9879_CR203) 2006; 71 C Qin (9879_CR133) 2020; 63 PR Amestoy (9879_CR2) 2006; 32 J Gao (9879_CR49) 2021; 312 R Liu (9879_CR99) 2018; 83 O Castillo-Reyes (9879_CR20) 2018; 119 Y Wu (9879_CR184) 2024; 45 JT Smith (9879_CR154) 1996; 61 9879_CR64 9879_CR61 B Yang (9879_CR192) 2015; 422 J Zhang (9879_CR201) 2002; 1 BS Singer (9879_CR150) 2008; 175 JC Womack (9879_CR183) 2018; 14 R Rochlitz (9879_CR142) 2019; 84 CG Farquharson (9879_CR44) 2009; 68 J Zhou (9879_CR204) 2021; 189 ZH Bin (9879_CR12) 2010; 17 9879_CR74 W Siripunvaraporn (9879_CR151) 2012; 33 Y Su (9879_CR160) 2021; 60 9879_CR77 GD Egbert (9879_CR39) 2012; 189 W Sarakorn (9879_CR145) 2018; 70 X Huang (9879_CR73) 2023; 15 VV Shaidurov (9879_CR148) 1995 K Pan (9879_CR126) 2024; 89 W Siripunvaraporn (9879_CR153) 2009; 173 J Jin (9879_CR78) 2002 W Hackbusch (9879_CR62) 1980; 34 O Castillo-Reyes (9879_CR21) 2019; 219 WA Mulder (9879_CR113) 2006; 54 T Xiao (9879_CR187) 2019; 160 9879_CR80 A Brandt (9879_CR16) 1977; 31 Y Mitsuhata (9879_CR109) 2004; 69 9879_CR205 K Pan (9879_CR125) 2022; 230 T Xiao (9879_CR185) 2018; 149 GW Hohmann (9879_CR70) 1975; 40 T Kalscheuer (9879_CR82) 2018; 39 S Thiel (9879_CR164) 2017; 38 PK Patro (9879_CR131) 2008; 35 D Yang (9879_CR191) 2014; 196 Z Ren (9879_CR138) 2020; 41 9879_CR27 TS Angell (9879_CR3) 1992; 52 Z Ren (9879_CR140) 2014; 79 J Vozar (9879_CR168) 2020; 220 R Hiptmair (9879_CR69) 2007; 45 S Constable (9879_CR34) 2010; 75 SK Park (9879_CR129) 1983; 48 Y Wang (9879_CR170) 2019; 16 9879_CR37 B Han (9879_CR66) 2018; 83 RA Nicolaides (9879_CR121) 1977; 31 L Yan (9879_CR190) 2023; 45 DA Aruliah (9879_CR7) 2002; 24 Y Wang (9879_CR176) 2022; 65 Y Wang (9879_CR174) 2024; 89 J Li (9879_CR94) 2022; 87 N Bai (9879_CR10) 2023; 61 M Moorkamp (9879_CR112) 2017; 38 Y Li (9879_CR89) 2007; 72 H Si (9879_CR149) 2015; 41 J Wang (9879_CR173) 2023; 66 D Werthmüller (9879_CR181) 2021; 227 R Streich (9879_CR158) 2016; 37 9879_CR33 J Li (9879_CR92) 2021; 18 MP Miensopust (9879_CR108) 2013; 193 O Castillo-Reyes (9879_CR22) 2022; 63 IM Llorente (9879_CR102) 2001; 27 Y Liu (9879_CR98) 2006; 42 TV Kolev (9879_CR86) 2008 N Bai (9879_CR9) 2022; 158 Y Hu (9879_CR72) 2022; 60 CM Nunes (9879_CR122) 2020; 139 Z Xiong (9879_CR188) 1986; 51 9879_CR46 C Qin (9879_CR134) 2023; 178 JE Dendy (9879_CR36) 1992; 13 9879_CR43 PE Wannamaker (9879_CR178) 1986; 51 CG Farquharson (9879_CR45) 2011; 75 A Franke (9879_CR47) 2007; 171 H Briggs (9879_CR17) 2000 Y Wang (9879_CR172) 2021; 192 CM Chen (9879_CR28) 2008; 51 WL Rodi (9879_CR143) 1976; 44 PK Patro (9879_CR130) 2017; 38 C Ma (9879_CR103) 2024; 225 MJ Nam (9879_CR115) 2007; 55 ST Ha (9879_CR57) 2021; 96 J Teunissen (9879_CR163) 2019; 245 E Haber (9879_CR60) 2014; 199 PE Wannamaker (9879_CR177) 1984; 49 Y Ye (9879_CR195) 2021; 148 T Mogi (9879_CR110) 1996; 35 A Grayver (9879_CR52) 2024; 45 Z Ren (9879_CR139) 2013; 194 K Spitzer (9879_CR156) 2023; 45 MW Elías (9879_CR41) 2022; 229 TV Kolev (9879_CR87) 2009; 27 H Cai (9879_CR18) 2017; 99 RL Evans (9879_CR42) 2011; 116 G Li (9879_CR90) 2016; 13 W Tang (9879_CR161) 2021; 86 W Siripunvaraporn (9879_CR152) 2002; 54 X Han (9879_CR67) 2022; 1 C Qiu (9879_CR136) 2021; 86 RL Mackie (9879_CR104) 1993; 58 K Pan (9879_CR124) 2017; 344 W Hackbusch (9879_CR63) 1981; 9 W Jóźwiak (9879_CR81) 2022; 43 N Yu (9879_CR198) 2024; 62 AA Hassan (9879_CR68) 2019; 29 S Ansari (9879_CR4) 2014; 79 LR Lines (9879_CR96) 1973; 10 Y Saad (9879_CR144) 2003 C Schwarzbach (9879_CR147) 2011; 187 MP Miensopust (9879_CR107) 2017; 38 RU Börner (9879_CR15) 2010; 31 JE Dendy (9879_CR35) 1982; 48 T Xiao (9879_CR186) 2019; 50 MM Gupta (9879_CR56) 2000; 133 9879_CR194 M Clemens (9879_CR31) 2004; 40 JR Booker (9879_CR13) 2014; 35 C Chen (9879_CR29) 2021; 226 K Watanabe (9879_CR180) 2009; 45 T Iwashita (9879_CR75) 2012; 38 FA Bornemann (9879_CR14) 1996; 75 CD Riyanti (9879_CR141) 2007; 224 R Peng (9879_CR132) 2021; 86 GA Newman (9879_CR117) 2014; 35 L Horesh (9879_CR71) 2011; 33 Y Wang (9879_CR175) 2024; 62 JH Coggon (9879_CR32) 1971; 36 9879_CR182 H Cai (9879_CR19) 2024; 89 M Mohr (9879_CR111) 2003; 41 O Castillo-Reyes (9879_CR25) 2024; 160 W Tang (9879_CR162) 2022; 87 9879_CR165 D Varılsüha (9879_CR166) 2020; 85 GA Newman (9879_CR119) 2000; 140 9879_CR169 G Yang (9879_CR193) 2023; 20 J Gao (9879_CR48) 2020; 177 GA Newman (9879_CR118) 1995; 43 9879_CR159 O Castillo-Reyes (9879_CR23) 2022; 15 J Zhang (9879_CR200) 1998; 143 SM Ansari (9879_CR5) 2017; 210 R Streich (9879_CR157) 2009; 74 JC Nédélec (9879_CR116) 1986; 50 J Zhang (9879_CR199) 1996; 76 E Haber (9879_CR59) 2013; 34 J Li (9879_CR91) 2020; 183 K Pan (9879_CR127) 2024; 89 G Munoz (9879_CR114) 2014; 35 RA Nicolaides (9879_CR120) 1975; 19 Y Liu (9879_CR101) 2023; 61 R Guo (9879_CR55) 2022; 87 S Xu (9879_CR189) 2019; 124 AV Grayver (9879_CR53) 2015; 80 J Koldan (9879_CR85) 2014; 197 J Li (9879_CR95) 2023; 235 P Jaysaval (9879_CR76) 2016; 207 RL Mackie (9879_CR105) 1994; 29 FW Jones (9879_CR79) 1972; 27 H Dong (9879_CR38) 2019; 216 GD Egbert (9879_CR40) 2022; 15 K Key (9879_CR83) 2012; 33 TR Madden (9879_CR106) 1989; 77 B Wang (9879_CR171) 2021; 194 N Yu (9879_CR197) 2022; 159 K Key (9879_CR84) 2006; 71 KS Yee (9879_CR196) 1966; 14 R Liu (9879_CR100) 2019; 16 M Adams (9879_CR1) 2003; 188 ST Ha (9879_CR58) 2022; 36 N Han (9879_CR65) 2009; 2 O Schenk (9879_CR146) 2004; 20 DN Arnold (9879_CR6) 2000; 85 NS Bakhvalov (9879_CR11) 1966; 6 A Chave (9879_CR26) 2017; 38 O Pankratov (9879_CR128) 2016; 37 |
| References_xml | – ident: 9879_CR50 doi: 10.1007/978-3-0348-5712-3_13 – volume: 16 start-page: 1809 issue: 12 year: 2019 ident: 9879_CR100 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2019.2913896 – volume: 51 start-page: 2131 issue: 11 year: 1986 ident: 9879_CR178 publication-title: Geophysics doi: 10.1190/1.1442065 – volume: 196 start-page: 1492 issue: 3 year: 2014 ident: 9879_CR191 publication-title: Geophys J Int doi: 10.1093/gji/ggt465 – volume: 187 start-page: 63 year: 2011 ident: 9879_CR147 publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2011.05127.x – volume: 29 start-page: 1950001 issue: 1 year: 2019 ident: 9879_CR68 publication-title: Parallel Process Lett doi: 10.1142/S0129626419500014 – volume: 226 start-page: 114 year: 2021 ident: 9879_CR29 publication-title: Geophys J Int doi: 10.1093/gji/ggab072 – volume: 51 start-page: 2235 year: 1986 ident: 9879_CR188 publication-title: Geophysics doi: 10.1190/1.1442077 – volume: 173 start-page: 317 year: 2009 ident: 9879_CR153 publication-title: Phys Earth Planetary Interiors doi: 10.1016/j.pepi.2009.01.013 – volume: 61 start-page: 1 year: 2023 ident: 9879_CR10 publication-title: IEEE Trans Geosci Remote Sens – volume: 79 start-page: E255 issue: 6 year: 2014 ident: 9879_CR140 publication-title: Geophysics doi: 10.1190/geo2013-0376.1 – volume: 45 start-page: 1088 year: 2009 ident: 9879_CR180 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2009.2012627 – volume: 31 start-page: 892 year: 1977 ident: 9879_CR121 publication-title: Math Eng Math Comput – volume: 75 start-page: 75A67 issue: 5 year: 2010 ident: 9879_CR34 publication-title: Geophysics doi: 10.1190/1.3483451 – volume: 96 start-page: 31 year: 2021 ident: 9879_CR57 publication-title: Comput Math Appl doi: 10.1016/j.camwa.2021.05.009 – volume: 160 start-page: 171 year: 2019 ident: 9879_CR187 publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2018.11.012 – volume: 210 start-page: 105 issue: 1 year: 2017 ident: 9879_CR5 publication-title: Geophys J Int doi: 10.1093/gji/ggx149 – volume: 38 start-page: 935 year: 2017 ident: 9879_CR112 publication-title: Surv Geophys doi: 10.1007/s10712-017-9413-7 – volume: 65 start-page: 1839 issue: 5 year: 2022 ident: 9879_CR176 publication-title: Chin J Geophys (in Chinese) – volume: 220 start-page: 1717 year: 2020 ident: 9879_CR168 publication-title: Geophys J Int doi: 10.1093/gji/ggz530 – volume: 171 start-page: 71 issue: 1 year: 2007 ident: 9879_CR47 publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2007.03481.x – volume: 89 start-page: E241 issue: 6 year: 2024 ident: 9879_CR127 publication-title: Geophysics doi: 10.1190/geo2023-0702.1 – volume: 9 start-page: 213 year: 1981 ident: 9879_CR63 publication-title: Mathematics – volume: 36 start-page: 132 issue: 2 year: 1971 ident: 9879_CR32 publication-title: Geophysics doi: 10.1190/1.1440151 – volume: 10 start-page: 510 year: 1973 ident: 9879_CR96 publication-title: Can J Earth Sci doi: 10.1139/e73-050 – volume: 52 start-page: 1597 issue: 6 year: 1992 ident: 9879_CR3 publication-title: SIAM J Appl Math doi: 10.1137/0152092 – volume: 17 start-page: 871 year: 2010 ident: 9879_CR12 publication-title: Numer Linear Algebra Appl doi: 10.1002/nla.665 – volume: 6 start-page: 101 year: 1966 ident: 9879_CR11 publication-title: USSR Comput Math Math Phys doi: 10.1016/0041-5553(66)90118-2 – volume: 27 start-page: 1715 issue: 13 year: 2001 ident: 9879_CR102 publication-title: Parallel Comput doi: 10.1016/S0167-8191(01)00115-6 – volume: 60 start-page: 1 year: 2021 ident: 9879_CR160 publication-title: IEEE Trans Geosci Remote Sens – volume: 149 start-page: 1 year: 2018 ident: 9879_CR185 publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2017.12.009 – volume: 139 year: 2020 ident: 9879_CR122 publication-title: Comput Geosci doi: 10.1016/j.cageo.2020.104477 – ident: 9879_CR194 doi: 10.1029/2022JB024659 – ident: 9879_CR61 doi: 10.1007/BF02252378 – volume: 44 start-page: 337 issue: 4 year: 2000 ident: 9879_CR206 publication-title: J Appl Geophys doi: 10.1016/S0926-9851(00)00012-4 – volume: 124 start-page: 104 year: 2019 ident: 9879_CR189 publication-title: J Geophys Res Solid Earth doi: 10.1029/2018JB016505 – volume: 72 start-page: 63 issue: 2 year: 2007 ident: 9879_CR88 publication-title: Geophysics doi: 10.1190/1.2430647 – volume: 41 start-page: 47 year: 2020 ident: 9879_CR138 publication-title: Surv Geophys doi: 10.1007/s10712-019-09567-3 – volume: 14 start-page: 1412 issue: 3 year: 2018 ident: 9879_CR183 publication-title: J Chem Theory Comput doi: 10.1021/acs.jctc.7b01274 – volume: 1 start-page: 1 issue: 1 year: 2022 ident: 9879_CR67 publication-title: IEEE Trans Geosci Remote Sens – volume: 27 start-page: 479 year: 1972 ident: 9879_CR79 publication-title: Geol Geophys J Int doi: 10.1111/j.1365-246X.1972.tb06103.x – volume: 63 year: 2022 ident: 9879_CR22 publication-title: J Comput Sci doi: 10.1016/j.jocs.2022.101813 – volume: 38 start-page: 869 year: 2017 ident: 9879_CR107 publication-title: Surv Geophys doi: 10.1007/s10712-017-9435-1 – ident: 9879_CR77 – ident: 9879_CR80 – volume: 34 start-page: 675 year: 2013 ident: 9879_CR59 publication-title: Surv Geophys doi: 10.1007/s10712-013-9232-4 – volume: 85 start-page: 197 issue: 2 year: 2000 ident: 9879_CR6 publication-title: Numer Math doi: 10.1007/PL00005386 – volume: 86 start-page: WB1 issue: 5 year: 2021 ident: 9879_CR132 publication-title: Geophysics doi: 10.1190/geo2020-0621.1 – volume: 62 start-page: 1 year: 2024 ident: 9879_CR175 publication-title: IEEE Trans Geosci Remote Sens – volume: 87 start-page: E243 issue: 4 year: 2022 ident: 9879_CR94 publication-title: Geophysics doi: 10.1190/geo2021-0319.1 – volume: 38 start-page: 1005 year: 2017 ident: 9879_CR130 publication-title: Surv Geophys doi: 10.1007/s10712-017-9439-x – volume: 66 start-page: 4301 issue: 10 year: 2023 ident: 9879_CR173 publication-title: Chin J Geophys – ident: 9879_CR64 doi: 10.1007/978-3-662-02427-0 – volume: 143 start-page: 449 issue: 2 year: 1998 ident: 9879_CR200 publication-title: J Comput Phys doi: 10.1006/jcph.1998.5982 – volume: 130 start-page: 41 issue: 1 year: 1997 ident: 9879_CR123 publication-title: J Comput Phys doi: 10.1006/jcph.1996.5442 – volume: 33 start-page: 5 year: 2012 ident: 9879_CR151 publication-title: Surv Geophys doi: 10.1007/s10712-011-9122-6 – volume: 207 start-page: 1554 issue: 3 year: 2016 ident: 9879_CR76 publication-title: Geophys J Int doi: 10.1093/gji/ggw352 – ident: 9879_CR51 doi: 10.1002/nme.2579 – volume: 13 start-page: 334 issue: 3 year: 2016 ident: 9879_CR90 publication-title: IEEE Geosci Remote Sens Lett – volume: 83 start-page: E319 issue: 5 year: 2018 ident: 9879_CR99 publication-title: Geophysics doi: 10.1190/geo2017-0502.1 – volume: 20 start-page: 1 year: 2023 ident: 9879_CR193 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2023.3330867 – volume: 61 start-page: 5901011 year: 2023 ident: 9879_CR101 publication-title: IEEE Trans Geosci Remote Sens – volume: 29 start-page: 923 issue: 4 year: 1994 ident: 9879_CR105 publication-title: Radio Sci doi: 10.1029/94RS00326 – volume: 2 start-page: 136 year: 2009 ident: 9879_CR65 publication-title: J Geophys Eng doi: 10.1088/1742-2132/6/2/005 – volume: 58 start-page: 215 issue: 2 year: 1993 ident: 9879_CR104 publication-title: Geophysics doi: 10.1190/1.1443407 – volume: 50 start-page: 57 issue: 1 year: 1986 ident: 9879_CR116 publication-title: Numer Math doi: 10.1007/BF01389668 – volume: 38 start-page: 837 year: 2017 ident: 9879_CR26 publication-title: Surv Geophys doi: 10.1007/s10712-017-9422-6 – volume: 38 start-page: 1133 year: 2017 ident: 9879_CR164 publication-title: Surv Geophys doi: 10.1007/s10712-017-9426-2 – volume: 422 start-page: 87 year: 2015 ident: 9879_CR192 publication-title: Earth Planet Sci Lett doi: 10.1016/j.epsl.2015.04.006 – volume: 177 start-page: 2803 year: 2020 ident: 9879_CR48 publication-title: Pure Appl Geophys doi: 10.1007/s00024-019-02365-3 – volume: 43 start-page: 1021 issue: 8 year: 1995 ident: 9879_CR118 publication-title: Geophys Prospect doi: 10.1111/j.1365-2478.1995.tb00294.x – volume: 45 start-page: 83 year: 2024 ident: 9879_CR184 publication-title: Surv Geophys doi: 10.1007/s10712-023-09793-w – volume: 50 start-page: 31 year: 2019 ident: 9879_CR186 publication-title: Explor Geophys doi: 10.1080/08123985.2018.1564274 – volume: 214 year: 2023 ident: 9879_CR137 publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2023.105083 – volume: 89 start-page: G45 issue: 3 year: 2024 ident: 9879_CR19 publication-title: Geophysics doi: 10.1190/geo2023-0280.1 – volume: 225 year: 2024 ident: 9879_CR103 publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2024.105397 – volume: 68 start-page: 450 year: 2009 ident: 9879_CR44 publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2008.02.002 – volume: 74 start-page: 95 issue: 5 year: 2009 ident: 9879_CR157 publication-title: Geophysics doi: 10.1190/1.3196241 – volume: 230 start-page: 1834 year: 2022 ident: 9879_CR125 publication-title: Geophys J Int doi: 10.1093/gji/ggac152 – volume: 175 start-page: 857 issue: 3 year: 2008 ident: 9879_CR150 publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2008.03930.x – volume: 54 start-page: 633 year: 2006 ident: 9879_CR113 publication-title: Geophys Prospect doi: 10.1111/j.1365-2478.2006.00558.x – volume: 19 start-page: 1646 year: 1998 ident: 9879_CR179 publication-title: SlAM J Sci Comput – volume: 79 start-page: E149 issue: 4 year: 2014 ident: 9879_CR4 publication-title: Geophysics doi: 10.1190/geo2013-0172.1 – volume: 80 start-page: E277 issue: 6 year: 2015 ident: 9879_CR53 publication-title: Geophysics doi: 10.1190/geo2015-0013.1 – volume: 83 start-page: F29 issue: 4 year: 2018 ident: 9879_CR66 publication-title: Geophysics doi: 10.1190/geo2017-0515.1 – volume: 194 year: 2021 ident: 9879_CR171 publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2021.104438 – volume: 158 start-page: 10495 year: 2022 ident: 9879_CR9 publication-title: Comput Geosci doi: 10.1016/j.cageo.2021.104975 – volume: 159 year: 2022 ident: 9879_CR197 publication-title: Comput Geosci doi: 10.1016/j.cageo.2022.105035 – ident: 9879_CR37 doi: 10.2118/18409-MS – volume: 227 start-page: 644 issue: 1 year: 2021 ident: 9879_CR181 publication-title: Geophys J Int doi: 10.1093/gji/ggab238 – volume: 15 start-page: 1272 year: 2022 ident: 9879_CR23 publication-title: Energies doi: 10.3390/en15041272 – volume: 85 start-page: E191 issue: 5 year: 2020 ident: 9879_CR166 publication-title: Geophysics doi: 10.1190/geo2019-0202.1 – volume: 26 start-page: 767 year: 2005 ident: 9879_CR8 publication-title: Surv Geophys doi: 10.1007/s10712-005-1836-x – volume: 48 start-page: 1402 year: 1983 ident: 9879_CR129 publication-title: Geophysics doi: 10.1190/1.1441422 – volume: 33 start-page: 2805 issue: 5 year: 2011 ident: 9879_CR71 publication-title: SIAM J Sci Comput doi: 10.1137/100798508 – volume: 197 start-page: 1442 year: 2014 ident: 9879_CR85 publication-title: Geophys J Int doi: 10.1093/gji/ggu086 – volume: 83 start-page: WB51 issue: 2 year: 2018 ident: 9879_CR167 publication-title: Geophysics doi: 10.1190/geo2017-0406.1 – volume: 99 start-page: 125 year: 2017 ident: 9879_CR18 publication-title: Comput Geosci doi: 10.1016/j.cageo.2016.11.009 – volume: 63 start-page: 3180 issue: 8 year: 2020 ident: 9879_CR133 publication-title: Chin J Geophys (in Chinese) – volume: 45 start-page: 187 year: 2024 ident: 9879_CR52 publication-title: Surv Geophys doi: 10.1007/s10712-023-09813-9 – volume: 219 start-page: 39 year: 2019 ident: 9879_CR21 publication-title: Geophys J Int doi: 10.1093/gji/ggz285 – volume: 192 year: 2021 ident: 9879_CR172 publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2021.104384 – ident: 9879_CR43 doi: 10.1007/3-540-47789-6_66 – volume: 87 start-page: E253 issue: 4 year: 2022 ident: 9879_CR162 publication-title: Geophysics doi: 10.1190/geo2021-0480.1 – volume: 344 start-page: 499 year: 2017 ident: 9879_CR124 publication-title: J Comput Phys doi: 10.1016/j.jcp.2017.04.069 – volume: 178 year: 2023 ident: 9879_CR134 publication-title: Comput Geosci doi: 10.1016/j.cageo.2023.105403 – volume: 13 start-page: 1460 issue: 6 year: 1992 ident: 9879_CR36 publication-title: SIAM J Sci Stat Comput doi: 10.1137/0913082 – ident: 9879_CR169 – volume: 216 start-page: 906 year: 2019 ident: 9879_CR38 publication-title: Geophys J Int doi: 10.1093/gji/ggy462 – volume-title: A multigrid tutorial year: 2000 ident: 9879_CR17 doi: 10.1137/1.9780898719505 – volume: 34 start-page: 425 year: 1980 ident: 9879_CR62 publication-title: Math Comput – volume: 33 start-page: 135 year: 2012 ident: 9879_CR83 publication-title: Surv Geophys doi: 10.1007/s10712-011-9139-x – volume: 35 start-page: 185 issue: 2–3 year: 1996 ident: 9879_CR110 publication-title: J Appl Geophys doi: 10.1016/0926-9851(96)00020-1 – volume: 199 start-page: 1268 issue: 2 year: 2014 ident: 9879_CR60 publication-title: Geophys J Int doi: 10.1093/gji/ggu268 – volume: 75 start-page: 699 year: 2011 ident: 9879_CR45 publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2011.09.025 – volume: 48 start-page: 366 issue: 3 year: 1982 ident: 9879_CR35 publication-title: J Comput Phys doi: 10.1016/0021-9991(82)90057-2 – volume: 133 start-page: 249 issue: 2 year: 2000 ident: 9879_CR56 publication-title: Appl Math Comput – volume: 1 start-page: 170 issue: 10 year: 2002 ident: 9879_CR201 publication-title: J Comput Phys doi: 10.1006/jcph.2002.7049 – volume: 20 start-page: 475 year: 2004 ident: 9879_CR146 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2003.07.011 – volume: 160 year: 2024 ident: 9879_CR25 publication-title: Surv Geophys – volume: 140 start-page: 410 year: 2000 ident: 9879_CR119 publication-title: Geophys J Int doi: 10.1046/j.1365-246x.2000.00007.x – volume-title: Multigrid methods for finite elements year: 1995 ident: 9879_CR148 doi: 10.1007/978-94-015-8527-9 – volume: 39 start-page: 467 year: 2018 ident: 9879_CR82 publication-title: Surv Geophys doi: 10.1007/s10712-017-9454-y – volume: 37 start-page: 109 year: 2016 ident: 9879_CR128 publication-title: Surv Geophys doi: 10.1007/s10712-015-9340-4 – volume: 18 start-page: 1936 issue: 11 year: 2021 ident: 9879_CR92 publication-title: IEEE Geosci Remote Sens Lett doi: 10.1109/LGRS.2020.3011743 – volume: 312 issue: 12 year: 2021 ident: 9879_CR49 publication-title: Phys Earth Planet Inter doi: 10.1016/j.pepi.2021.106651 – volume: 71 start-page: 291 issue: 6 year: 2006 ident: 9879_CR84 publication-title: Geophysics doi: 10.1190/1.2348091 – volume: 24 start-page: 702 issue: 2 year: 2002 ident: 9879_CR7 publication-title: SIAM J Sci Comput doi: 10.1137/S1064827501387358 – volume: 116 start-page: 1 issue: 4 year: 2011 ident: 9879_CR42 publication-title: J Geophys Res – volume: 61 start-page: 1308 issue: 5 year: 1996 ident: 9879_CR154 publication-title: Geophysics doi: 10.1190/1.1444054 – volume: 16 start-page: 1151 year: 2019 ident: 9879_CR170 publication-title: J Geophys Eng doi: 10.1093/jge/gxz085 – volume: 60 start-page: 1 year: 2022 ident: 9879_CR72 publication-title: IEEE Trans Geosci Remote Sens – volume-title: Iterative methods for sparse linear systems year: 2003 ident: 9879_CR144 doi: 10.1137/1.9780898718003 – volume: 96 start-page: 19 year: 2013 ident: 9879_CR97 publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2013.06.014 – volume: 188 start-page: 593 year: 2003 ident: 9879_CR1 publication-title: J Comput Phys doi: 10.1016/S0021-9991(03)00194-3 – volume: 69 start-page: 108 issue: 1 year: 2004 ident: 9879_CR109 publication-title: Geophysics doi: 10.1190/1.1649380 – volume: 14 start-page: 302 year: 1966 ident: 9879_CR196 publication-title: IEEE Trans Antennas Propagat doi: 10.1109/TAP.1966.1138693 – volume: 36 start-page: 5551 issue: 11 year: 2022 ident: 9879_CR58 publication-title: J Mech Sci Technol doi: 10.1007/s12206-022-1019-4 – volume: 89 start-page: F61 year: 2024 ident: 9879_CR135 publication-title: Geophysics doi: 10.1190/geo2023-0365.1 – volume: 41 start-page: 75 issue: 1 year: 2003 ident: 9879_CR111 publication-title: Med Biol Eng Compu doi: 10.1007/BF02343542 – volume: 62 start-page: 1 year: 2024 ident: 9879_CR198 publication-title: IEEE Trans Geosci Remote Sens doi: 10.1109/TGRS.2024.3509985 – volume: 76 start-page: 325 issue: 1–2 year: 1996 ident: 9879_CR199 publication-title: J Comput Appl Math doi: 10.1016/S0377-0427(96)00117-3 – volume: 229 start-page: 1133 issue: 1 year: 2022 ident: 9879_CR41 publication-title: Geophys J Int doi: 10.1093/gji/ggab524 – volume: 86 start-page: E283 issue: 4 year: 2021 ident: 9879_CR136 publication-title: Geophysics doi: 10.1190/geo2020-0461.1 – volume: 45 start-page: 277 year: 2023 ident: 9879_CR156 publication-title: Surv Geophys doi: 10.1007/s10712-023-09794-9 – volume: 87 start-page: E121 issue: 3 year: 2022 ident: 9879_CR55 publication-title: Geophysics doi: 10.1190/geo2021-0275.1 – volume: 32 start-page: 136 year: 2006 ident: 9879_CR2 publication-title: Parallel Comput doi: 10.1016/j.parco.2005.07.004 – volume: 19 start-page: 418 year: 1975 ident: 9879_CR120 publication-title: J Comput Phys doi: 10.1016/0021-9991(75)90072-8 – volume: 15 start-page: 537 year: 2023 ident: 9879_CR73 publication-title: Remote Sens doi: 10.3390/rs15020537 – volume: 35 start-page: 1 year: 2008 ident: 9879_CR131 publication-title: Geophys Res Lett doi: 10.1029/2008GL035326 – volume: 49 start-page: 60 issue: 1 year: 1984 ident: 9879_CR177 publication-title: Geophysics doi: 10.1190/1.1441562 – volume: 194 start-page: 700 year: 2013 ident: 9879_CR139 publication-title: Geophys J Int doi: 10.1093/gji/ggt154 – ident: 9879_CR54 doi: 10.1093/gji/ggu119 – volume: 40 start-page: 309 year: 1975 ident: 9879_CR70 publication-title: Geophysics doi: 10.1190/1.1440527 – volume: 72 start-page: 51 issue: 2 year: 2007 ident: 9879_CR89 publication-title: Geophysics doi: 10.1190/1.2432262 – volume: 45 start-page: 2483 year: 2007 ident: 9879_CR69 publication-title: SIAM J Numer Anal doi: 10.1137/060660588 – start-page: 147 volume-title: Domain decomposition methods in science and engineering XVII year: 2008 ident: 9879_CR86 doi: 10.1007/978-3-540-75199-1_13 – volume: 119 start-page: 126 year: 2018 ident: 9879_CR20 publication-title: Comput Geosci doi: 10.1016/j.cageo.2018.07.005 – volume: 183 year: 2020 ident: 9879_CR91 publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2020.104202 – volume: 51 start-page: 1349 issue: 8 year: 2008 ident: 9879_CR28 publication-title: Sci China Ser A Math doi: 10.1007/s11425-008-0119-7 – ident: 9879_CR205 doi: 10.1002/0471786381 – volume: 224 start-page: 431 year: 2007 ident: 9879_CR141 publication-title: J Comput Phys doi: 10.1016/j.jcp.2007.03.033 – volume: 31 start-page: 225 issue: 2 year: 2010 ident: 9879_CR15 publication-title: Surv Geophys doi: 10.1007/s10712-009-9087-x – ident: 9879_CR165 – ident: 9879_CR74 – volume: 45 start-page: 239 year: 2023 ident: 9879_CR190 publication-title: Surv Geophys doi: 10.1007/s10712-023-09808-6 – volume: 86 start-page: E367 issue: 6 year: 2021 ident: 9879_CR161 publication-title: Geophysics doi: 10.1190/geo2020-0520.1 – volume: 43 start-page: 1563 year: 2022 ident: 9879_CR81 publication-title: Surv Geophys doi: 10.1007/s10712-022-09716-1 – volume: 148 year: 2021 ident: 9879_CR195 publication-title: Comput Geosci doi: 10.1016/j.cageo.2021.104686 – volume: 38 start-page: 485 issue: 9 year: 2012 ident: 9879_CR75 publication-title: Parallel Comput doi: 10.1016/j.parco.2012.05.004 – volume: 27 start-page: 604 issue: 5 year: 2009 ident: 9879_CR87 publication-title: J Comput Math doi: 10.4208/jcm.2009.27.5.013 – volume: 55 start-page: 277 issue: 2 year: 2007 ident: 9879_CR115 publication-title: Geophys Prospect doi: 10.1111/j.1365-2478.2007.00614.x – ident: 9879_CR182 – volume: 89 start-page: E1 issue: 1 year: 2024 ident: 9879_CR174 publication-title: Geophysics doi: 10.1190/geo2023-0037.1 – volume: 214 start-page: 656 issue: 1 year: 2018 ident: 9879_CR30 publication-title: Geophys J Int doi: 10.1093/gji/ggy153 – volume: 43 start-page: 1055 year: 2022 ident: 9879_CR93 publication-title: Surv Geophys doi: 10.1007/s10712-022-09699-z – volume: 70 start-page: 103 year: 2018 ident: 9879_CR145 publication-title: Planets Space doi: 10.1186/s40623-018-0876-7 – volume: 15 start-page: 677 year: 2022 ident: 9879_CR40 publication-title: Nat Geosci doi: 10.1038/s41561-022-00981-8 – volume: 160 year: 2022 ident: 9879_CR24 publication-title: Comput Geosci doi: 10.1016/j.cageo.2021.105030 – ident: 9879_CR33 – volume: 54 start-page: 721 issue: 6 year: 2002 ident: 9879_CR152 publication-title: Earth Planets Space doi: 10.1186/BF03351724 – volume: 44 start-page: 483 issue: 2 year: 1976 ident: 9879_CR143 publication-title: Geophys J Int doi: 10.1111/j.1365-246X.1976.tb03669.x – volume: 37 start-page: 47 year: 2016 ident: 9879_CR158 publication-title: Surv Geophys doi: 10.1007/s10712-015-9336-0 – volume: 71 start-page: G333 year: 2006 ident: 9879_CR203 publication-title: Geophysics doi: 10.1190/1.2358403 – volume: 35 start-page: 7 year: 2014 ident: 9879_CR13 publication-title: Surv Geophys doi: 10.1007/s10712-013-9234-2 – volume: 193 start-page: 1216 year: 2013 ident: 9879_CR108 publication-title: Geophys J Int doi: 10.1093/gji/ggt066 – volume: 35 start-page: 85 year: 2014 ident: 9879_CR117 publication-title: Surv Geophys doi: 10.1007/s10712-013-9260-0 – volume: 84 start-page: F17 issue: 2 year: 2019 ident: 9879_CR142 publication-title: Geophysics doi: 10.1190/geo2018-0208.1 – volume: 61 start-page: 1319 issue: 5 year: 1996 ident: 9879_CR155 publication-title: Geophysics doi: 10.1190/1.1444055 – ident: 9879_CR159 doi: 10.1109/HPEC.2015.7322480 – ident: 9879_CR27 doi: 10.1017/CBO9781139020138 – volume: 89 start-page: G13 issue: 2 year: 2024 ident: 9879_CR126 publication-title: Geophysics doi: 10.1190/geo2023-0004.1 – ident: 9879_CR46 doi: 10.1016/0041-5553(64)90253-8 – volume: 189 year: 2021 ident: 9879_CR204 publication-title: J Appl Geophys doi: 10.1016/j.jappgeo.2021.104324 – volume: 31 start-page: 333 issue: 138 year: 1977 ident: 9879_CR16 publication-title: Math Comput Sci – volume: 189 start-page: 251 year: 2012 ident: 9879_CR39 publication-title: Geophys J Int doi: 10.1111/j.1365-246X.2011.05347.x – volume-title: The finite element method in electromagnetics year: 2002 ident: 9879_CR78 – volume: 245 issue: 1 year: 2019 ident: 9879_CR163 publication-title: Comput Phys Commun doi: 10.1016/j.cpc.2019.106866 – volume: 75 start-page: 135 issue: 2 year: 1996 ident: 9879_CR14 publication-title: Numer Math doi: 10.1007/s002110050234 – volume: 235 start-page: 166 year: 2023 ident: 9879_CR95 publication-title: Geophys J Int doi: 10.1093/gji/ggad207 – volume: 77 start-page: 318 issue: 2 year: 1989 ident: 9879_CR106 publication-title: Proc IEEE doi: 10.1109/5.18628 – volume: 41 start-page: 1 issue: 2 year: 2015 ident: 9879_CR149 publication-title: ACM Trans Math Software doi: 10.1145/2629697 – volume: 40 start-page: 1065 issue: 2 year: 2004 ident: 9879_CR31 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2004.825189 – volume: 42 start-page: 655 issue: 4 year: 2006 ident: 9879_CR98 publication-title: IEEE Trans Magn doi: 10.1109/TMAG.2006.872464 – volume: 35 start-page: 101 issue: 1 year: 2014 ident: 9879_CR114 publication-title: Surv Geophys doi: 10.1007/s10712-013-9236-0 |
| SSID | ssj0008693 |
| Score | 2.4119542 |
| SecondaryResourceType | review_article |
| Snippet | Multigrid (MG) methods solve large linear equations on fine grids by projecting them onto progressively coarser grids, on which the problem can be solved more... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 555 |
| SubjectTerms | Algorithms Astronomy Convergence Differential equations Earth and Environmental Science Earth Sciences Efficiency Geophysics Geophysics/Geodesy Inversions Linear equations Linear systems Modelling Multigrid methods Observations and Techniques Partial differential equations Solution space Solvers |
| Title | Efficient Multigrid Algorithms for Three-Dimensional Electromagnetic Forward Modeling |
| URI | https://link.springer.com/article/10.1007/s10712-025-09879-7 https://www.proquest.com/docview/3214225572 |
| Volume | 46 |
| WOSCitedRecordID | wos001448902200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1573-0956 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0008693 issn: 0169-3298 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA86Fbz4LU6n5OBNA22ytM1x6KYHGYLb8FbSfMzB1klbBf97k7TdVFTQW6Hpo7yXvo_m_X4PgHMppSk7FEGcUIXaiaSIScVRwBmhCRaSOlTa6C7s96PHR3ZfgcLyutu9PpJ0nvoD2C20bQSYIs8UygyFq2CNWrYZW6M_jBb-NwpKql0_YIhgFlVQme9lfA5Hyxzzy7Goiza97f-95w7YqrJL2Cm3wy5YUeke2Lhx03vfzJXr9xT5Phh2HXWEiTjQQXDH2UTCznQ8zybF0yyHJpWFA2Nmha4t_X9J3QG75cycGR-nFvsIe_PMNt1CO1DNwtoPwLDXHVzdomrCAhIE-wWKqIwCSYRQJi-RnAcEeyQhSnuJCrgw6RUnyoR0LnWolRSaMaGNbcMk8TRWihyCRjpP1RGAzNcJ0USbpaQtfM1wxNucKp4Eyjcym8CvFR2Lin7cTsGYxkviZKu42CgudoqLwya4WDzzXJJv_Lq6Vdsvrj7EPLZzmIzLoiFugsvaXsvbP0s7_tvyE7CJncnt_5kWaBTZizoF6-K1mOTZmdug75Eo4QM |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFD54RV-8i_OaB980sCbrJY-im4pzCG7Dt5LmMge7SDsF_71J2joVFfSt0PRQzklzTprzfR_AsZTSbDsUxZz6CtcS6WMmFccBZ9RPiJC-Q6V1m2GrFT08sLsCFJaV3e7lkaRbqT-A3ULbRkB8XDUbZYbDWZivWZkdu0e_776vv1GQU-16AcOUsKiAynxv43M6mtaYX45FXbZprP7vPddgpagu0Vk-HdZhRo02YPHSqfe-mivX7ymyTejUHXWEyTjIQXB7aV-is0FvnPYnj8MMmVIWtU2YFb6w9P85dQeq55o5Q94bWewjaoxT23SLrKCahbVvQadRb59f4UJhAQtKvAmOfBkFkgqhTF0iOQ8oqdKEKl1NVMCFKa84VSalc6lDraTQjAltYhsmSVUTpeg2zI3GI7UDiHk6oZpqM5TWhKcZiXiN-4ongfKMzQp4paNjUdCPWxWMQTwlTraOi43jYue4OKzAyfszTzn5xq-j98v4xcWHmMVWh8ksWX5IKnBaxmt6-2dru38bfgRLV-3bZty8bt3swTJx4bf_avZhbpI-qwNYEC-TfpYeusn6BiXg4-c |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54xxfv4rzmwTcNrsl6yaPopuIY4g3fSprLHGzd6KrgvzdJOzdFBfGttOmhnJMmJ8n5vg_gUEpplh2KYk59hWuJ9DGTiuOAM-onREjfodIem2GrFT09sZsJFL-rdh8dSRaYBsvSlOYnA6lPJoBvoS0pID6umkUzw-E0zNbMTVvUdXv3-DEWR0FBu-sFDFPCohI2872Nz1PTON_8ckTqZp7G8v-_eQWWyqwTnRbdZBWmVLoG8xdO1ffNXLk6UDFch4e6o5QwVpGD5razjkSn3XY_6-TPvSEyKS66N-FX-NzKAhSUHqheaOn0eDu1mEjU6Ge2GBdZoTULd9-Ah0b9_uwSl8oLWFDi5TjyZRRIKoQy-YrkPKCkShOqdDVRARcm7eJUmameSx1qJYVmTGgT8zBJqpooRTdhJu2nagsQ83RCNdWmKa0JTzMS8Rr3FU8C5RmbFfBGTo9FSUtu1TG68ZhQ2TouNo6LnePisAJHH-8MClKOX1vvjmIZlz_oMLb6TGYo80NSgeNR7MaPf7a2_bfmB7Bwc96Im1et6x1YJC76dgtnF2by7EXtwZx4zTvDbN_123fTpOzL |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Efficient+Multigrid+Algorithms+for+Three-Dimensional+Electromagnetic+Forward+Modeling&rft.jtitle=Surveys+in+geophysics&rft.au=Wang%2C+Yongfei&rft.au=Liu%2C+Jianxin&rft.au=Guo%2C+Rongwen&rft.date=2025-06-01&rft.issn=0169-3298&rft.eissn=1573-0956&rft.volume=46&rft.issue=3&rft.spage=555&rft.epage=593&rft_id=info:doi/10.1007%2Fs10712-025-09879-7&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s10712_025_09879_7 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-3298&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-3298&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-3298&client=summon |