Optimized prediction models for faulting failure of Jointed Plain concrete pavement using the metaheuristic optimization algorithms

•MOEA/D method has the best performance to select 17 features affecting faulting.•ANN- SAA with R2 value of 0.976 has been the best model for predicting faulting.•Pavement age, cumulative average precipitation, and elasticity modulus of concrete slab are the most important variables. This study aims...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Construction & building materials Jg. 364; S. 129948
Hauptverfasser: Ehsani, Mehrdad, Hamidian, Pouria, Hajikarimi, Pouria, Moghadas Nejad, Fereidoon
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 18.01.2023
Schlagworte:
ISSN:0950-0618, 1879-0526
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •MOEA/D method has the best performance to select 17 features affecting faulting.•ANN- SAA with R2 value of 0.976 has been the best model for predicting faulting.•Pavement age, cumulative average precipitation, and elasticity modulus of concrete slab are the most important variables. This study aims to predict faulting failure of jointed plain concrete pavement (JPCP) using different variables. For this purpose, four feature selection methods were developed by combining the artificial neural networks (ANN) and four multi-objective metaheuristic optimization algorithms, namely, the Pareto envelope-based selection algorithm II (PESA-2), the strength Pareto evolutionary algorithm 2 (SPEA-2), multi-objective particle swarm optimization (MPSO), and multi-objective evolutionary algorithm based on decomposition (MOEA/D). The MOEA/D showed better performance compared to the other models, which identified 17 input variables affecting faulting failure. In the next step, the classic back-propagation (BP), Biogeography-based optimization (BBO), invasive weed optimization (IWO), and simulated annealing algorithm (SAA) were combined with the ANN to develop three prediction models for faulting failure. Modeling with metaheuristic optimization algorithms showed better performance than the ordinary ANN. The pavement age, cumulative average precipitation, and elasticity modulus of the concrete slab have the most significant impact on the formation and increase of faulting.
AbstractList •MOEA/D method has the best performance to select 17 features affecting faulting.•ANN- SAA with R2 value of 0.976 has been the best model for predicting faulting.•Pavement age, cumulative average precipitation, and elasticity modulus of concrete slab are the most important variables. This study aims to predict faulting failure of jointed plain concrete pavement (JPCP) using different variables. For this purpose, four feature selection methods were developed by combining the artificial neural networks (ANN) and four multi-objective metaheuristic optimization algorithms, namely, the Pareto envelope-based selection algorithm II (PESA-2), the strength Pareto evolutionary algorithm 2 (SPEA-2), multi-objective particle swarm optimization (MPSO), and multi-objective evolutionary algorithm based on decomposition (MOEA/D). The MOEA/D showed better performance compared to the other models, which identified 17 input variables affecting faulting failure. In the next step, the classic back-propagation (BP), Biogeography-based optimization (BBO), invasive weed optimization (IWO), and simulated annealing algorithm (SAA) were combined with the ANN to develop three prediction models for faulting failure. Modeling with metaheuristic optimization algorithms showed better performance than the ordinary ANN. The pavement age, cumulative average precipitation, and elasticity modulus of the concrete slab have the most significant impact on the formation and increase of faulting.
ArticleNumber 129948
Author Moghadas Nejad, Fereidoon
Hamidian, Pouria
Hajikarimi, Pouria
Ehsani, Mehrdad
Author_xml – sequence: 1
  givenname: Mehrdad
  orcidid: 0000-0003-3413-216X
  surname: Ehsani
  fullname: Ehsani, Mehrdad
  email: mhrehsani@aut.ac.ir
  organization: Department of Civil & Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
– sequence: 2
  givenname: Pouria
  orcidid: 0000-0003-2469-9998
  surname: Hamidian
  fullname: Hamidian, Pouria
  email: pouria.hamidian@ut.ac.ir
  organization: Department of Civil Engineering, University of Tehran, Tehran, Iran
– sequence: 3
  givenname: Pouria
  orcidid: 0000-0001-5621-7274
  surname: Hajikarimi
  fullname: Hajikarimi, Pouria
  email: phajikarimi@aut.ac.ir
  organization: Department of Civil & Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
– sequence: 4
  givenname: Fereidoon
  surname: Moghadas Nejad
  fullname: Moghadas Nejad, Fereidoon
  email: moghadas@aut.ac.ir
  organization: Department of Civil & Environmental Engineering, Amirkabir University of Technology (Tehran Polytechnic), Iran
BookMark eNqNkMFOGzEQhq2KSg207-A-wKa2N7vYJ4SiUlohwYGerYk9JhPt2pHtRYIrL95N0kPVE6eZy__9M985O4spImNfpVhKIftvu6VLcTPR4EeoSyWUWkplzEp_YAupL00jOtWfsYUwnWhEL_Undl7KTgjRq14t2Nv9vtJIr-j5PqMnVylFPiaPQ-EhZR5gGirFp3mhYcrIU-C_EsU6Jx4GoMjnA1zGinwPzzhirHwqh0DdIh-xwhanTKWS4-nUBccOGJ5Sprody2f2McBQ8MvfecF-33x_XN82d_c_fq6v7xrXKlmbywDOaYPQGgWgwkp6r70zxji1Cq3UYqM0rAIY4bquVai8NxpaB7prYRPaC3Z14rqcSskYrKN6PKbm-TkrhT04tTv7j1N7cGpPTmeC-Y-wzzRCfnlXdn3KzmbxmTDb4gijm6VndNX6RO-g_AGrXKEQ
CitedBy_id crossref_primary_10_1038_s41598_025_92469_9
crossref_primary_10_1007_s13202_024_01802_x
crossref_primary_10_1016_j_conbuildmat_2023_132808
crossref_primary_10_3390_app132312862
crossref_primary_10_1002_eng2_12676
crossref_primary_10_1016_j_autcon_2024_105655
crossref_primary_10_1016_j_aei_2024_102665
crossref_primary_10_1016_j_conbuildmat_2024_135331
crossref_primary_10_1007_s42947_025_00510_x
crossref_primary_10_1038_s41598_024_66699_2
crossref_primary_10_1007_s42947_025_00591_8
crossref_primary_10_3390_infrastructures9100179
crossref_primary_10_1080_10298436_2024_2370551
crossref_primary_10_1016_j_fuel_2025_136065
crossref_primary_10_1016_j_trgeo_2023_101172
crossref_primary_10_3390_ma16186321
Cites_doi 10.3846/13923730.2015.1120770
10.1177/0361198118756881
10.1016/j.ijepes.2015.07.041
10.1109/TEVC.2008.919004
10.1016/j.enconman.2022.115703
10.1109/TEVC.2007.892759
10.1016/0895-7177(93)90204-C
10.1016/j.conbuildmat.2021.125332
10.1007/978-1-4757-2287-1
10.1016/j.compstruc.2011.08.019
10.1126/science.220.4598.671
10.1016/j.tust.2017.07.017
10.1007/s00170-020-05641-y
10.1016/j.jclepro.2021.127053
10.1061/(ASCE)TE.1943-5436.0000446
10.1016/j.jobe.2022.105293
10.1016/j.neucom.2014.01.078
10.1016/j.eswa.2009.05.056
10.1177/0361198119838988
10.1016/j.jestch.2019.06.011
10.1007/BF00940812
10.1063/1.1699114
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.conbuildmat.2022.129948
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0526
ExternalDocumentID 10_1016_j_conbuildmat_2022_129948
S0950061822036042
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6J9
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABXRA
ABYKQ
ACDAQ
ACGFO
ACGFS
ACRLP
ADBBV
ADEZE
ADHUB
ADTZH
AEBSH
AECPX
AEFWE
AEKER
AENEX
AEZYN
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BAAKF
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IAO
IEA
IGG
IHE
IHM
IOF
ISM
J1W
JJJVA
KOM
LY7
M24
M41
MAGPM
MO0
N95
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PV9
Q38
ROL
RPZ
RZL
SDF
SDG
SES
SPC
SPCBC
SSM
SST
SSZ
T5K
UNMZH
XI7
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AHDLI
AI.
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BAIFH
BBTPI
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
ITC
R2-
RNS
SET
SEW
SMS
VH1
WUQ
ZMT
~HD
ID FETCH-LOGICAL-c321t-7facc89ea392aa2f41dd8dc999c24f3180b28a4fa90c5532e2dd98a3ca853abf3
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000921164600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0950-0618
IngestDate Tue Nov 18 22:23:31 EST 2025
Sat Nov 29 07:06:27 EST 2025
Fri Feb 23 02:38:55 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Feature Selection
Artificial Neural Networks (ANN)
Faulting Failure
Multi-objective Metaheuristic Optimization Algorithms
Jointed Plain Concrete Pavement
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-7facc89ea392aa2f41dd8dc999c24f3180b28a4fa90c5532e2dd98a3ca853abf3
ORCID 0000-0003-2469-9998
0000-0003-3413-216X
0000-0001-5621-7274
ParticipantIDs crossref_citationtrail_10_1016_j_conbuildmat_2022_129948
crossref_primary_10_1016_j_conbuildmat_2022_129948
elsevier_sciencedirect_doi_10_1016_j_conbuildmat_2022_129948
PublicationCentury 2000
PublicationDate 2023-01-18
PublicationDateYYYYMMDD 2023-01-18
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-18
  day: 18
PublicationDecade 2020
PublicationTitle Construction & building materials
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References 2008: AASHTO.
Yepes (b0045) 2016; 22
Adak (b0135) 2020; 23
Simon (b0140) 2008; 12
1994.
1998.
Askari, A., et al.
Shahin, M.Y.
Wu, C., et al.
Chen, Lytton (b0020) 2019; 2673
Owusu-Antwi (b0060) 1997
2001.
2005.
Selezneva, O., J. Jiang, and S.D. Tayabji
Ehsani, Moghadas Nejad, Hajikarimi (b0075) 2022
Saha (b0125) 2018; 2672
in
Fattahi, Bazdar (b0110) 2017; 70
Alavi, Gandomi (b0160) 2011; 89
Officials, T.
.
Amuso, Enslin (b0085) 2007
Wang, Tsai (b0070) 2013; 6
Elkins (b0105) 2003
Alatoom, Al-Suleiman (b0215) 2022
Zhang, Li (b0090) 2007; 11
Sibtain (b0190) 2022; 263
Ehsani (b0185) 2021; 53
Kirkpatrick, S.
Černý (b0165) 1985; 45
Metropolis (b0175) 1953; 21
Corne, D.W., et al.
Alidoust (b0210) 2021; 303
Byrum, C.R. and R.W. Perera.
Guyon, Elisseeff (b0195) 2003; 3
Titus-Glover, L., et al.
Hamidian (b0130) 2022; 61
(4598): p. 671-680.
Lajimi, Amraee (b0145) 2016; 76
1993.
Sindi, Agbelie (b0040) 2020; 146
Mrzygłód (b0220) 2020; 109
2000.
Danesh (b0150) 2022
Huang, Y.H.
Saghafi (b0025) 2009; 2
Zhou (b0155) 2015; 151
Optimization by simulated annealing. Science, 1983.
Ghafari, Ehsani, Nejad (b0120) 2022; 314
Naseri (b0050) 2021
Schalkoff (b0115) 1997
Rabbani, Bajestani, Khoshkhou (b0095) 2010; 37
Ehsani, M., F.M. Nejad, and P. Hajikarimi
Lu, Tolliver (b0100) 2012; 138
Ingber (b0180) 1993; 18
Ingber (10.1016/j.conbuildmat.2022.129948_b0180) 1993; 18
Yepes (10.1016/j.conbuildmat.2022.129948_b0045) 2016; 22
Zhou (10.1016/j.conbuildmat.2022.129948_b0155) 2015; 151
Owusu-Antwi (10.1016/j.conbuildmat.2022.129948_b0060) 1997
10.1016/j.conbuildmat.2022.129948_b0035
Lu (10.1016/j.conbuildmat.2022.129948_b0100) 2012; 138
10.1016/j.conbuildmat.2022.129948_b0015
Elkins (10.1016/j.conbuildmat.2022.129948_b0105) 2003
10.1016/j.conbuildmat.2022.129948_b0065
Alatoom (10.1016/j.conbuildmat.2022.129948_b0215) 2022
Saghafi (10.1016/j.conbuildmat.2022.129948_b0025) 2009; 2
Ehsani (10.1016/j.conbuildmat.2022.129948_b0075) 2022
Lajimi (10.1016/j.conbuildmat.2022.129948_b0145) 2016; 76
Mrzygłód (10.1016/j.conbuildmat.2022.129948_b0220) 2020; 109
Adak (10.1016/j.conbuildmat.2022.129948_b0135) 2020; 23
10.1016/j.conbuildmat.2022.129948_b0080
Alavi (10.1016/j.conbuildmat.2022.129948_b0160) 2011; 89
Simon (10.1016/j.conbuildmat.2022.129948_b0140) 2008; 12
Zhang (10.1016/j.conbuildmat.2022.129948_b0090) 2007; 11
Sindi (10.1016/j.conbuildmat.2022.129948_b0040) 2020; 146
Wang (10.1016/j.conbuildmat.2022.129948_b0070) 2013; 6
Hamidian (10.1016/j.conbuildmat.2022.129948_b0130) 2022; 61
Danesh (10.1016/j.conbuildmat.2022.129948_b0150) 2022
Guyon (10.1016/j.conbuildmat.2022.129948_b0195) 2003; 3
Fattahi (10.1016/j.conbuildmat.2022.129948_b0110) 2017; 70
Schalkoff (10.1016/j.conbuildmat.2022.129948_b0115) 1997
Ghafari (10.1016/j.conbuildmat.2022.129948_b0120) 2022; 314
10.1016/j.conbuildmat.2022.129948_b0205
Amuso (10.1016/j.conbuildmat.2022.129948_b0085) 2007
10.1016/j.conbuildmat.2022.129948_b0200
Alidoust (10.1016/j.conbuildmat.2022.129948_b0210) 2021; 303
10.1016/j.conbuildmat.2022.129948_b0005
Saha (10.1016/j.conbuildmat.2022.129948_b0125) 2018; 2672
10.1016/j.conbuildmat.2022.129948_b0010
Ehsani (10.1016/j.conbuildmat.2022.129948_b0185) 2021; 53
Sibtain (10.1016/j.conbuildmat.2022.129948_b0190) 2022; 263
10.1016/j.conbuildmat.2022.129948_b0055
Chen (10.1016/j.conbuildmat.2022.129948_b0020) 2019; 2673
10.1016/j.conbuildmat.2022.129948_b0170
Metropolis (10.1016/j.conbuildmat.2022.129948_b0175) 1953; 21
10.1016/j.conbuildmat.2022.129948_b0030
Černý (10.1016/j.conbuildmat.2022.129948_b0165) 1985; 45
Naseri (10.1016/j.conbuildmat.2022.129948_b0050) 2021
Rabbani (10.1016/j.conbuildmat.2022.129948_b0095) 2010; 37
References_xml – reference: Huang, Y.H.,
– reference: . in
– volume: 151
  start-page: 1227
  year: 2015
  end-page: 1236
  ident: b0155
  article-title: A discrete invasive weed optimization algorithm for solving traveling salesman problem
  publication-title: Neurocomputing
– reference: Corne, D.W., et al.
– reference: Officials, T.,
– volume: 109
  start-page: 1385
  year: 2020
  end-page: 1395
  ident: b0220
  article-title: Sensitivity analysis of the artificial neural networks in a system for durability prediction of forging tools to forgings made of C45 steel
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 263
  year: 2022
  ident: b0190
  article-title: A multivariate ultra-short-term wind speed forecasting model by employing multistage signal decomposition approaches and a deep learning network
  publication-title: Energ. Conver. Manage.
– volume: 303
  year: 2021
  ident: b0210
  article-title: Prediction of the shear modulus of municipal solid waste (MSW): An application of machine learning techniques
  publication-title: J. Clean. Prod.
– volume: 138
  start-page: 1297
  year: 2012
  end-page: 1302
  ident: b0100
  article-title: Pavement treatment short-term effectiveness in IRI change using long-term pavement program data
  publication-title: J. Transp. Eng.
– volume: 45
  start-page: 41
  year: 1985
  end-page: 51
  ident: b0165
  article-title: Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm
  publication-title: J. Optim. Theory Appl.
– start-page: 1
  year: 2021
  end-page: 18
  ident: b0050
  article-title: Sustainable pavement maintenance and rehabilitation planning using differential evolutionary programming and coyote optimisation algorithm
  publication-title: Int. J. Pavement Eng.
– reference: . 1993.
– volume: 2
  start-page: 20
  year: 2009
  end-page: 25
  ident: b0025
  article-title: Artificial neural networks and regression analysis for predicting faulting in jointed concrete pavements considering base condition
  publication-title: Int. J. Pavement Res. Technol.
– start-page: 1
  year: 2022
  end-page: 16
  ident: b0075
  article-title: Developing an optimized faulting prediction model in Jointed Plain Concrete Pavement using artificial neural networks and random forest methods
  publication-title: Int. J. Pavement Eng.
– volume: 3
  start-page: 1157
  year: 2003
  end-page: 1182
  ident: b0195
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– year: 2007
  ident: b0085
  article-title: The Strength Pareto Evolutionary Algorithm 2 (SPEA2) applied to simultaneous multi-mission waveform design
  publication-title: In
– volume: 2673
  start-page: 407
  year: 2019
  end-page: 417
  ident: b0020
  article-title: Development of a new faulting model in jointed concrete pavement using LTPP data
  publication-title: Transp. Res. Rec.
– volume: 89
  start-page: 2176
  year: 2011
  end-page: 2194
  ident: b0160
  article-title: Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing
  publication-title: Comput. Struct.
– volume: 22
  start-page: 540
  year: 2016
  end-page: 550
  ident: b0045
  article-title: Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm
  publication-title: J. Civ. Eng. Manag.
– volume: 53
  start-page: 1
  year: 2021
  ident: b0185
  article-title: Compressive strength prediction of ordinary concrete, fly ash concrete, and slag concrete by novel techniques and presenting their optimal mixtures
  publication-title: Amirkabir Journal of Civil Engineering
– reference: Titus-Glover, L., et al.,
– start-page: 1
  year: 2022
  end-page: 16
  ident: b0215
  article-title: Development of pavement roughness models using Artificial Neural Network (ANN)
  publication-title: Int. J. Pavement Eng.
– start-page: 1
  year: 2022
  end-page: 14
  ident: b0150
  article-title: Prediction model of crash severity in imbalanced dataset using data leveling methods and metaheuristic optimization algorithms
  publication-title: Int. J. Crashworthiness
– reference: Askari, A., et al.,
– reference: . 2005.
– reference: Kirkpatrick, S.,
– volume: 146
  start-page: 04020008
  year: 2020
  ident: b0040
  article-title: Assignments of pavement treatment options: genetic algorithms versus mixed-integer programming
  publication-title: Journal of Transportation Engineering, Part B: Pavements
– reference: 1993.
– reference: . 2008: AASHTO.
– volume: 61
  year: 2022
  ident: b0130
  article-title: Introduction of a novel evolutionary neural network for evaluating the compressive strength of concretes: A case of Rice Husk Ash concrete
  publication-title: Journal of Building Engineering
– reference: . 1998.
– volume: 6
  start-page: 651
  year: 2013
  ident: b0070
  article-title: Back-propagation network modeling for concrete pavement faulting using LTPP data
  publication-title: Int. J. Pavement Res. Technol.
– reference: Ehsani, M., F.M. Nejad, and P. Hajikarimi,
– reference: Byrum, C.R. and R.W. Perera.
– year: 2003
  ident: b0105
  article-title: Long-term pavement performance information management system: Pavement performance database user reference guide
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: b0090
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
– reference: Selezneva, O., J. Jiang, and S.D. Tayabji,
– reference: . 2001.
– volume: 2672
  start-page: 23
  year: 2018
  end-page: 33
  ident: b0125
  article-title: Use of an artificial neural network approach for the prediction of resilient modulus for unbound granular material
  publication-title: Transp. Res. Rec.
– reference: (4598): p. 671-680.
– volume: 70
  start-page: 114
  year: 2017
  end-page: 124
  ident: b0110
  article-title: Applying improved artificial neural network models to evaluate drilling rate index
  publication-title: Tunn. Undergr. Space Technol.
– reference: Wu, C., et al.
– volume: 23
  start-page: 463
  year: 2020
  end-page: 469
  ident: b0135
  article-title: Classification of alcohols obtained by QCM sensors with different characteristics using ABC based neural network
  publication-title: Engineering Science and Technology, an International Journal
– volume: 12
  start-page: 702
  year: 2008
  end-page: 713
  ident: b0140
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 21
  start-page: 1087
  year: 1953
  end-page: 1092
  ident: b0175
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
– year: 1997
  ident: b0115
  article-title: Artificial neural networks
– volume: 314
  year: 2022
  ident: b0120
  article-title: Prediction of low-temperature fracture resistance curves of unmodified and crumb rubber modified hot mix asphalt mixtures using a machine learning approach
  publication-title: Constr. Build. Mater.
– volume: 37
  start-page: 315
  year: 2010
  end-page: 321
  ident: b0095
  article-title: A multi-objective particle swarm optimization for project selection problem
  publication-title: Expert Syst. Appl.
– reference: .
– reference: Optimization by simulated annealing. Science, 1983.
– reference: . 2000.
– year: 1997
  ident: b0060
  article-title: Development and calibration of mechanistic-empirical distress models for cost allocation
– reference: . 1994.
– reference: Shahin, M.Y.,
– volume: 18
  start-page: 29
  year: 1993
  end-page: 57
  ident: b0180
  article-title: Simulated annealing: Practice versus theory
  publication-title: Math. Comput. Model.
– volume: 76
  start-page: 82
  year: 2016
  end-page: 89
  ident: b0145
  article-title: A two stage model for rotor angle transient stability constrained optimal power flow
  publication-title: Int. J. Electr. Power Energy Syst.
– start-page: 1
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.129948_b0075
  article-title: Developing an optimized faulting prediction model in Jointed Plain Concrete Pavement using artificial neural networks and random forest methods
  publication-title: Int. J. Pavement Eng.
– volume: 22
  start-page: 540
  issue: 4
  year: 2016
  ident: 10.1016/j.conbuildmat.2022.129948_b0045
  article-title: Optimal pavement maintenance programs based on a hybrid greedy randomized adaptive search procedure algorithm
  publication-title: J. Civ. Eng. Manag.
  doi: 10.3846/13923730.2015.1120770
– ident: 10.1016/j.conbuildmat.2022.129948_b0005
– ident: 10.1016/j.conbuildmat.2022.129948_b0030
– volume: 2672
  start-page: 23
  issue: 52
  year: 2018
  ident: 10.1016/j.conbuildmat.2022.129948_b0125
  article-title: Use of an artificial neural network approach for the prediction of resilient modulus for unbound granular material
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198118756881
– volume: 76
  start-page: 82
  year: 2016
  ident: 10.1016/j.conbuildmat.2022.129948_b0145
  article-title: A two stage model for rotor angle transient stability constrained optimal power flow
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2015.07.041
– volume: 12
  start-page: 702
  issue: 6
  year: 2008
  ident: 10.1016/j.conbuildmat.2022.129948_b0140
  article-title: Biogeography-based optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.919004
– volume: 263
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.129948_b0190
  article-title: A multivariate ultra-short-term wind speed forecasting model by employing multistage signal decomposition approaches and a deep learning network
  publication-title: Energ. Conver. Manage.
  doi: 10.1016/j.enconman.2022.115703
– ident: 10.1016/j.conbuildmat.2022.129948_b0055
– ident: 10.1016/j.conbuildmat.2022.129948_b0200
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.conbuildmat.2022.129948_b0090
  article-title: MOEA/D: A multiobjective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 18
  start-page: 29
  issue: 11
  year: 1993
  ident: 10.1016/j.conbuildmat.2022.129948_b0180
  article-title: Simulated annealing: Practice versus theory
  publication-title: Math. Comput. Model.
  doi: 10.1016/0895-7177(93)90204-C
– volume: 314
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.129948_b0120
  article-title: Prediction of low-temperature fracture resistance curves of unmodified and crumb rubber modified hot mix asphalt mixtures using a machine learning approach
  publication-title: Constr. Build. Mater.
  doi: 10.1016/j.conbuildmat.2021.125332
– ident: 10.1016/j.conbuildmat.2022.129948_b0015
  doi: 10.1007/978-1-4757-2287-1
– volume: 89
  start-page: 2176
  issue: 23–24
  year: 2011
  ident: 10.1016/j.conbuildmat.2022.129948_b0160
  article-title: Prediction of principal ground-motion parameters using a hybrid method coupling artificial neural networks and simulated annealing
  publication-title: Comput. Struct.
  doi: 10.1016/j.compstruc.2011.08.019
– start-page: 1
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.129948_b0050
  article-title: Sustainable pavement maintenance and rehabilitation planning using differential evolutionary programming and coyote optimisation algorithm
  publication-title: Int. J. Pavement Eng.
– ident: 10.1016/j.conbuildmat.2022.129948_b0170
  doi: 10.1126/science.220.4598.671
– volume: 70
  start-page: 114
  year: 2017
  ident: 10.1016/j.conbuildmat.2022.129948_b0110
  article-title: Applying improved artificial neural network models to evaluate drilling rate index
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2017.07.017
– volume: 6
  start-page: 651
  issue: 5
  year: 2013
  ident: 10.1016/j.conbuildmat.2022.129948_b0070
  article-title: Back-propagation network modeling for concrete pavement faulting using LTPP data
  publication-title: Int. J. Pavement Res. Technol.
– volume: 109
  start-page: 1385
  issue: 5
  year: 2020
  ident: 10.1016/j.conbuildmat.2022.129948_b0220
  article-title: Sensitivity analysis of the artificial neural networks in a system for durability prediction of forging tools to forgings made of C45 steel
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-020-05641-y
– volume: 303
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.129948_b0210
  article-title: Prediction of the shear modulus of municipal solid waste (MSW): An application of machine learning techniques
  publication-title: J. Clean. Prod.
  doi: 10.1016/j.jclepro.2021.127053
– start-page: 1
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.129948_b0150
  article-title: Prediction model of crash severity in imbalanced dataset using data leveling methods and metaheuristic optimization algorithms
  publication-title: Int. J. Crashworthiness
– ident: 10.1016/j.conbuildmat.2022.129948_b0010
– volume: 138
  start-page: 1297
  issue: 11
  year: 2012
  ident: 10.1016/j.conbuildmat.2022.129948_b0100
  article-title: Pavement treatment short-term effectiveness in IRI change using long-term pavement program data
  publication-title: J. Transp. Eng.
  doi: 10.1061/(ASCE)TE.1943-5436.0000446
– volume: 61
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.129948_b0130
  article-title: Introduction of a novel evolutionary neural network for evaluating the compressive strength of concretes: A case of Rice Husk Ash concrete
  publication-title: Journal of Building Engineering
  doi: 10.1016/j.jobe.2022.105293
– volume: 151
  start-page: 1227
  year: 2015
  ident: 10.1016/j.conbuildmat.2022.129948_b0155
  article-title: A discrete invasive weed optimization algorithm for solving traveling salesman problem
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.01.078
– volume: 37
  start-page: 315
  issue: 1
  year: 2010
  ident: 10.1016/j.conbuildmat.2022.129948_b0095
  article-title: A multi-objective particle swarm optimization for project selection problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2009.05.056
– ident: 10.1016/j.conbuildmat.2022.129948_b0035
– year: 2003
  ident: 10.1016/j.conbuildmat.2022.129948_b0105
– volume: 146
  start-page: 04020008
  issue: 2
  year: 2020
  ident: 10.1016/j.conbuildmat.2022.129948_b0040
  article-title: Assignments of pavement treatment options: genetic algorithms versus mixed-integer programming
  publication-title: Journal of Transportation Engineering, Part B: Pavements
– year: 1997
  ident: 10.1016/j.conbuildmat.2022.129948_b0115
– ident: 10.1016/j.conbuildmat.2022.129948_b0205
– volume: 2673
  start-page: 407
  issue: 5
  year: 2019
  ident: 10.1016/j.conbuildmat.2022.129948_b0020
  article-title: Development of a new faulting model in jointed concrete pavement using LTPP data
  publication-title: Transp. Res. Rec.
  doi: 10.1177/0361198119838988
– ident: 10.1016/j.conbuildmat.2022.129948_b0065
– year: 1997
  ident: 10.1016/j.conbuildmat.2022.129948_b0060
– volume: 23
  start-page: 463
  issue: 3
  year: 2020
  ident: 10.1016/j.conbuildmat.2022.129948_b0135
  article-title: Classification of alcohols obtained by QCM sensors with different characteristics using ABC based neural network
  publication-title: Engineering Science and Technology, an International Journal
  doi: 10.1016/j.jestch.2019.06.011
– volume: 45
  start-page: 41
  issue: 1
  year: 1985
  ident: 10.1016/j.conbuildmat.2022.129948_b0165
  article-title: Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm
  publication-title: J. Optim. Theory Appl.
  doi: 10.1007/BF00940812
– volume: 53
  start-page: 1
  issue: 10
  year: 2021
  ident: 10.1016/j.conbuildmat.2022.129948_b0185
  article-title: Compressive strength prediction of ordinary concrete, fly ash concrete, and slag concrete by novel techniques and presenting their optimal mixtures
  publication-title: Amirkabir Journal of Civil Engineering
– volume: 3
  start-page: 1157
  issue: Mar
  year: 2003
  ident: 10.1016/j.conbuildmat.2022.129948_b0195
  article-title: An introduction to variable and feature selection
  publication-title: J. Mach. Learn. Res.
– volume: 2
  start-page: 20
  issue: 1
  year: 2009
  ident: 10.1016/j.conbuildmat.2022.129948_b0025
  article-title: Artificial neural networks and regression analysis for predicting faulting in jointed concrete pavements considering base condition
  publication-title: Int. J. Pavement Res. Technol.
– start-page: 1
  year: 2022
  ident: 10.1016/j.conbuildmat.2022.129948_b0215
  article-title: Development of pavement roughness models using Artificial Neural Network (ANN)
  publication-title: Int. J. Pavement Eng.
– ident: 10.1016/j.conbuildmat.2022.129948_b0080
– year: 2007
  ident: 10.1016/j.conbuildmat.2022.129948_b0085
  article-title: The Strength Pareto Evolutionary Algorithm 2 (SPEA2) applied to simultaneous multi-mission waveform design
– volume: 21
  start-page: 1087
  issue: 6
  year: 1953
  ident: 10.1016/j.conbuildmat.2022.129948_b0175
  article-title: Equation of state calculations by fast computing machines
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1699114
SSID ssj0006262
Score 2.475171
Snippet •MOEA/D method has the best performance to select 17 features affecting faulting.•ANN- SAA with R2 value of 0.976 has been the best model for predicting...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 129948
SubjectTerms Artificial Neural Networks (ANN)
Faulting Failure
Feature Selection
Jointed Plain Concrete Pavement
Multi-objective Metaheuristic Optimization Algorithms
Title Optimized prediction models for faulting failure of Jointed Plain concrete pavement using the metaheuristic optimization algorithms
URI https://dx.doi.org/10.1016/j.conbuildmat.2022.129948
Volume 364
WOSCitedRecordID wos000921164600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-0526
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006262
  issn: 0950-0618
  databaseCode: AIEXJ
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLZKhxA8IK5i3GQk3qJMrZM2jsTLhDbBpA0ehtS36MSXNaVLqjabJl75f_wmji-5jIE2kHiJWke265wvx5_d4-8Q8jaWADlnUajNPlg81TyEfKRCzUSejmVkROJssonk6IjPZunnweBHcxbmfJmUJb-4SFf_1dRYhsY2R2f_wtxto1iAn9HoeEWz4_VGhv-ETuC0-Kbs-X9ZuFTgNuGNlV4INJgYQhM_CYWJSTd08aAyshHSpDCyceklcslaBSuwauJ1cLZpTlWdqhrm6szpOweV68uBCJYn1bqo517_vJE_qDqNWouz3CfiDpAru-fRsvr5xmWYCg7VfC1B9rbXC4NjS3nNvwbQ3VkUX8GkJrt677A6mYME48gXDsj7aq0KWXkk-r0OZiK9wr57Rj5o0uT4Iu-_o2nc88DIX1Kn3XllcnD7FAu0bWmHisPcwV7YTlfnsiD3LxNlG77YRMYtsl5TmWkqc03dIlssmaR8SLZ2P-7NDlpugMtH5tQf3TjukDddxOEfftfvGVOPBR0_IPf98oXuOtg9JANVPiL3eqKWj8n3FoC0AyB1AKQIQNoAkHoA0kpTD0BqAUgbANIGgNQCkCIA6SUA0j4AaQfAJ-TL_t7x-w-hT_URioiN6zDRIARPFSBdB2A6HkvJpcDVi2CxxnlnlDMOsYZ0JCaTiCkmZcohEoB0E3IdPSXDsirVM0Lx-4Slo2QKUxOrwPOES5YkasxBi0iIbcKbx5kJr4Nv0rEss2vNuk1YW3XlxGBuUuldY7PMs1rHVjPE5fXVn_9Lny_I3e71eUmG-JqrV-S2OK-Lzfq1B-VP64vWLg
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimized+prediction+models+for+faulting+failure+of+Jointed+Plain+concrete+pavement+using+the+metaheuristic+optimization+algorithms&rft.jtitle=Construction+%26+building+materials&rft.au=Ehsani%2C+Mehrdad&rft.au=Hamidian%2C+Pouria&rft.au=Hajikarimi%2C+Pouria&rft.au=Moghadas+Nejad%2C+Fereidoon&rft.date=2023-01-18&rft.issn=0950-0618&rft.volume=364&rft.spage=129948&rft_id=info:doi/10.1016%2Fj.conbuildmat.2022.129948&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_conbuildmat_2022_129948
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-0618&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-0618&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-0618&client=summon