Bifurcation for a Class of Indefinite Elliptic Systems by Comparison Theory for the Spectral Flow via an Index Theorem
We consider families of strongly indefinite systems of elliptic PDE and investigate bifurcation from a trivial branch of solutions by using the spectral flow. The novelty in our approach is a refined way to apply a comparison principle which is based on an index theorem for a certain class of Fredho...
Uloženo v:
| Vydáno v: | Nonlinear differential equations and applications Ročník 32; číslo 6; s. 116 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Heidelberg
Springer Nature B.V
01.11.2025
|
| Témata: | |
| ISSN: | 1021-9722, 1420-9004 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | We consider families of strongly indefinite systems of elliptic PDE and investigate bifurcation from a trivial branch of solutions by using the spectral flow. The novelty in our approach is a refined way to apply a comparison principle which is based on an index theorem for a certain class of Fredholm operators that is of independent interest. Finally, we use our findings for a bifurcation problem on shrinking domains that originates from works of Morse and Smale. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 1021-9722 1420-9004 |
| DOI: | 10.1007/s00030-025-01126-7 |