Bifurcation for a Class of Indefinite Elliptic Systems by Comparison Theory for the Spectral Flow via an Index Theorem

We consider families of strongly indefinite systems of elliptic PDE and investigate bifurcation from a trivial branch of solutions by using the spectral flow. The novelty in our approach is a refined way to apply a comparison principle which is based on an index theorem for a certain class of Fredho...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Nonlinear differential equations and applications Ročník 32; číslo 6; s. 116
Hlavní autoři: Janczewska, Joanna, Möckel, Melanie, Waterstraat, Nils
Médium: Journal Article
Jazyk:angličtina
Vydáno: Heidelberg Springer Nature B.V 01.11.2025
Témata:
ISSN:1021-9722, 1420-9004
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We consider families of strongly indefinite systems of elliptic PDE and investigate bifurcation from a trivial branch of solutions by using the spectral flow. The novelty in our approach is a refined way to apply a comparison principle which is based on an index theorem for a certain class of Fredholm operators that is of independent interest. Finally, we use our findings for a bifurcation problem on shrinking domains that originates from works of Morse and Smale.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1021-9722
1420-9004
DOI:10.1007/s00030-025-01126-7