The pre-trained explainable deep learning model with stacked denoising autoencoders for slope stability analysis
•A pretrained deep learning framework with stacked autoencoder is formulated for slope stability analysis in geotechnical engineering.•An explainable model is proposed from global and local perspectives and embedded in the deep learning framework to enable model explainability.•A series of data from...
Uložené v:
| Vydané v: | Engineering analysis with boundary elements Ročník 163; s. 406 - 425 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier Ltd
01.06.2024
|
| Predmet: | |
| ISSN: | 0955-7997, 1873-197X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | •A pretrained deep learning framework with stacked autoencoder is formulated for slope stability analysis in geotechnical engineering.•An explainable model is proposed from global and local perspectives and embedded in the deep learning framework to enable model explainability.•A series of data from real-world slope records are collected and a visualized and illustrative feature learning is performed from both statistical and engineering aspects.•The proposed method's feasibility, accuracy and convergence are validated with a repeated stratified 10-fold cross-validation method.
In this work, we proposed a deeply-integrated explainable pre-trained deep learning framework with stacked denoising autoencoders in the assessment of slope stability. The deep learning model consists of a deep neural network as a trunk net for prediction and autoencoders as branch nets for denoising. A comprehensive review of machine learning algorithms in slope stability evaluation is first given in the introduction section. A series of 530 data is then collected from real slope records, which are visualized and investigated in feature engineering and further preprocessed for model training. To ensure reliable and trustworthy model interpretability, a unified model from both local and global perspectives is integrated into the deep learning model, which incorporated the ad hoc back-propagation based Deep SHAP, perturbation based Kernel SHAP and PDPs, and distillation based LIME and Anchors. For a fair evaluation, repeated stratified 10-fold cross-validation is adopted in model evaluation. The obtained results manifest that the constructed model outperforms commonly used machine learning methods in terms of accuracy and stability on the real-world slope data. The explainable model provides a reasonable explanation and validates the capability of the proposed model, and reflects the causes and dependencies of model predictions for a given sample.
[Display omitted] |
|---|---|
| AbstractList | •A pretrained deep learning framework with stacked autoencoder is formulated for slope stability analysis in geotechnical engineering.•An explainable model is proposed from global and local perspectives and embedded in the deep learning framework to enable model explainability.•A series of data from real-world slope records are collected and a visualized and illustrative feature learning is performed from both statistical and engineering aspects.•The proposed method's feasibility, accuracy and convergence are validated with a repeated stratified 10-fold cross-validation method.
In this work, we proposed a deeply-integrated explainable pre-trained deep learning framework with stacked denoising autoencoders in the assessment of slope stability. The deep learning model consists of a deep neural network as a trunk net for prediction and autoencoders as branch nets for denoising. A comprehensive review of machine learning algorithms in slope stability evaluation is first given in the introduction section. A series of 530 data is then collected from real slope records, which are visualized and investigated in feature engineering and further preprocessed for model training. To ensure reliable and trustworthy model interpretability, a unified model from both local and global perspectives is integrated into the deep learning model, which incorporated the ad hoc back-propagation based Deep SHAP, perturbation based Kernel SHAP and PDPs, and distillation based LIME and Anchors. For a fair evaluation, repeated stratified 10-fold cross-validation is adopted in model evaluation. The obtained results manifest that the constructed model outperforms commonly used machine learning methods in terms of accuracy and stability on the real-world slope data. The explainable model provides a reasonable explanation and validates the capability of the proposed model, and reflects the causes and dependencies of model predictions for a given sample.
[Display omitted] |
| Author | Liang, Zenglong Guo, Hongwei Dong, Miao Cao, Xitailang Lin, Shan Zheng, Hong |
| Author_xml | – sequence: 1 givenname: Shan orcidid: 0000-0001-8717-3681 surname: Lin fullname: Lin, Shan organization: Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China – sequence: 2 givenname: Miao surname: Dong fullname: Dong, Miao organization: Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China – sequence: 3 givenname: Xitailang orcidid: 0000-0001-9250-9290 surname: Cao fullname: Cao, Xitailang organization: Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China – sequence: 4 givenname: Zenglong surname: Liang fullname: Liang, Zenglong organization: Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China – sequence: 5 givenname: Hongwei surname: Guo fullname: Guo, Hongwei email: hw-cee.guo@polyu.edu.hk organization: Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China – sequence: 6 givenname: Hong orcidid: 0000-0002-8108-3009 surname: Zheng fullname: Zheng, Hong organization: Key Laboratory of Urban Security and Disaster Engineering, Ministry of Education, Beijing University of Technology, Beijing 100124, China |
| BookMark | eNqNkM1OwzAQhC0EEqXwDuYBEmwnaeITQhV_EhKXInGzHHvTurh2ZJufvj2OygFx4rQr7cxo5ztDx847QOiSkpISurjaluDW0snevztdMsLqklQlofwIzWjXVgXl7esxmhHeNEXLeXuKzmLcEkIrQhYzNK42gMcARQrSONAYvkabN9lbwBpgxBZkcMat8c5rsPjTpA2OSaq3LNbgvInTUb4nD05lSYh48AFH60eYhL2xJu1x_tHuo4nn6GSQNsLFz5yjl7vb1fKheHq-f1zePBWqYjQVrWxq1vdKNy3wuuOLbgAGsmmGQdYU2kbVwGjHdQXQQTuw3IZxqDutmOqkquaIH3JV8DEGGMQYzE6GvaBETOjEVvxCJyZ0glQio8ve6z9eZZJMxruJkv1XwvKQALnih4EgojKZD2gTQCWhvflHyjdgApk- |
| CitedBy_id | crossref_primary_10_1007_s11356_025_36406_3 crossref_primary_10_1016_j_trac_2025_118282 crossref_primary_10_1007_s12145_025_01906_w crossref_primary_10_1016_j_enganabound_2025_106279 crossref_primary_10_1016_j_enganabound_2025_106390 crossref_primary_10_1016_j_aei_2025_103852 crossref_primary_10_1016_j_microc_2025_113905 crossref_primary_10_1016_j_enganabound_2025_106264 crossref_primary_10_1016_j_jclepro_2024_144112 crossref_primary_10_1016_j_ress_2025_111701 crossref_primary_10_1002_cjce_25636 crossref_primary_10_1016_j_jrmge_2025_02_023 crossref_primary_10_1002_msd2_70004 crossref_primary_10_3390_bios15090610 |
| Cites_doi | 10.1016/j.asoc.2008.04.015 10.1007/s10710-017-9314-z 10.1007/s00366-015-0400-7 10.1016/j.advengsoft.2018.03.012 10.1080/01605682.2020.1865846 10.1007/s00521-019-04051-w 10.1007/s11440-022-01520-w 10.1007/s00521-014-1690-1 10.1007/s12665-013-2531-8 10.1002/rnc.6354 10.1016/j.asoc.2021.107465 10.1016/j.asoc.2021.107355 10.1007/s00254-007-1161-4 10.1002/nag.2881 10.1109/TSMC.2022.3225381 10.1016/j.ssci.2019.05.046 10.1088/1361-6501/acb075 10.1007/s00254-001-0454-2 10.1007/s11069-020-04141-2 10.1016/j.envsoft.2009.10.016 10.1016/j.rser.2020.110591 10.1680/geot.1995.45.2.283 10.1016/j.jrmge.2021.12.011 10.5755/j01.itc.49.3.25918 10.1007/s11440-021-01440-1 10.1007/s12517-009-0035-3 10.1038/s41746-022-00699-2 10.1109/ACCESS.2018.2870052 10.1016/j.matdes.2018.11.060 10.1109/TPAMI.2005.159 10.1016/j.catena.2019.104426 10.1007/s10064-022-02615-0 10.1016/j.tust.2022.104949 10.3390/e23010018 10.1023/B:NHAZ.0000007168.00673.27 10.1186/s12911-020-01150-w 10.1007/s10115-013-0679-x 10.1016/S0031-3203(96)00142-2 10.1016/j.neunet.2014.09.003 10.1680/geot.1999.49.6.835 10.1016/j.enggeo.2005.06.005 10.1109/TCYB.2013.2245321 10.1038/323533a0 10.1016/j.neucom.2015.08.104 10.1016/j.dsp.2017.10.011 10.1016/j.patrec.2021.06.030 10.1016/j.compgeo.2020.103711 10.1038/nature14539 10.1109/TNNLS.2020.3027314 10.1016/j.cjca.2021.09.004 10.1016/j.istruc.2022.08.023 10.1007/s10064-020-02090-5 10.1214/aos/1013203451 10.1007/BF01769885 10.1007/s00366-020-00957-5 10.1007/s13351-019-8162-6 10.1007/s11069-014-1106-7 10.1007/s11709-021-0742-8 10.1364/JOSAA.20.001434 10.1016/S0731-7085(99)00272-1 10.1145/3561048 10.1021/acs.analchem.7b03795 10.1007/s00521-019-04212-x 10.1038/538020a 10.1016/j.jrmge.2020.05.011 10.1016/j.enganabound.2020.09.005 10.1016/j.media.2017.12.009 10.3390/app12031753 10.1007/s12665-010-0839-1 10.1109/ACCESS.2020.2981072 10.1016/j.ecoinf.2019.101039 10.1007/s10346-019-01274-9 10.1016/j.asoc.2021.108106 10.1007/s12517-017-3167-x 10.1061/(ASCE)GT.1943-5606.0000099 |
| ContentType | Journal Article |
| Copyright | 2024 Elsevier Ltd |
| Copyright_xml | – notice: 2024 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.enganabound.2024.03.019 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1873-197X |
| EndPage | 425 |
| ExternalDocumentID | 10_1016_j_enganabound_2024_03_019 S095579972400105X |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN AAYOK ABAOU ABBOA ABEFU ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AI. AIALX AIEXJ AIGVJ AIKHN AITUG AJOXV AKRWK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SET SEW SPC SPCBC SST SSV SSW SSZ T5K TN5 UHS VH1 WUQ XPP ZMT ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKYEP ANKPU APXCP CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c321t-7a542bbcd57e948968fe2ea55ffa41e75c4e2189d3ee8e7f200629e48dc2c8ac3 |
| ISICitedReferencesCount | 16 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001221124900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0955-7997 |
| IngestDate | Tue Nov 18 22:18:47 EST 2025 Sat Nov 29 03:48:21 EST 2025 Sat May 04 15:43:53 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Anchors Stacked autoencoder SHAP Explainable machine learning Slope stability Geotechnical engineering DeepLIFT |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c321t-7a542bbcd57e948968fe2ea55ffa41e75c4e2189d3ee8e7f200629e48dc2c8ac3 |
| ORCID | 0000-0001-9250-9290 0000-0002-8108-3009 0000-0001-8717-3681 |
| PageCount | 20 |
| ParticipantIDs | crossref_primary_10_1016_j_enganabound_2024_03_019 crossref_citationtrail_10_1016_j_enganabound_2024_03_019 elsevier_sciencedirect_doi_10_1016_j_enganabound_2024_03_019 |
| PublicationCentury | 2000 |
| PublicationDate | June 2024 2024-06-00 |
| PublicationDateYYYYMMDD | 2024-06-01 |
| PublicationDate_xml | – month: 06 year: 2024 text: June 2024 |
| PublicationDecade | 2020 |
| PublicationTitle | Engineering analysis with boundary elements |
| PublicationYear | 2024 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Yu, Qin, Tao, Liu, Liu (bib0100) 2023; 133 Vellido (bib0091) 2020; 32 DAWSON, DRESCHER (bib0022) 1999; 49 Chen, Gomez, Huang, Unberath (bib0014) 2022; 5 Lin, Zheng, Jiang, Li, Sun (bib0050) 2020; 121 Ray, Kumar, Kumar, Rai, Khandelwal, Singh (bib0074) 2020; 103 Rumelhart, Hinton, Williams (bib0078) 1986; 323 Bui, Tsangaratos, Nguyen, Liem, Trinh (bib0010) 2020; 188 Kardani, Zhou, Nazem, Shen (bib0044) 2021; 13 Chakraborty, Goswami (bib0012) 2017; 10 Maxwell, Sharma, Donaldson (bib0059) 2021; 13 Lin, Zheng, Han, Han, Li (bib0049) 2021; 15 Pradhan, Lee (bib0070) 2010; 25 Angelov, Soares, Jiang, Arnold, Atkinson (bib0005) 2021; 11 Podobnik, Bao, Yue, Rao (bib0069) 2017; 12 Pereira, Meier, McKinley, Wiest, Alves, Silva, Reyes (bib0067) 2018; 44 Wang, Moayedi, Kok Foong (bib0095) 2020; 37 Somu, MR, Ramamritham (bib0085) 2021; 137 Shapley, L.S., 1952. A Value for n-Person Games. Zhou, Li, Yang, Wang, Shi, Yao, Mitri (bib0107) 2019; 118 Ercanoglu, Gokceoglu (bib0023) 2002; 41 Schmidhuber (bib0080) 2015; 61 Dwivedi, Dave, Naik, Singhal, Omer, Patel, Qian, Wen, Shah, Morgan, Ranjan (bib0021) 2023; 55 Srinivas (bib0087) 2010; 323 Asteris, Rizal, Koopialipoor, Roussis, Ferentinou, Armaghani, Gordan (bib0006) 2022; 12 Preece, Harborne, Braines, Tomsett, Chakraborty (bib0071) 2018 Petch, Di, Nelson (bib0068) 2022; 38 Brochu, Cora, Freitas (bib0009) 2010 Agatonovic-Kustrin, Beresford (bib0002) 2000; 22 Park, Kim, Kim (bib0065) 2022; 114 Griffiths, Huang, Fenton (bib0035) 2009; 135 Choobbasti, Farrokhzad, Barari (bib0017) 2009; 2 Wang, Yao, Zhao (bib0097) 2016; 184 Adadi, Berrada (bib0001) 2018; 6 Yu, Yan (bib0101) 2020; 32 Samui (bib0079) 2008; 56 Heaton (bib0039) 2017; 19 Lee, Mumford (bib0046) 2003; 20 Zhou, Li, Yang, Wang, Mitri (bib0106) 2019; 118 Friedman (bib0031) 2001; 29 BRADLEY (bib0008) 1997; 30 Young (bib0099) 1985; 14 Ling, Zhang, Wei, Kong, Zhu (bib0052) 2021; 80 Wang, Xu, Xu (bib0096) 2005; 80 Wakjira, Rahmzadeh, Alam, Tremblay (bib0093) 2022; 44 Frazier (bib0030) 2018 Fattahi (bib0026) 2017; 8 Song, Zhang, Zhu, Ge, Yu, Fu (bib0086) 2023 Sengupta, Upadhyay (bib0081) 2009; 9 Zhou, Tao, Chen, Stojanovic, Paszke (bib0105) 2022; 32 Rosenbaum (bib0077) 2003; 30 Zhou, Zheng, Li, Dong, Zhang (bib0108) 2019; 33 Das, Biswal, Sivakugan, Das (bib0018) 2011; 64 Fernando, Singh, Anand (bib0028) 2019 Visani, Bagli, Chesani, Poluzzi, Capuzzo (bib0111) 2022; 73 Zhang, Liu, Zheng, Zhang (bib0103) 2014; 25 Zhuang, Tao, Chen, Stojanovic, Paszke (bib0110) 2023; 53 Liu, Xie, Chen (bib0053) 2020; 49 Zhou, Rabczuk, Zhuang (bib0109) 2018; 122 Ribeiro, Singh, Guestrin (bib0076) 2018 Alvarez-Melis, Jaakkola (bib0004) 2018 Michalowski (bib0060) 1995; 45 Liu, Shao, Xu, Chen, Zhang (bib0054) 2014; 73 Vega García, Aznarte (bib0092) 2020; 56 Zhang, Li, Han, Chen, Wang (bib0102) 2022; 14 Chen, Lundberg, Lee (bib0015) 2021 Shrikumar, Greenside, Kundaje (bib0084) 2017 Tjoa, Guan (bib0090) 2021; 32 Naser (bib0063) 2021 Gordan, Jahed Armaghani, Hajihassani, Monjezi (bib0034) 2016; 32 Linardatos, Papastefanopoulos, Kotsiantis (bib0051) 2020; 23 Montavon, Samek, Müller (bib0061) 2018; 73 Giannakas, Voyiatzis, ISgouropoulou (bib0032) 2021; 106 Erhan, Bengio, Courville, Manzagol, Vincent, Bengio (bib0024) 2010; 11 He, Xu, Sabetamal, Sheng (bib0038) 2020; 126 Sun, Xu, Wen, Wang (bib0089) 2021 Hanchuan Peng, Ding (bib0037) 2005; 27 Hsiao, Chen, Ge, Yeh (bib0041) 2022; 17 Gonen (bib0033) 2013; 43 Feng, Zhou, Dong (bib0027) 2019; 162 Espinosa (bib0025) 2021; 108 Date, Kikuchi (bib0019) 2018; 90 Zheng, Leung, Zhu, Jiao (bib0104) 2019; 43 Duncan (bib0020) 1996; 122 Yao, Qin, Qiao, Liu, Zhang, Chen (bib0098) 2022; 81 Castelvecchi (bib0011) 2016; 538 Lundberg, Lee (bib0055) 2017 Namatēvs, Sudars, Dobrājs (bib0062) 2022; 29 Ferreira, Camacho, Teixeira (bib0029) 2020; 20 Ivanovs, Kadikis, Ozols (bib0043) 2021; 150 Štrumbelj, Kononenko (bib0088) 2014; 41 LeCun, Bengio, Hinton (bib0045) 2015; 521 (bib0064) 1986 Shen, Tao, Ni, Wang, Stojanovic (bib0083) 2023; 34 Chen, Xiao, Zhang (bib0013) 2011; 16 Huang, Zhang, Zhou, Wang, Huang, Zhu (bib0042) 2020; 17 Cho, Kim, Lee, Choi, Lee, Rhee (bib0016) 2020; 8 Manouchehrian, Gholamnejad, Sharifzadeh (bib0057) 2013; 71 Lin, Zheng, Han, Li, Han, Li (bib0048) 2022; 17 Wang (10.1016/j.enganabound.2024.03.019_bib0095) 2020; 37 Srinivas (10.1016/j.enganabound.2024.03.019_bib0087) 2010; 323 Maxwell (10.1016/j.enganabound.2024.03.019_bib0059) 2021; 13 BRADLEY (10.1016/j.enganabound.2024.03.019_bib0008) 1997; 30 Friedman (10.1016/j.enganabound.2024.03.019_bib0031) 2001; 29 Lundberg (10.1016/j.enganabound.2024.03.019_bib0055) 2017 Griffiths (10.1016/j.enganabound.2024.03.019_bib0035) 2009; 135 Zhou (10.1016/j.enganabound.2024.03.019_bib0107) 2019; 118 Das (10.1016/j.enganabound.2024.03.019_bib0018) 2011; 64 Frazier (10.1016/j.enganabound.2024.03.019_bib0030) 2018 Michalowski (10.1016/j.enganabound.2024.03.019_bib0060) 1995; 45 Sengupta (10.1016/j.enganabound.2024.03.019_bib0081) 2009; 9 He (10.1016/j.enganabound.2024.03.019_bib0038) 2020; 126 Shen (10.1016/j.enganabound.2024.03.019_bib0083) 2023; 34 Feng (10.1016/j.enganabound.2024.03.019_bib0027) 2019; 162 Hsiao (10.1016/j.enganabound.2024.03.019_bib0041) 2022; 17 Young (10.1016/j.enganabound.2024.03.019_bib0099) 1985; 14 Wang (10.1016/j.enganabound.2024.03.019_bib0097) 2016; 184 Yao (10.1016/j.enganabound.2024.03.019_bib0098) 2022; 81 Schmidhuber (10.1016/j.enganabound.2024.03.019_bib0080) 2015; 61 Ivanovs (10.1016/j.enganabound.2024.03.019_bib0043) 2021; 150 Linardatos (10.1016/j.enganabound.2024.03.019_bib0051) 2020; 23 Fernando (10.1016/j.enganabound.2024.03.019_bib0028) 2019 Ray (10.1016/j.enganabound.2024.03.019_bib0074) 2020; 103 10.1016/j.enganabound.2024.03.019_bib0082 (10.1016/j.enganabound.2024.03.019_bib0064) 1986 Kardani (10.1016/j.enganabound.2024.03.019_bib0044) 2021; 13 Zhou (10.1016/j.enganabound.2024.03.019_bib0105) 2022; 32 Date (10.1016/j.enganabound.2024.03.019_bib0019) 2018; 90 Montavon (10.1016/j.enganabound.2024.03.019_bib0061) 2018; 73 Choobbasti (10.1016/j.enganabound.2024.03.019_bib0017) 2009; 2 Zhou (10.1016/j.enganabound.2024.03.019_bib0106) 2019; 118 Gordan (10.1016/j.enganabound.2024.03.019_bib0034) 2016; 32 Adadi (10.1016/j.enganabound.2024.03.019_bib0001) 2018; 6 DAWSON (10.1016/j.enganabound.2024.03.019_bib0022) 1999; 49 Zhou (10.1016/j.enganabound.2024.03.019_bib0109) 2018; 122 Chen (10.1016/j.enganabound.2024.03.019_bib0014) 2022; 5 Petch (10.1016/j.enganabound.2024.03.019_bib0068) 2022; 38 LeCun (10.1016/j.enganabound.2024.03.019_bib0045) 2015; 521 Fattahi (10.1016/j.enganabound.2024.03.019_bib0026) 2017; 8 Samui (10.1016/j.enganabound.2024.03.019_bib0079) 2008; 56 Castelvecchi (10.1016/j.enganabound.2024.03.019_bib0011) 2016; 538 Namatēvs (10.1016/j.enganabound.2024.03.019_bib0062) 2022; 29 Alvarez-Melis (10.1016/j.enganabound.2024.03.019_bib0004) 2018 Somu (10.1016/j.enganabound.2024.03.019_bib0085) 2021; 137 Podobnik (10.1016/j.enganabound.2024.03.019_bib0069) 2017; 12 Espinosa (10.1016/j.enganabound.2024.03.019_bib0025) 2021; 108 Giannakas (10.1016/j.enganabound.2024.03.019_bib0032) 2021; 106 Liu (10.1016/j.enganabound.2024.03.019_bib0054) 2014; 73 Manouchehrian (10.1016/j.enganabound.2024.03.019_bib0057) 2013; 71 Chen (10.1016/j.enganabound.2024.03.019_bib0013) 2011; 16 Chakraborty (10.1016/j.enganabound.2024.03.019_bib0012) 2017; 10 Heaton (10.1016/j.enganabound.2024.03.019_bib0039) 2017; 19 Cho (10.1016/j.enganabound.2024.03.019_bib0016) 2020; 8 Shrikumar (10.1016/j.enganabound.2024.03.019_bib0084) 2017 Huang (10.1016/j.enganabound.2024.03.019_bib0042) 2020; 17 Lee (10.1016/j.enganabound.2024.03.019_bib0046) 2003; 20 Tjoa (10.1016/j.enganabound.2024.03.019_bib0090) 2021; 32 Park (10.1016/j.enganabound.2024.03.019_bib0065) 2022; 114 Liu (10.1016/j.enganabound.2024.03.019_bib0053) 2020; 49 Zheng (10.1016/j.enganabound.2024.03.019_bib0104) 2019; 43 Ferreira (10.1016/j.enganabound.2024.03.019_bib0029) 2020; 20 Hanchuan Peng (10.1016/j.enganabound.2024.03.019_bib0037) 2005; 27 Gonen (10.1016/j.enganabound.2024.03.019_bib0033) 2013; 43 Zhang (10.1016/j.enganabound.2024.03.019_bib0102) 2022; 14 Ercanoglu (10.1016/j.enganabound.2024.03.019_bib0023) 2002; 41 Yu (10.1016/j.enganabound.2024.03.019_bib0101) 2020; 32 Naser (10.1016/j.enganabound.2024.03.019_bib0063) 2021 Vellido (10.1016/j.enganabound.2024.03.019_bib0091) 2020; 32 Rosenbaum (10.1016/j.enganabound.2024.03.019_bib0077) 2003; 30 Vega García (10.1016/j.enganabound.2024.03.019_bib0092) 2020; 56 Zhang (10.1016/j.enganabound.2024.03.019_bib0103) 2014; 25 Preece (10.1016/j.enganabound.2024.03.019_bib0071) 2018 Ribeiro (10.1016/j.enganabound.2024.03.019_bib0076) 2018 Visani (10.1016/j.enganabound.2024.03.019_bib0111) 2022; 73 Song (10.1016/j.enganabound.2024.03.019_bib0086) 2023 Bui (10.1016/j.enganabound.2024.03.019_bib0010) 2020; 188 Brochu (10.1016/j.enganabound.2024.03.019_bib0009) 2010 Duncan (10.1016/j.enganabound.2024.03.019_bib0020) 1996; 122 Wang (10.1016/j.enganabound.2024.03.019_bib0096) 2005; 80 Agatonovic-Kustrin (10.1016/j.enganabound.2024.03.019_bib0002) 2000; 22 Rumelhart (10.1016/j.enganabound.2024.03.019_bib0078) 1986; 323 Erhan (10.1016/j.enganabound.2024.03.019_bib0024) 2010; 11 Lin (10.1016/j.enganabound.2024.03.019_bib0049) 2021; 15 Lin (10.1016/j.enganabound.2024.03.019_bib0050) 2020; 121 Zhou (10.1016/j.enganabound.2024.03.019_bib0108) 2019; 33 Dwivedi (10.1016/j.enganabound.2024.03.019_bib0021) 2023; 55 Chen (10.1016/j.enganabound.2024.03.019_bib0015) 2021 Pradhan (10.1016/j.enganabound.2024.03.019_bib0070) 2010; 25 Ling (10.1016/j.enganabound.2024.03.019_bib0052) 2021; 80 Štrumbelj (10.1016/j.enganabound.2024.03.019_bib0088) 2014; 41 Zhuang (10.1016/j.enganabound.2024.03.019_bib0110) 2023; 53 Lin (10.1016/j.enganabound.2024.03.019_bib0048) 2022; 17 Asteris (10.1016/j.enganabound.2024.03.019_bib0006) 2022; 12 Yu (10.1016/j.enganabound.2024.03.019_bib0100) 2023; 133 Angelov (10.1016/j.enganabound.2024.03.019_bib0005) 2021; 11 Sun (10.1016/j.enganabound.2024.03.019_bib0089) 2021 Wakjira (10.1016/j.enganabound.2024.03.019_bib0093) 2022; 44 Pereira (10.1016/j.enganabound.2024.03.019_bib0067) 2018; 44 |
| References_xml | – year: 2018 ident: bib0071 article-title: Stakeholders in explainable AI publication-title: ArXiv – volume: 126 year: 2020 ident: bib0038 article-title: Machine learning aided stochastic reliability analysis of spatially variable slopes publication-title: Comput Geotech – volume: 55 start-page: 1 year: 2023 end-page: 33 ident: bib0021 article-title: Explainable AI (XAI): core Ideas, Techniques, and Solutions publication-title: ACM Comput Surv – volume: 12 year: 2022 ident: bib0006 article-title: Slope stability classification under seismic conditions using several tree-based intelligent techniques publication-title: Appl Sci – volume: 80 start-page: 2011 year: 2021 end-page: 2024 ident: bib0052 article-title: Slope reliability evaluation based on multi-objective grey wolf optimization-multi-kernel-based extreme learning machine agent model publication-title: B Eng Geol Environ – volume: 17 start-page: 1477 year: 2022 end-page: 1502 ident: bib0048 article-title: Comparative performance of eight ensemble learning approaches for the development of models of slope stability prediction publication-title: Acta Geotech – volume: 30 start-page: 383 year: 2003 end-page: 398 ident: bib0077 article-title: Artificial Neural Networks and grey systems for the prediction of slope stability publication-title: Nat Hazards – volume: 41 start-page: 647 year: 2014 end-page: 665 ident: bib0088 article-title: Explaining prediction models and individual predictions with feature contributions publication-title: Knowl Inf Syst – volume: 114 year: 2022 ident: bib0065 article-title: Stock market forecasting using a multi-task approach integrating long short-term memory and the random forest framework publication-title: Appl Soft Comput – volume: 11 start-page: e1424 year: 2021 ident: bib0005 article-title: Explainable artificial intelligence: an analytical review publication-title: WIREs DMKD – volume: 103 start-page: 3523 year: 2020 end-page: 3540 ident: bib0074 article-title: Stability prediction of Himalayan residual soil slope using artificial neural network publication-title: Nat Hazards – volume: 14 start-page: 1089 year: 2022 end-page: 1099 ident: bib0102 article-title: Slope stability prediction using ensemble learning techniques: a case study in Yunyang County, Chongqing, China publication-title: J Rock Mech Geotech – volume: 56 year: 2020 ident: bib0092 article-title: Shapley additive explanations for NO2 forecasting publication-title: Ecol Inform – volume: 135 start-page: 1367 year: 2009 end-page: 1378 ident: bib0035 article-title: Influence of spatial variability on slope reliability using 2-D random fields publication-title: J Geotech Geoenviron – volume: 20 start-page: 1434 year: 2003 end-page: 1448 ident: bib0046 article-title: Hierarchical Bayesian inference in the visual cortex publication-title: J Opt Soc Am – volume: 17 start-page: 217 year: 2020 end-page: 229 ident: bib0042 article-title: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction publication-title: Landslides – volume: 49 start-page: 421 year: 2020 end-page: 437 ident: bib0053 article-title: Unsupervised Text Feature Learning via Deep Variational Auto-encoder publication-title: Inf Technol Control – volume: 49 start-page: 835 year: 1999 end-page: 840 ident: bib0022 article-title: Slope stability analysis by strength reduction publication-title: Géotechnique – volume: 20 year: 2020 ident: bib0029 article-title: Using autoencoders as a weight initialization method on deep neural networks for disease detection publication-title: BMC Med Inform Decis – volume: 538 start-page: 7623 year: 2016 ident: bib0011 article-title: Can we open the black box of AI? publication-title: Nature News – start-page: 4768 year: 2017 end-page: 4777 ident: bib0055 article-title: A unified approach to interpreting model predictions publication-title: Proceedings of the 31st International Conference on Neural Information Processing Systems – volume: 45 start-page: 283 year: 1995 end-page: 293 ident: bib0060 article-title: Slope stability analysis: a kinematical approach publication-title: Géotechnique – volume: 122 start-page: 31 year: 2018 end-page: 49 ident: bib0109 article-title: Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies publication-title: Adv Eng Softw – year: 2018 ident: bib0030 publication-title: A Tutorial on Bayesian Optimization – volume: 81 start-page: 148 year: 2022 ident: bib0098 article-title: Application of a two-step sampling strategy based on deep neural network for landslide susceptibility mapping publication-title: B Eng Geol Environ – volume: 12 year: 2017 ident: bib0069 article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory publication-title: Plos One – volume: 2 start-page: 311 year: 2009 end-page: 319 ident: bib0017 article-title: Prediction of slope stability using artificial neural network (case study: noabad, Mazandaran, Iran) publication-title: Arab J Geosci – volume: 23 start-page: 18 year: 2020 ident: bib0051 article-title: Explainable ai: a review of machine learning interpretability methods publication-title: Entropy-Switz – volume: 33 start-page: 797 year: 2019 end-page: 809 ident: bib0108 article-title: Forecasting different types of convective weather: a deep learning approach publication-title: J Meteorol Res-Prc – start-page: 186 year: 2023 ident: bib0086 article-title: Tool wear monitoring based on multi-kernel Gaussian process regression and Stacked Multilayer Denoising AutoEncoders publication-title: Mech Syst Signal Pr – volume: 11 start-page: 625 year: 2010 end-page: 660 ident: bib0024 article-title: Why does unsupervised pre-training help deep learning? publication-title: J Mach Learn Res – start-page: 1005 year: 2019 end-page: 1008 ident: bib0028 article-title: A study on the interpretability of neural retrieval models using deepSHAP publication-title: Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval – volume: 15 start-page: 821 year: 2021 end-page: 833 ident: bib0049 article-title: Evaluation and prediction of slope stability using machine learning approaches publication-title: Front Struct Civ Eng – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: bib0045 article-title: Deep learning publication-title: Nature – volume: 14 start-page: 65 year: 1985 end-page: 72 ident: bib0099 article-title: Monotonic solutions of cooperative games publication-title: Int J Game Theory – volume: 32 start-page: 85 year: 2016 end-page: 97 ident: bib0034 article-title: Prediction of seismic slope stability through combination of particle swarm optimization and neural network publication-title: Eng Comput-Germany – volume: 73 start-page: 787 year: 2014 end-page: 804 ident: bib0054 article-title: An extreme learning machine approach for slope stability evaluation and prediction publication-title: Nat. Hazards. – volume: 6 start-page: 52138 year: 2018 end-page: 52160 ident: bib0001 article-title: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI) publication-title: IEEE Access – year: 2010 ident: bib0009 article-title: A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning publication-title: ArXiv – volume: 73 start-page: 1 year: 2018 end-page: 15 ident: bib0061 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digit Signal Process – volume: 9 start-page: 387 year: 2009 end-page: 392 ident: bib0081 article-title: Locating the critical failure surface in a slope stability analysis by genetic algorithm publication-title: Appl Soft Comput – volume: 37 start-page: 3067 year: 2020 end-page: 3078 ident: bib0095 article-title: Genetic algorithm hybridized with multilayer perceptron to have an economical slope stability design publication-title: Eng Comput-Germany – volume: 188 year: 2020 ident: bib0010 article-title: Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment publication-title: Catena – volume: 150 start-page: 228 year: 2021 end-page: 234 ident: bib0043 article-title: Perturbation-based methods for explaining deep neural networks: a survey publication-title: Pattern Recogn Lett – volume: 27 start-page: 1226 year: 2005 end-page: 1238 ident: bib0037 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE T Pattern Anal – volume: 30 start-page: 1145 year: 1997 end-page: 1159 ident: bib0008 article-title: The use of the area under the roc curve in the evaluation of machine learning algorithms publication-title: Pattern Recogn – volume: 133 year: 2023 ident: bib0100 article-title: A multi-channel decoupled deep neural network for tunnel boring machine torque and thrust prediction publication-title: Tunn Undergr Sp Tech – volume: 25 start-page: 2025 year: 2014 end-page: 2035 ident: bib0103 article-title: Development of an adaptive relevance vector machine approach for slope stability inference publication-title: Neural Comput Appl – start-page: 129 year: 2021 ident: bib0063 article-title: An engineer's guide to eXplainable artificial intelligence and interpretable machine learning: navigating causality, forced goodness, and the false perception of inference publication-title: Automat Constr – volume: 53 start-page: 3461 year: 2023 end-page: 3473 ident: bib0110 article-title: An optimal iterative learning control approach for linear systems with nonuniform trial lengths under input constraints publication-title: IEEE T Syst Man Cy-s – start-page: 349 year: 1986 end-page: 395 ident: bib0064 publication-title: SOIL MECHANICS (DM 7.1) – volume: 29 start-page: 297 year: 2022 end-page: 356 ident: bib0062 article-title: Interpretability versus explainability: classification for understanding deep learning systems and models publication-title: Computer Assi Methods Eng Sci – start-page: 261 year: 2021 end-page: 270 ident: bib0015 article-title: Explaining models by propagating shapley values of local components publication-title: Explainable ai in healthcare and medicine: building a culture of transparency and accountability – volume: 90 start-page: 1805 year: 2018 end-page: 1810 ident: bib0019 article-title: Application of a deep neural network to metabolomics studies and its performance in determining important variables publication-title: Anal Chem – volume: 184 start-page: 232 year: 2016 end-page: 242 ident: bib0097 article-title: Auto-encoder based dimensionality reduction publication-title: Neurocomputing – start-page: 3145 year: 2017 end-page: 3153 ident: bib0084 article-title: Learning important features through propagating activation differences publication-title: Proceedings of the 34th International Conference on Machine Learning - Volume 70. JMLR.org – volume: 5 start-page: 156 year: 2022 ident: bib0014 article-title: Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review publication-title: NPJ Digit Med – start-page: 281 year: 2021 ident: bib0089 article-title: Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest publication-title: Eng Geol – volume: 8 start-page: 163 year: 2017 end-page: 177 ident: bib0026 article-title: Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods publication-title: J Min Environ – volume: 73 start-page: 91 year: 2022 end-page: 101 ident: bib0111 article-title: Statistical stability indices for LIME: obtaining reliable explanations for machine learning models publication-title: J Oper Res Soc – volume: 44 start-page: 947 year: 2022 end-page: 964 ident: bib0093 article-title: Explainable machine learning based efficient prediction tool for lateral cyclic response of post-tensioned base rocking steel bridge piers publication-title: Structures – volume: 323 start-page: 533 year: 1986 end-page: 536 ident: bib0078 article-title: Learning representations by back-propagating errors publication-title: NatureNature – volume: 118 start-page: 505 year: 2019 end-page: 518 ident: bib0107 article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories publication-title: Safety Sci – volume: 44 start-page: 228 year: 2018 end-page: 244 ident: bib0067 article-title: Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation publication-title: Med Imagen Anal – volume: 32 start-page: 10139 year: 2022 end-page: 10161 ident: bib0105 article-title: Robust point-to-point iterative learning control for constrained systems: a minimum energy approach publication-title: Int J Robust Nonlin – volume: 34 year: 2023 ident: bib0083 article-title: Improved YOLOv3 model with feature map cropping for multi-scale road object detection publication-title: Meas Sci Technol – year: 2018 ident: bib0004 article-title: On the robustness of interpretability methods publication-title: ArXiv – volume: 13 year: 2021 ident: bib0059 article-title: Explainable boosting machines for slope failure spatial predictive modeling publication-title: Remote Sens-Basel. – reference: Shapley, L.S., 1952. A Value for n-Person Games. – volume: 10 year: 2017 ident: bib0012 article-title: Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN) publication-title: Arab J Geosci – volume: 108 year: 2021 ident: bib0025 article-title: Click-event sound detection in automotive industry using machine/deep learning publication-title: Appl Soft Comput – volume: 162 start-page: 300 year: 2019 end-page: 310 ident: bib0027 article-title: Using deep neural network with small dataset to predict material defects publication-title: Mater Design – volume: 32 start-page: 4793 year: 2021 end-page: 4813 ident: bib0090 article-title: A Survey on Explainable Artificial Intelligence (XAI): toward Medical XAI publication-title: IEEE Trans Neural Netw Learn Syst – volume: 43 start-page: 2179 year: 2013 end-page: 2189 ident: bib0033 article-title: Bayesian supervised dimensionality reduction publication-title: IEEE Trans Cybern – volume: 80 start-page: 302 year: 2005 end-page: 315 ident: bib0096 article-title: Slope stability evaluation using back propagation neural networks publication-title: Eng Geol – volume: 43 start-page: 599 year: 2019 end-page: 624 ident: bib0104 article-title: Modified predictor-corrector solution approach for efficient discontinuous deformation analysis of jointed rock masses publication-title: Int J Numer Anal Met – volume: 32 start-page: 18069 year: 2020 end-page: 18083 ident: bib0091 article-title: The importance of interpretability and visualization in machine learning for applications in medicine and health care publication-title: Neural Comput Appl – volume: 71 start-page: 1267 year: 2013 end-page: 1277 ident: bib0057 article-title: Development of a model for analysis of slope stability for circular mode failure using genetic algorithm publication-title: Environ Earth Sci – volume: 323 start-page: 533 year: 2010 end-page: 536 ident: bib0087 article-title: Learning representations by back-propagating errors publication-title: NatureNature – volume: 61 start-page: 85 year: 2015 end-page: 117 ident: bib0080 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw – volume: 41 start-page: 720 year: 2002 end-page: 730 ident: bib0023 article-title: Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach publication-title: Environ Geol – volume: 106 year: 2021 ident: bib0032 article-title: A deep learning classification framework for early prediction of team-based academic performance publication-title: Appl Soft Comput – volume: 29 start-page: 1189 year: 2001 end-page: 1232 ident: bib0031 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat – volume: 19 start-page: 305 year: 2017 end-page: 307 ident: bib0039 article-title: Ian goodfellow, yoshua bengio, and aaron courville: deep learning publication-title: Genet Program Evol M – volume: 38 start-page: 204 year: 2022 end-page: 213 ident: bib0068 article-title: Opening the Black Box: the promise and limitations of explainable machine learning in cardiology publication-title: Can J Cardiol – volume: 121 start-page: 76 year: 2020 end-page: 90 ident: bib0050 article-title: Investigation of the excavation of stony soil slopes using the virtual element method publication-title: Eng Anal Bound Elem – volume: 13 start-page: 188 year: 2021 end-page: 201 ident: bib0044 article-title: Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data publication-title: J Rock Mech Geotech – volume: 16 start-page: 93 year: 2011 end-page: 107 ident: bib0013 article-title: Stability Assessment model for epimetamorphic rock slopes based on adaptive neuro-fuzzy inference system publication-title: Electron J Geotech Eng – year: 2018 ident: bib0076 article-title: Anchors: high-precision model-agnostic explanations publication-title: Proceedings of the Thirty-Second AAAI Conference on Artificial Intelligence and Thirtieth Innovative Applications of Artificial Intelligence Conference and Eighth AAAI Symposium on Educational Advances in Artificial Intelligence – volume: 64 start-page: 201 year: 2011 end-page: 210 ident: bib0018 article-title: Classification of slopes and prediction of factor of safety using differential evolution neural networks publication-title: Environ Earth Sci – volume: 32 start-page: 1609 year: 2020 end-page: 1628 ident: bib0101 article-title: Stock price prediction based on deep neural networks publication-title: Neural Comput Appl – volume: 25 start-page: 747 year: 2010 end-page: 759 ident: bib0070 article-title: Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling publication-title: Environ Modell Softw – volume: 122 start-page: 577 year: 1996 end-page: 596 ident: bib0020 article-title: State of the art: limit equilibrium and finite-element analysis of slopes publication-title: J Geotech Geoenviron – volume: 56 start-page: 255 year: 2008 end-page: 267 ident: bib0079 article-title: Slope stability analysis: a support vector machine approach publication-title: Environ Geol – volume: 118 start-page: 505 year: 2019 end-page: 518 ident: bib0106 article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories publication-title: Safety Sci – volume: 8 start-page: 52588 year: 2020 end-page: 52608 ident: bib0016 article-title: Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks publication-title: IEEE Access – volume: 17 start-page: 5801 year: 2022 end-page: 5811 ident: bib0041 article-title: Performance of artificial neural network and convolutional neural network on slope failure prediction using data from the random finite element method publication-title: Acta Geotech – volume: 22 start-page: 717 year: 2000 end-page: 727 ident: bib0002 article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research publication-title: J Pharmaceut Biomed. – volume: 137 year: 2021 ident: bib0085 article-title: A deep learning framework for building energy consumption forecast publication-title: Renew Sust Energ Rev – volume: 9 start-page: 387 year: 2009 ident: 10.1016/j.enganabound.2024.03.019_bib0081 article-title: Locating the critical failure surface in a slope stability analysis by genetic algorithm publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2008.04.015 – volume: 29 start-page: 297 year: 2022 ident: 10.1016/j.enganabound.2024.03.019_bib0062 article-title: Interpretability versus explainability: classification for understanding deep learning systems and models publication-title: Computer Assi Methods Eng Sci – volume: 19 start-page: 305 year: 2017 ident: 10.1016/j.enganabound.2024.03.019_bib0039 article-title: Ian goodfellow, yoshua bengio, and aaron courville: deep learning publication-title: Genet Program Evol M doi: 10.1007/s10710-017-9314-z – volume: 32 start-page: 85 year: 2016 ident: 10.1016/j.enganabound.2024.03.019_bib0034 article-title: Prediction of seismic slope stability through combination of particle swarm optimization and neural network publication-title: Eng Comput-Germany doi: 10.1007/s00366-015-0400-7 – volume: 122 start-page: 31 year: 2018 ident: 10.1016/j.enganabound.2024.03.019_bib0109 article-title: Phase field modeling of quasi-static and dynamic crack propagation: COMSOL implementation and case studies publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2018.03.012 – volume: 73 start-page: 91 issue: 1 year: 2022 ident: 10.1016/j.enganabound.2024.03.019_bib0111 article-title: Statistical stability indices for LIME: obtaining reliable explanations for machine learning models publication-title: J Oper Res Soc doi: 10.1080/01605682.2020.1865846 – volume: 32 start-page: 18069 year: 2020 ident: 10.1016/j.enganabound.2024.03.019_bib0091 article-title: The importance of interpretability and visualization in machine learning for applications in medicine and health care publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04051-w – start-page: 261 year: 2021 ident: 10.1016/j.enganabound.2024.03.019_bib0015 article-title: Explaining models by propagating shapley values of local components – volume: 17 start-page: 5801 year: 2022 ident: 10.1016/j.enganabound.2024.03.019_bib0041 article-title: Performance of artificial neural network and convolutional neural network on slope failure prediction using data from the random finite element method publication-title: Acta Geotech doi: 10.1007/s11440-022-01520-w – volume: 25 start-page: 2025 year: 2014 ident: 10.1016/j.enganabound.2024.03.019_bib0103 article-title: Development of an adaptive relevance vector machine approach for slope stability inference publication-title: Neural Comput Appl doi: 10.1007/s00521-014-1690-1 – volume: 71 start-page: 1267 year: 2013 ident: 10.1016/j.enganabound.2024.03.019_bib0057 article-title: Development of a model for analysis of slope stability for circular mode failure using genetic algorithm publication-title: Environ Earth Sci doi: 10.1007/s12665-013-2531-8 – volume: 32 start-page: 10139 year: 2022 ident: 10.1016/j.enganabound.2024.03.019_bib0105 article-title: Robust point-to-point iterative learning control for constrained systems: a minimum energy approach publication-title: Int J Robust Nonlin doi: 10.1002/rnc.6354 – start-page: 3145 year: 2017 ident: 10.1016/j.enganabound.2024.03.019_bib0084 article-title: Learning important features through propagating activation differences – volume: 108 year: 2021 ident: 10.1016/j.enganabound.2024.03.019_bib0025 article-title: Click-event sound detection in automotive industry using machine/deep learning publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107465 – volume: 106 year: 2021 ident: 10.1016/j.enganabound.2024.03.019_bib0032 article-title: A deep learning classification framework for early prediction of team-based academic performance publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.107355 – year: 2018 ident: 10.1016/j.enganabound.2024.03.019_bib0071 article-title: Stakeholders in explainable AI publication-title: ArXiv – volume: 56 start-page: 255 year: 2008 ident: 10.1016/j.enganabound.2024.03.019_bib0079 article-title: Slope stability analysis: a support vector machine approach publication-title: Environ Geol doi: 10.1007/s00254-007-1161-4 – volume: 43 start-page: 599 year: 2019 ident: 10.1016/j.enganabound.2024.03.019_bib0104 article-title: Modified predictor-corrector solution approach for efficient discontinuous deformation analysis of jointed rock masses publication-title: Int J Numer Anal Met doi: 10.1002/nag.2881 – volume: 16 start-page: 93 year: 2011 ident: 10.1016/j.enganabound.2024.03.019_bib0013 article-title: Stability Assessment model for epimetamorphic rock slopes based on adaptive neuro-fuzzy inference system publication-title: Electron J Geotech Eng – volume: 53 start-page: 3461 year: 2023 ident: 10.1016/j.enganabound.2024.03.019_bib0110 article-title: An optimal iterative learning control approach for linear systems with nonuniform trial lengths under input constraints publication-title: IEEE T Syst Man Cy-s doi: 10.1109/TSMC.2022.3225381 – volume: 118 start-page: 505 year: 2019 ident: 10.1016/j.enganabound.2024.03.019_bib0106 article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories publication-title: Safety Sci doi: 10.1016/j.ssci.2019.05.046 – volume: 118 start-page: 505 year: 2019 ident: 10.1016/j.enganabound.2024.03.019_bib0107 article-title: Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories publication-title: Safety Sci doi: 10.1016/j.ssci.2019.05.046 – start-page: 186 year: 2023 ident: 10.1016/j.enganabound.2024.03.019_bib0086 article-title: Tool wear monitoring based on multi-kernel Gaussian process regression and Stacked Multilayer Denoising AutoEncoders publication-title: Mech Syst Signal Pr – volume: 34 year: 2023 ident: 10.1016/j.enganabound.2024.03.019_bib0083 article-title: Improved YOLOv3 model with feature map cropping for multi-scale road object detection publication-title: Meas Sci Technol doi: 10.1088/1361-6501/acb075 – volume: 41 start-page: 720 year: 2002 ident: 10.1016/j.enganabound.2024.03.019_bib0023 article-title: Assessment of landslide susceptibility for a landslide-prone area (north of Yenice, NW Turkey) by fuzzy approach publication-title: Environ Geol doi: 10.1007/s00254-001-0454-2 – volume: 8 start-page: 163 year: 2017 ident: 10.1016/j.enganabound.2024.03.019_bib0026 article-title: Prediction of slope stability using adaptive neuro-fuzzy inference system based on clustering methods publication-title: J Min Environ – volume: 103 start-page: 3523 year: 2020 ident: 10.1016/j.enganabound.2024.03.019_bib0074 article-title: Stability prediction of Himalayan residual soil slope using artificial neural network publication-title: Nat Hazards doi: 10.1007/s11069-020-04141-2 – volume: 25 start-page: 747 year: 2010 ident: 10.1016/j.enganabound.2024.03.019_bib0070 article-title: Landslide susceptibility assessment and factor effect analysis: backpropagation artificial neural networks and their comparison with frequency ratio and bivariate logistic regression modelling publication-title: Environ Modell Softw doi: 10.1016/j.envsoft.2009.10.016 – volume: 137 year: 2021 ident: 10.1016/j.enganabound.2024.03.019_bib0085 article-title: A deep learning framework for building energy consumption forecast publication-title: Renew Sust Energ Rev doi: 10.1016/j.rser.2020.110591 – year: 2018 ident: 10.1016/j.enganabound.2024.03.019_bib0030 – volume: 45 start-page: 283 year: 1995 ident: 10.1016/j.enganabound.2024.03.019_bib0060 article-title: Slope stability analysis: a kinematical approach publication-title: Géotechnique doi: 10.1680/geot.1995.45.2.283 – start-page: 4768 year: 2017 ident: 10.1016/j.enganabound.2024.03.019_bib0055 article-title: A unified approach to interpreting model predictions – volume: 14 start-page: 1089 year: 2022 ident: 10.1016/j.enganabound.2024.03.019_bib0102 article-title: Slope stability prediction using ensemble learning techniques: a case study in Yunyang County, Chongqing, China publication-title: J Rock Mech Geotech doi: 10.1016/j.jrmge.2021.12.011 – volume: 49 start-page: 421 year: 2020 ident: 10.1016/j.enganabound.2024.03.019_bib0053 article-title: Unsupervised Text Feature Learning via Deep Variational Auto-encoder publication-title: Inf Technol Control doi: 10.5755/j01.itc.49.3.25918 – volume: 13 year: 2021 ident: 10.1016/j.enganabound.2024.03.019_bib0059 article-title: Explainable boosting machines for slope failure spatial predictive modeling publication-title: Remote Sens-Basel. – volume: 17 start-page: 1477 year: 2022 ident: 10.1016/j.enganabound.2024.03.019_bib0048 article-title: Comparative performance of eight ensemble learning approaches for the development of models of slope stability prediction publication-title: Acta Geotech doi: 10.1007/s11440-021-01440-1 – volume: 2 start-page: 311 year: 2009 ident: 10.1016/j.enganabound.2024.03.019_bib0017 article-title: Prediction of slope stability using artificial neural network (case study: noabad, Mazandaran, Iran) publication-title: Arab J Geosci doi: 10.1007/s12517-009-0035-3 – volume: 5 start-page: 156 year: 2022 ident: 10.1016/j.enganabound.2024.03.019_bib0014 article-title: Explainable medical imaging AI needs human-centered design: guidelines and evidence from a systematic review publication-title: NPJ Digit Med doi: 10.1038/s41746-022-00699-2 – volume: 6 start-page: 52138 year: 2018 ident: 10.1016/j.enganabound.2024.03.019_bib0001 article-title: Peeking inside the black-box: a survey on explainable artificial intelligence (XAI) publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2870052 – volume: 162 start-page: 300 year: 2019 ident: 10.1016/j.enganabound.2024.03.019_bib0027 article-title: Using deep neural network with small dataset to predict material defects publication-title: Mater Design doi: 10.1016/j.matdes.2018.11.060 – volume: 27 start-page: 1226 year: 2005 ident: 10.1016/j.enganabound.2024.03.019_bib0037 article-title: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy publication-title: IEEE T Pattern Anal doi: 10.1109/TPAMI.2005.159 – volume: 188 year: 2020 ident: 10.1016/j.enganabound.2024.03.019_bib0010 article-title: Comparing the prediction performance of a Deep Learning Neural Network model with conventional machine learning models in landslide susceptibility assessment publication-title: Catena doi: 10.1016/j.catena.2019.104426 – volume: 81 start-page: 148 year: 2022 ident: 10.1016/j.enganabound.2024.03.019_bib0098 article-title: Application of a two-step sampling strategy based on deep neural network for landslide susceptibility mapping publication-title: B Eng Geol Environ doi: 10.1007/s10064-022-02615-0 – volume: 133 year: 2023 ident: 10.1016/j.enganabound.2024.03.019_bib0100 article-title: A multi-channel decoupled deep neural network for tunnel boring machine torque and thrust prediction publication-title: Tunn Undergr Sp Tech doi: 10.1016/j.tust.2022.104949 – volume: 122 start-page: 577 year: 1996 ident: 10.1016/j.enganabound.2024.03.019_bib0020 article-title: State of the art: limit equilibrium and finite-element analysis of slopes publication-title: J Geotech Geoenviron – volume: 12 year: 2017 ident: 10.1016/j.enganabound.2024.03.019_bib0069 article-title: A deep learning framework for financial time series using stacked autoencoders and long-short term memory publication-title: Plos One – volume: 23 start-page: 18 year: 2020 ident: 10.1016/j.enganabound.2024.03.019_bib0051 article-title: Explainable ai: a review of machine learning interpretability methods publication-title: Entropy-Switz doi: 10.3390/e23010018 – volume: 30 start-page: 383 year: 2003 ident: 10.1016/j.enganabound.2024.03.019_bib0077 article-title: Artificial Neural Networks and grey systems for the prediction of slope stability publication-title: Nat Hazards doi: 10.1023/B:NHAZ.0000007168.00673.27 – volume: 11 start-page: e1424 issue: 5 year: 2021 ident: 10.1016/j.enganabound.2024.03.019_bib0005 article-title: Explainable artificial intelligence: an analytical review publication-title: WIREs DMKD – year: 2018 ident: 10.1016/j.enganabound.2024.03.019_bib0076 article-title: Anchors: high-precision model-agnostic explanations – volume: 20 year: 2020 ident: 10.1016/j.enganabound.2024.03.019_bib0029 article-title: Using autoencoders as a weight initialization method on deep neural networks for disease detection publication-title: BMC Med Inform Decis doi: 10.1186/s12911-020-01150-w – volume: 41 start-page: 647 year: 2014 ident: 10.1016/j.enganabound.2024.03.019_bib0088 article-title: Explaining prediction models and individual predictions with feature contributions publication-title: Knowl Inf Syst doi: 10.1007/s10115-013-0679-x – volume: 30 start-page: 1145 year: 1997 ident: 10.1016/j.enganabound.2024.03.019_bib0008 article-title: The use of the area under the roc curve in the evaluation of machine learning algorithms publication-title: Pattern Recogn doi: 10.1016/S0031-3203(96)00142-2 – volume: 61 start-page: 85 year: 2015 ident: 10.1016/j.enganabound.2024.03.019_bib0080 article-title: Deep learning in neural networks: an overview publication-title: Neural Netw doi: 10.1016/j.neunet.2014.09.003 – volume: 49 start-page: 835 year: 1999 ident: 10.1016/j.enganabound.2024.03.019_bib0022 article-title: Slope stability analysis by strength reduction publication-title: Géotechnique doi: 10.1680/geot.1999.49.6.835 – start-page: 349 year: 1986 ident: 10.1016/j.enganabound.2024.03.019_bib0064 – volume: 80 start-page: 302 year: 2005 ident: 10.1016/j.enganabound.2024.03.019_bib0096 article-title: Slope stability evaluation using back propagation neural networks publication-title: Eng Geol doi: 10.1016/j.enggeo.2005.06.005 – volume: 43 start-page: 2179 year: 2013 ident: 10.1016/j.enganabound.2024.03.019_bib0033 article-title: Bayesian supervised dimensionality reduction publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2013.2245321 – volume: 323 start-page: 533 year: 1986 ident: 10.1016/j.enganabound.2024.03.019_bib0078 article-title: Learning representations by back-propagating errors publication-title: NatureNature doi: 10.1038/323533a0 – volume: 11 start-page: 625 year: 2010 ident: 10.1016/j.enganabound.2024.03.019_bib0024 article-title: Why does unsupervised pre-training help deep learning? publication-title: J Mach Learn Res – volume: 184 start-page: 232 year: 2016 ident: 10.1016/j.enganabound.2024.03.019_bib0097 article-title: Auto-encoder based dimensionality reduction publication-title: Neurocomputing doi: 10.1016/j.neucom.2015.08.104 – volume: 73 start-page: 1 year: 2018 ident: 10.1016/j.enganabound.2024.03.019_bib0061 article-title: Methods for interpreting and understanding deep neural networks publication-title: Digit Signal Process doi: 10.1016/j.dsp.2017.10.011 – volume: 150 start-page: 228 year: 2021 ident: 10.1016/j.enganabound.2024.03.019_bib0043 article-title: Perturbation-based methods for explaining deep neural networks: a survey publication-title: Pattern Recogn Lett doi: 10.1016/j.patrec.2021.06.030 – volume: 126 year: 2020 ident: 10.1016/j.enganabound.2024.03.019_bib0038 article-title: Machine learning aided stochastic reliability analysis of spatially variable slopes publication-title: Comput Geotech doi: 10.1016/j.compgeo.2020.103711 – volume: 521 start-page: 436 year: 2015 ident: 10.1016/j.enganabound.2024.03.019_bib0045 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – volume: 32 start-page: 4793 year: 2021 ident: 10.1016/j.enganabound.2024.03.019_bib0090 article-title: A Survey on Explainable Artificial Intelligence (XAI): toward Medical XAI publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2020.3027314 – start-page: 129 year: 2021 ident: 10.1016/j.enganabound.2024.03.019_bib0063 article-title: An engineer's guide to eXplainable artificial intelligence and interpretable machine learning: navigating causality, forced goodness, and the false perception of inference publication-title: Automat Constr – volume: 38 start-page: 204 year: 2022 ident: 10.1016/j.enganabound.2024.03.019_bib0068 article-title: Opening the Black Box: the promise and limitations of explainable machine learning in cardiology publication-title: Can J Cardiol doi: 10.1016/j.cjca.2021.09.004 – volume: 44 start-page: 947 year: 2022 ident: 10.1016/j.enganabound.2024.03.019_bib0093 article-title: Explainable machine learning based efficient prediction tool for lateral cyclic response of post-tensioned base rocking steel bridge piers publication-title: Structures doi: 10.1016/j.istruc.2022.08.023 – volume: 80 start-page: 2011 year: 2021 ident: 10.1016/j.enganabound.2024.03.019_bib0052 article-title: Slope reliability evaluation based on multi-objective grey wolf optimization-multi-kernel-based extreme learning machine agent model publication-title: B Eng Geol Environ doi: 10.1007/s10064-020-02090-5 – volume: 29 start-page: 1189 year: 2001 ident: 10.1016/j.enganabound.2024.03.019_bib0031 article-title: Greedy function approximation: a gradient boosting machine publication-title: Ann Stat doi: 10.1214/aos/1013203451 – volume: 323 start-page: 533 issue: 9 year: 2010 ident: 10.1016/j.enganabound.2024.03.019_bib0087 article-title: Learning representations by back-propagating errors publication-title: NatureNature – volume: 14 start-page: 65 year: 1985 ident: 10.1016/j.enganabound.2024.03.019_bib0099 article-title: Monotonic solutions of cooperative games publication-title: Int J Game Theory doi: 10.1007/BF01769885 – volume: 37 start-page: 3067 year: 2020 ident: 10.1016/j.enganabound.2024.03.019_bib0095 article-title: Genetic algorithm hybridized with multilayer perceptron to have an economical slope stability design publication-title: Eng Comput-Germany doi: 10.1007/s00366-020-00957-5 – volume: 33 start-page: 797 year: 2019 ident: 10.1016/j.enganabound.2024.03.019_bib0108 article-title: Forecasting different types of convective weather: a deep learning approach publication-title: J Meteorol Res-Prc doi: 10.1007/s13351-019-8162-6 – volume: 73 start-page: 787 year: 2014 ident: 10.1016/j.enganabound.2024.03.019_bib0054 article-title: An extreme learning machine approach for slope stability evaluation and prediction publication-title: Nat. Hazards. doi: 10.1007/s11069-014-1106-7 – volume: 15 start-page: 821 year: 2021 ident: 10.1016/j.enganabound.2024.03.019_bib0049 article-title: Evaluation and prediction of slope stability using machine learning approaches publication-title: Front Struct Civ Eng doi: 10.1007/s11709-021-0742-8 – start-page: 281 year: 2021 ident: 10.1016/j.enganabound.2024.03.019_bib0089 article-title: Assessment of landslide susceptibility mapping based on Bayesian hyperparameter optimization: a comparison between logistic regression and random forest publication-title: Eng Geol – volume: 20 start-page: 1434 year: 2003 ident: 10.1016/j.enganabound.2024.03.019_bib0046 article-title: Hierarchical Bayesian inference in the visual cortex publication-title: J Opt Soc Am doi: 10.1364/JOSAA.20.001434 – volume: 22 start-page: 717 year: 2000 ident: 10.1016/j.enganabound.2024.03.019_bib0002 article-title: Basic concepts of artificial neural network (ANN) modeling and its application in pharmaceutical research publication-title: J Pharmaceut Biomed. doi: 10.1016/S0731-7085(99)00272-1 – volume: 55 start-page: 1 year: 2023 ident: 10.1016/j.enganabound.2024.03.019_bib0021 article-title: Explainable AI (XAI): core Ideas, Techniques, and Solutions publication-title: ACM Comput Surv doi: 10.1145/3561048 – volume: 90 start-page: 1805 year: 2018 ident: 10.1016/j.enganabound.2024.03.019_bib0019 article-title: Application of a deep neural network to metabolomics studies and its performance in determining important variables publication-title: Anal Chem doi: 10.1021/acs.analchem.7b03795 – volume: 32 start-page: 1609 year: 2020 ident: 10.1016/j.enganabound.2024.03.019_bib0101 article-title: Stock price prediction based on deep neural networks publication-title: Neural Comput Appl doi: 10.1007/s00521-019-04212-x – volume: 538 start-page: 7623 year: 2016 ident: 10.1016/j.enganabound.2024.03.019_bib0011 article-title: Can we open the black box of AI? publication-title: Nature News doi: 10.1038/538020a – volume: 13 start-page: 188 year: 2021 ident: 10.1016/j.enganabound.2024.03.019_bib0044 article-title: Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data publication-title: J Rock Mech Geotech doi: 10.1016/j.jrmge.2020.05.011 – start-page: 1005 year: 2019 ident: 10.1016/j.enganabound.2024.03.019_bib0028 article-title: A study on the interpretability of neural retrieval models using deepSHAP – volume: 121 start-page: 76 year: 2020 ident: 10.1016/j.enganabound.2024.03.019_bib0050 article-title: Investigation of the excavation of stony soil slopes using the virtual element method publication-title: Eng Anal Bound Elem doi: 10.1016/j.enganabound.2020.09.005 – volume: 44 start-page: 228 year: 2018 ident: 10.1016/j.enganabound.2024.03.019_bib0067 article-title: Enhancing interpretability of automatically extracted machine learning features: application to a RBM-Random Forest system on brain lesion segmentation publication-title: Med Imagen Anal doi: 10.1016/j.media.2017.12.009 – volume: 12 year: 2022 ident: 10.1016/j.enganabound.2024.03.019_bib0006 article-title: Slope stability classification under seismic conditions using several tree-based intelligent techniques publication-title: Appl Sci doi: 10.3390/app12031753 – volume: 64 start-page: 201 year: 2011 ident: 10.1016/j.enganabound.2024.03.019_bib0018 article-title: Classification of slopes and prediction of factor of safety using differential evolution neural networks publication-title: Environ Earth Sci doi: 10.1007/s12665-010-0839-1 – year: 2010 ident: 10.1016/j.enganabound.2024.03.019_bib0009 article-title: A tutorial on bayesian optimization of expensive cost functions, with application to active user modeling and hierarchical reinforcement learning publication-title: ArXiv – volume: 8 start-page: 52588 year: 2020 ident: 10.1016/j.enganabound.2024.03.019_bib0016 article-title: Basic enhancement strategies when using bayesian optimization for hyperparameter tuning of deep neural networks publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2981072 – volume: 56 year: 2020 ident: 10.1016/j.enganabound.2024.03.019_bib0092 article-title: Shapley additive explanations for NO2 forecasting publication-title: Ecol Inform doi: 10.1016/j.ecoinf.2019.101039 – volume: 17 start-page: 217 year: 2020 ident: 10.1016/j.enganabound.2024.03.019_bib0042 article-title: A deep learning algorithm using a fully connected sparse autoencoder neural network for landslide susceptibility prediction publication-title: Landslides doi: 10.1007/s10346-019-01274-9 – volume: 114 year: 2022 ident: 10.1016/j.enganabound.2024.03.019_bib0065 article-title: Stock market forecasting using a multi-task approach integrating long short-term memory and the random forest framework publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2021.108106 – year: 2018 ident: 10.1016/j.enganabound.2024.03.019_bib0004 article-title: On the robustness of interpretability methods publication-title: ArXiv – volume: 10 year: 2017 ident: 10.1016/j.enganabound.2024.03.019_bib0012 article-title: Prediction of slope stability using multiple linear regression (MLR) and artificial neural network (ANN) publication-title: Arab J Geosci doi: 10.1007/s12517-017-3167-x – ident: 10.1016/j.enganabound.2024.03.019_bib0082 – volume: 135 start-page: 1367 year: 2009 ident: 10.1016/j.enganabound.2024.03.019_bib0035 article-title: Influence of spatial variability on slope reliability using 2-D random fields publication-title: J Geotech Geoenviron doi: 10.1061/(ASCE)GT.1943-5606.0000099 |
| SSID | ssj0013006 |
| Score | 2.4581993 |
| Snippet | •A pretrained deep learning framework with stacked autoencoder is formulated for slope stability analysis in geotechnical engineering.•An explainable model is... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 406 |
| SubjectTerms | Anchors Deep learning DeepLIFT Explainable machine learning Geotechnical engineering SHAP Slope stability Stacked autoencoder |
| Title | The pre-trained explainable deep learning model with stacked denoising autoencoders for slope stability analysis |
| URI | https://dx.doi.org/10.1016/j.enganabound.2024.03.019 |
| Volume | 163 |
| WOSCitedRecordID | wos001221124900001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1873-197X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0013006 issn: 0955-7997 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9RAFB6WVkQfxCvWGyP4mpJMJskE-lK0olKLYJXFlzCZnNQtIQltWvaH9Qd65pJJ6oVWwZewJDszO3u-nDk5-eY7hLyCmgECoww0XAKeKh7ITKRBGlZCRHWV1kZI--t-dnAglsv802JxMe6FOW-ythXrdd7_V1PjOTS23jr7F-b2neIJ_IxGxyOaHY_XNrzmdpjiDxhOwrpvpi1S0I-FIo5sFRxHUh8k3s4VfqHtViZ9IM-GTotcaqKz4SKeNl2v5WitsLeWbbJyJpdy-5O6ob9uByhN-Sa989fy1X0ov29FDD5_n2D6xtGEP65kN70jMTndpU5l6Bzr1NwlvL9Be9R07oJLYzA-0a18PlJrZ1qyrnfNzvlZ58rDdLZOc7th-pclwGYjjrdxVJyomd22HtBo2Tr3fEl2-6fl0JMUR_7bcTHrqtBdFWFchFprdpNlSY6-dHP3_d7yw_T2KjQ1Xf2UbpKXE6_wD7_r93HRLNY5vEvuuIcUumvBdY8soL1Pbs-M-4D0CDM6gxmdwYxqmNERZtTAjGoUUAcz6mFG5zCjCDNqYEY9zOgIo4fky9u9w9fvAle9I1Axi4YgkwlnZamqJIOcizwVNTCQSVLXkkeQJYoDxpd5FQMIyGqd22I5cFEppoRU8SOy0XYtPCZUiVClcQ2VRF8SV2leVjySEUazLAJcsbeIGP-7Qjlpez37prjShluE-aa91Xe5TqOd0UCFC1RtAFogCK9u_uRfxnxKbk23zTOyMZycwXNyQ50Pq9OTFw6BPwChLMOm |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+pre-trained+explainable+deep+learning+model+with+stacked+denoising+autoencoders+for+slope+stability+analysis&rft.jtitle=Engineering+analysis+with+boundary+elements&rft.au=Lin%2C+Shan&rft.au=Dong%2C+Miao&rft.au=Cao%2C+Xitailang&rft.au=Liang%2C+Zenglong&rft.date=2024-06-01&rft.issn=0955-7997&rft.volume=163&rft.spage=406&rft.epage=425&rft_id=info:doi/10.1016%2Fj.enganabound.2024.03.019&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_enganabound_2024_03_019 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0955-7997&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0955-7997&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0955-7997&client=summon |