Network Coding Capacity Regions via Entropy Functions

In this paper, we use entropy functions to characterize the set of rate-capacity tuples achievable with either zero decoding error, or vanishing decoding error, for general network coding problems for acyclic networks. We show that when sources are colocated, the outer bound is tight and the sets of...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on information theory Ročník 60; číslo 9; s. 5347 - 5374
Hlavní autori: Chan, Terence H., Grant, Alex
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York, NY IEEE 01.09.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0018-9448, 1557-9654
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we use entropy functions to characterize the set of rate-capacity tuples achievable with either zero decoding error, or vanishing decoding error, for general network coding problems for acyclic networks. We show that when sources are colocated, the outer bound is tight and the sets of zero-error achievable and vanishing-error achievable rate-capacity tuples are the same. Then, we extend this paper to networks subject to linear encoding constraints, routing constraints (where some or all nodes can only perform routing), and secrecy constraints. Finally, we show that even for apparently simple networks, design of optimal codes may be difficult. In particular, we prove that for the incremental multicast problem and for the single-source secure network coding problem, characterization of the achievable set can be very hard and linear network codes may not be optimal.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2014.2334291