Learning cellular automata rules for binary classification problem

This paper proposes a cellular automata-based solution of a binary classification problem. The proposed method is based on a two-dimensional, three-state cellular automaton (CA) with the von Neumann neighborhood. Since the number of possible CA rules (potential CA-based classifiers) is huge, searchi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The Journal of supercomputing Ročník 63; číslo 3; s. 800 - 815
Hlavní autoři: Piwonska, Anna, Seredynski, Franciszek, Szaban, Miroslaw
Médium: Journal Article
Jazyk:angličtina
Vydáno: Boston Springer US 01.03.2013
Témata:
ISSN:0920-8542, 1573-0484
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:This paper proposes a cellular automata-based solution of a binary classification problem. The proposed method is based on a two-dimensional, three-state cellular automaton (CA) with the von Neumann neighborhood. Since the number of possible CA rules (potential CA-based classifiers) is huge, searching efficient rules is conducted with use of a genetic algorithm (GA). Experiments show an excellent performance of discovered rules in solving the classification problem. The best found rules perform better than the heuristic CA rule designed by a human and also better than one of the most widely used statistical method: the k -nearest neighbors algorithm ( k -NN). Experiments show that CAs rules can be successfully reused in the process of searching new rules.
Bibliografie:ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
ISSN:0920-8542
1573-0484
DOI:10.1007/s11227-012-0767-9