Optimizing Flyrock Forecasting in Open-Pit Blasting Using Hybrid Machine Learning Models
Flyrock occurrences pose significant environmental and safety risks in open-pit blasting, threatening equipment, personnel, and potentially causing fatal accidents. This study intends to reduce the risk of flyrock by developing multiple machine learning approaches to estimate its throw range, utiliz...
Uloženo v:
| Vydáno v: | Rock mechanics and rock engineering Ročník 58; číslo 11; s. 12523 - 12550 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Vienna
Springer Vienna
01.11.2025
Springer Nature B.V |
| Témata: | |
| ISSN: | 0723-2632, 1434-453X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Flyrock occurrences pose significant environmental and safety risks in open-pit blasting, threatening equipment, personnel, and potentially causing fatal accidents. This study intends to reduce the risk of flyrock by developing multiple machine learning approaches to estimate its throw range, utilizing Random Forest (RF) as the primary model. Two optimization algorithms, the Light Spectrum Optimizer (LSO) and the Puma Optimizer Algorithm (POA), were employed to fine-tune the hyperparameters of the RF model. Researchers conducted field surveys of blasting events in quarries in Malaysia and the Ayazaga area of Istanbul to compile two databases. Based on these datasets, the reliability and practicality of the LSO-RF and POA-RF models were examined. For comparison, an unoptimized RF model was also created to estimate the flyrock throw distance. The performance of the models was assessed using four metrics: root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R
2
), and variance accounted for (VAF). Results show that LSO-RF and POA-RF outperform the unoptimized RF model across all metrics. For the Malaysian dataset, LSO-RF achieves training/testing R
2
of 0.9661/0.9597, MAPE of 4.445/6.711, and RMSE of 12.081/16.091; POA-RF yields training/testing R
2
of 0.9662/0.9596, MAPE of 4.443/6.717, and RMSE of 12.075/16.094. For the Istanbul dataset, LSO-RF achieves training/testing R
2
of 0.9706/0.9698, MAPE of 5.369/6.512, and RMSE of 6.128/6.537; POA-RF yields training/testing R
2
of 0.9725/0.9680, MAPE of 6.006/7.554, and RMSE of 6.087/7.335. Performance differences between hybrid models are within 0.2% across datasets, indicating consistent reliability. Results from the engineering case validation demonstrate that the developed hybrid model exhibits strong generalization performance, with R
2
of 0.8778. SHAP-based sensitivity analysis identifies key parameters: hole diameter (HD) and maximum charge per delay (CD) for Malaysia, specific charge (q) and spacing-to-burden ratio (S/B) for Istanbul, all positively correlated with FD. An intelligent software tool integrating these models supports data-driven blasting parameter optimization, enhancing safety and efficiency by minimizing flyrock risks.
Highlights
Optimized machine learning models predict flyrock throw range in open-pit blasting.
Light Spectrum Optimizer and Puma Optimizer Algorithm enhance Random Forest performance.
Field data from Malaysia and Istanbul validate model accuracy and reliability.
Intelligent software tool developed for real-time flyrock prediction and blasting optimization. |
|---|---|
| AbstractList | Flyrock occurrences pose significant environmental and safety risks in open-pit blasting, threatening equipment, personnel, and potentially causing fatal accidents. This study intends to reduce the risk of flyrock by developing multiple machine learning approaches to estimate its throw range, utilizing Random Forest (RF) as the primary model. Two optimization algorithms, the Light Spectrum Optimizer (LSO) and the Puma Optimizer Algorithm (POA), were employed to fine-tune the hyperparameters of the RF model. Researchers conducted field surveys of blasting events in quarries in Malaysia and the Ayazaga area of Istanbul to compile two databases. Based on these datasets, the reliability and practicality of the LSO-RF and POA-RF models were examined. For comparison, an unoptimized RF model was also created to estimate the flyrock throw distance. The performance of the models was assessed using four metrics: root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R2), and variance accounted for (VAF). Results show that LSO-RF and POA-RF outperform the unoptimized RF model across all metrics. For the Malaysian dataset, LSO-RF achieves training/testing R2 of 0.9661/0.9597, MAPE of 4.445/6.711, and RMSE of 12.081/16.091; POA-RF yields training/testing R2 of 0.9662/0.9596, MAPE of 4.443/6.717, and RMSE of 12.075/16.094. For the Istanbul dataset, LSO-RF achieves training/testing R2 of 0.9706/0.9698, MAPE of 5.369/6.512, and RMSE of 6.128/6.537; POA-RF yields training/testing R2 of 0.9725/0.9680, MAPE of 6.006/7.554, and RMSE of 6.087/7.335. Performance differences between hybrid models are within 0.2% across datasets, indicating consistent reliability. Results from the engineering case validation demonstrate that the developed hybrid model exhibits strong generalization performance, with R2 of 0.8778. SHAP-based sensitivity analysis identifies key parameters: hole diameter (HD) and maximum charge per delay (CD) for Malaysia, specific charge (q) and spacing-to-burden ratio (S/B) for Istanbul, all positively correlated with FD. An intelligent software tool integrating these models supports data-driven blasting parameter optimization, enhancing safety and efficiency by minimizing flyrock risks.HighlightsOptimized machine learning models predict flyrock throw range in open-pit blasting.Light Spectrum Optimizer and Puma Optimizer Algorithm enhance Random Forest performance.Field data from Malaysia and Istanbul validate model accuracy and reliability.Intelligent software tool developed for real-time flyrock prediction and blasting optimization. Flyrock occurrences pose significant environmental and safety risks in open-pit blasting, threatening equipment, personnel, and potentially causing fatal accidents. This study intends to reduce the risk of flyrock by developing multiple machine learning approaches to estimate its throw range, utilizing Random Forest (RF) as the primary model. Two optimization algorithms, the Light Spectrum Optimizer (LSO) and the Puma Optimizer Algorithm (POA), were employed to fine-tune the hyperparameters of the RF model. Researchers conducted field surveys of blasting events in quarries in Malaysia and the Ayazaga area of Istanbul to compile two databases. Based on these datasets, the reliability and practicality of the LSO-RF and POA-RF models were examined. For comparison, an unoptimized RF model was also created to estimate the flyrock throw distance. The performance of the models was assessed using four metrics: root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R 2 ), and variance accounted for (VAF). Results show that LSO-RF and POA-RF outperform the unoptimized RF model across all metrics. For the Malaysian dataset, LSO-RF achieves training/testing R 2 of 0.9661/0.9597, MAPE of 4.445/6.711, and RMSE of 12.081/16.091; POA-RF yields training/testing R 2 of 0.9662/0.9596, MAPE of 4.443/6.717, and RMSE of 12.075/16.094. For the Istanbul dataset, LSO-RF achieves training/testing R 2 of 0.9706/0.9698, MAPE of 5.369/6.512, and RMSE of 6.128/6.537; POA-RF yields training/testing R 2 of 0.9725/0.9680, MAPE of 6.006/7.554, and RMSE of 6.087/7.335. Performance differences between hybrid models are within 0.2% across datasets, indicating consistent reliability. Results from the engineering case validation demonstrate that the developed hybrid model exhibits strong generalization performance, with R 2 of 0.8778. SHAP-based sensitivity analysis identifies key parameters: hole diameter (HD) and maximum charge per delay (CD) for Malaysia, specific charge (q) and spacing-to-burden ratio (S/B) for Istanbul, all positively correlated with FD. An intelligent software tool integrating these models supports data-driven blasting parameter optimization, enhancing safety and efficiency by minimizing flyrock risks. Highlights Optimized machine learning models predict flyrock throw range in open-pit blasting. Light Spectrum Optimizer and Puma Optimizer Algorithm enhance Random Forest performance. Field data from Malaysia and Istanbul validate model accuracy and reliability. Intelligent software tool developed for real-time flyrock prediction and blasting optimization. |
| Author | Zhou, Jian Armaghani, Danial Jahed Nguyen, Hoang Du, Kun Qiu, Yingui Zhang, Yulin |
| Author_xml | – sequence: 1 givenname: Yulin surname: Zhang fullname: Zhang, Yulin organization: School of Resources and Safety Engineering, Central South University – sequence: 2 givenname: Yingui surname: Qiu fullname: Qiu, Yingui organization: School of Resources and Safety Engineering, Central South University – sequence: 3 givenname: Kun surname: Du fullname: Du, Kun organization: School of Resources and Safety Engineering, Central South University – sequence: 4 givenname: Hoang surname: Nguyen fullname: Nguyen, Hoang organization: Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology – sequence: 5 givenname: Danial Jahed surname: Armaghani fullname: Armaghani, Danial Jahed organization: School of Civil and Environmental Engineering, University of Technology Sydney – sequence: 6 givenname: Jian surname: Zhou fullname: Zhou, Jian email: j.zhou@csu.edu.cn organization: School of Resources and Safety Engineering, Central South University |
| BookMark | eNp9kDFPwzAQhS1UJNrCH2CKxGw420ntjFBRitSqDFTqZjmOU1xSJ9jpUH49CamExNDlTnr3vrvTG6GBq5xB6JbAPQHgDwFgAgwDTTDEnAGmF2hIYhbjOGGbARoCpwzTCaNXaBTCDqAdcjFEm1Xd2L39tm4bzcqjr_RnNKu80So0nWZdtKqNw2-2iZ7Kk7gOXZ0fM2_zaKn0h3UmWhjlXacvq9yU4RpdFqoM5ubUx2g9e36fzvFi9fI6fVxgzShpMAeWFlmumdJQsCwWOQhSCJGrdEJAcyCpUCLTKiaZaOdcMK2TTChI0jzjORuju35v7auvgwmN3FUH79qTklHOeExSlrYu0bu0r0LwppDaNqqxlWu8sqUkILscZZ-jbHOUvzlK2qL0H1p7u1f-eB5iPRRas9sa__fVGeoHZnGHSQ |
| CitedBy_id | crossref_primary_10_3390_app15158614 |
| Cites_doi | 10.3390/ma16114034 10.1016/j.eswa.2019.05.028 10.1007/s10586-023-04221-5 10.1007/s10064-020-01834-7 10.1002/int.22448 10.1016/S0370-1573(01)00076-X 10.1007/s11771-024-5699-z 10.1016/j.ijrmms.2012.03.011 10.1007/s00603-012-0269-3 10.1016/j.undsp.2024.03.003 10.1007/s00366-019-00816-y 10.1016/j.isprsjprs.2016.01.011 10.1016/j.trgeo.2024.101371 10.1007/s11053-019-09532-2 10.1007/s00603-016-1015-z 10.1007/s11053-019-09461-0 10.1016/j.jrmge.2015.10.005 10.1007/s10064-017-1100-x 10.3390/jmse12050754 10.1007/s12517-010-0185-3 10.1016/j.simpat.2023.102844 10.1007/s11053-019-09611-4 10.3390/app13031345 10.1016/j.ijrmms.2009.09.008 10.1007/s12517-013-1174-0 10.1007/s00366-020-01231-4 10.1007/s10706-015-9924-2 10.1007/s11053-023-10259-4 10.1007/s00366-021-01393-9 10.1007/s11053-019-09464-x 10.1364/OE.547412 10.1007/s11600-024-01320-8 10.1007/s12665-022-10408-7 10.1109/ECTIDAMTNCON64748.2025.10962095 10.1007/s00366-019-00726-z 10.1016/j.ijrmms.2016.07.028 10.1016/j.jocs.2023.102097 10.1007/s12517-015-1908-2 10.1007/s13762-016-1192-z 10.1007/s10064-016-0872-8 10.1007/s12665-016-6335-5 10.17849/insm-47-01-31-39.1 10.1007/s00521-015-1889-9 10.1007/s00521-016-2537-8 10.1007/s11440-023-01988-0 10.3390/app13042574 10.32604/cmes.2023.025714 10.1029/2000JD900719 10.3390/math10193466 10.1016/j.ssci.2010.09.004 10.1007/s00521-021-06776-z 10.1007/s00366-018-0596-4 10.1364/OE.21.025761 10.1016/j.jrmge.2014.07.003 10.1016/j.eswa.2023.120772 10.1007/s42461-023-00879-y 10.1007/s12145-023-01042-3 10.1016/j.heliyon.2024.e37876 10.1007/s10462-021-10065-5 10.1007/s11749-016-0481-7 10.1007/s10462-023-10636-8 10.1007/s00603-023-03522-w 10.61185/SMIJ.2023.44105 10.1007/s12517-012-0703-6 10.1007/978-3-642-32964-7_31 10.1007/s00202-024-02631-1 10.1007/s10462-022-10140-5 10.1016/j.jrmge.2021.08.005 10.1007/s11053-021-09929-y |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025. |
| DBID | AAYXX CITATION 7TN 7UA 8FD C1K F1W FR3 H96 KR7 L.G |
| DOI | 10.1007/s00603-025-04730-2 |
| DatabaseName | CrossRef Oceanic Abstracts Water Resources Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Water Resources Abstracts Environmental Sciences and Pollution Management |
| DatabaseTitleList | Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Engineering |
| EISSN | 1434-453X |
| EndPage | 12550 |
| ExternalDocumentID | 10_1007_s00603_025_04730_2 |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China grantid: 42177164; 52474121 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | -Y2 .86 .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29P 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5QI 5VS 67M 67Z 6NX 78A 88I 8FE 8FG 8FH 8TC 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAPKM AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO ABAKF ABBBX ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACGOD ACHSB ACHXU ACIWK ACKIV ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSTC ACZOJ ADHHG ADHIR ADHKG ADIMF ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AETLH AEUYN AEVLU AEXYK AEZWR AFBBN AFDZB AFEXP AFFHD AFFNX AFGCZ AFHIU AFKRA AFLOW AFOHR AFQWF AFRAH AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGQPQ AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATHPR AVWKF AXYYD AYFIA AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BHPHI BKSAR BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V L8X LAS LK5 LLZTM M2P M4Y M7R M7S MA- MK~ MM- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PCBAR PF0 PHGZM PHGZT PQGLB PQQKQ PROAC PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI ROL RPX RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SDM SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TN5 TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WH7 WK6 WK8 Y6R YLTOR Z45 Z8Z ZMTXR ZY4 ~02 ~EX AAYXX CITATION 7TN 7UA 8FD C1K F1W FR3 H96 KR7 L.G |
| ID | FETCH-LOGICAL-c321t-7039fbdc3ac0f3b48d081f88da9610c70198a8bca41b83b4783cc5b8a059db7d3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001529145800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0723-2632 |
| IngestDate | Sat Nov 22 03:13:22 EST 2025 Thu Nov 27 00:33:52 EST 2025 Tue Nov 18 22:07:02 EST 2025 Fri Nov 21 01:11:42 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 11 |
| Keywords | Open-pit blasting optimization Puma optimizer algorithm Intelligent feedback system Flyrock distance prediction Light spectrum optimizer Random forest Interpretability analysis |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c321t-7039fbdc3ac0f3b48d081f88da9610c70198a8bca41b83b4783cc5b8a059db7d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3273741939 |
| PQPubID | 60272 |
| PageCount | 28 |
| ParticipantIDs | proquest_journals_3273741939 crossref_citationtrail_10_1007_s00603_025_04730_2 crossref_primary_10_1007_s00603_025_04730_2 springer_journals_10_1007_s00603_025_04730_2 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-11-01 |
| PublicationDateYYYYMMDD | 2025-11-01 |
| PublicationDate_xml | – month: 11 year: 2025 text: 2025-11-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Vienna |
| PublicationPlace_xml | – name: Vienna – name: Wien |
| PublicationTitle | Rock mechanics and rock engineering |
| PublicationTitleAbbrev | Rock Mech Rock Eng |
| PublicationYear | 2025 |
| Publisher | Springer Vienna Springer Nature B.V |
| Publisher_xml | – name: Springer Vienna – name: Springer Nature B.V |
| References | PK Singh (4730_CR61) 2016; 8 T Hudaverdi (4730_CR29) 2023; 40 4730_CR7 Z Wang (4730_CR66) 2024; 47 4730_CR41 KE Taylor (4730_CR63) 2001; 106 H Guo (4730_CR24) 2021; 37 4730_CR42 DJ Armaghani (4730_CR4) 2014; 7 4730_CR45 S Saber (4730_CR59) 2023; 4 L Jiang (4730_CR32) 2024; 12 N Lundborg (4730_CR39) 1975; 176 P Yang (4730_CR69) 2023; 16 X Lu (4730_CR38) 2020; 29 4730_CR2 J Zhou (4730_CR82) 2024; 57 A Marto (4730_CR40) 2014; 2014 RS Faradonbeh (4730_CR18) 2016; 88 C Li (4730_CR36) 2023; 32 JL Speiser (4730_CR62) 2019; 134 M Yari (4730_CR71) 2023; 13 4730_CR48 M Belgiu (4730_CR9) 2016; 114 J Zhou (4730_CR77) 2021; 145 J Zhou (4730_CR78) 2022; 55 RS Faradonbeh (4730_CR19) 2018; 29 H Fattahi (4730_CR20) 2022; 38 Y Qiu (4730_CR50) 2023; 56 J Zhou (4730_CR76) 2021; 30 J Zhou (4730_CR81) 2023; 72 DJ Armaghani (4730_CR5) 2016; 49 G Biau (4730_CR11) 2016; 25 DJ Armaghani (4730_CR6) 2020; 79 M Abdel-Basset (4730_CR1) 2022; 10 M Koopialipoor (4730_CR34) 2019; 35 T Hudaverdi (4730_CR30) 2019; 78 RS Faradonbeh (4730_CR17) 2016; 75 M Khandelwal (4730_CR33) 2013; 46 L Lang (4730_CR35) 2021; 36 M Monjezi (4730_CR44) 2010; 47 SN Qasem (4730_CR49) 2019; 13 4730_CR37 M Hasanipanah (4730_CR27) 2017; 76 E Ghasemi (4730_CR21) 2012; 52 M Yari (4730_CR70) 2016; 27 DA Zaki (4730_CR73) 2024; 15 XN Bui (4730_CR12) 2020; 29 ET Mohamad (4730_CR43) 2012; 17 4730_CR23 Y Qiu (4730_CR51) 2023; 18 SJ Rigatti (4730_CR58) 2017; 47 Y Qiu (4730_CR53) 2022; 38 JA Adam (4730_CR3) 2002; 356 YL Zhang (4730_CR74) 2024; 31 R Trivedi (4730_CR65) 2014; 6 X Wang (4730_CR67) 2025; 33 J Zhou (4730_CR80) 2023; 16 RN Gupta (4730_CR25) 1980 D Jahed Armaghani (4730_CR31) 2015; 8 J Shakeri (4730_CR60) 2022; 13 H Han (4730_CR26) 2020; 29 AK Raina (4730_CR54) 2016; 34 H Yu (4730_CR72) 2013; 21 BR Murlidhar (4730_CR46) 2021; 13 H Nikafshan Rad (4730_CR47) 2020; 29 T Thulasi (4730_CR64) 2023; 232 J Zhou (4730_CR79) 2022; 124 E Ghasemi (4730_CR22) 2014; 7 4730_CR10 J Zhou (4730_CR75) 2020; 36 T Hudaverdi (4730_CR28) 2022; 81 Y Qiu (4730_CR52) 2024; 19 E Bakhtavar (4730_CR8) 2017; 14 M Rezaei (4730_CR56) 2023; 129 J Zhou (4730_CR83) 2024; 72 M Rezaei (4730_CR55) 2011; 49 4730_CR13 4730_CR57 4730_CR14 4730_CR15 4730_CR16 P Yang (4730_CR68) 2023; 13 |
| References_xml | – volume: 16 start-page: 4034 issue: 11 year: 2023 ident: 4730_CR69 publication-title: Materials doi: 10.3390/ma16114034 – volume: 134 start-page: 93 year: 2019 ident: 4730_CR62 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.05.028 – ident: 4730_CR2 doi: 10.1007/s10586-023-04221-5 – volume: 79 start-page: 4369 issue: 8 year: 2020 ident: 4730_CR6 publication-title: Bull Eng Geol Env doi: 10.1007/s10064-020-01834-7 – volume: 36 start-page: 4016 issue: 8 year: 2021 ident: 4730_CR35 publication-title: Int J Intell Syst doi: 10.1002/int.22448 – volume: 356 start-page: 229 issue: 4–5 year: 2002 ident: 4730_CR3 publication-title: Phys Rep doi: 10.1016/S0370-1573(01)00076-X – volume: 31 start-page: 2916 issue: 8 year: 2024 ident: 4730_CR74 publication-title: J Central South Univ doi: 10.1007/s11771-024-5699-z – volume: 52 start-page: 163 year: 2012 ident: 4730_CR21 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2012.03.011 – volume: 46 start-page: 389 year: 2013 ident: 4730_CR33 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-012-0269-3 – volume: 19 start-page: 101 year: 2024 ident: 4730_CR52 publication-title: Underground Space doi: 10.1016/j.undsp.2024.03.003 – volume: 37 start-page: 173 year: 2021 ident: 4730_CR24 publication-title: Engineering with Computers doi: 10.1007/s00366-019-00816-y – volume: 176 start-page: 95 year: 1975 ident: 4730_CR39 publication-title: Eng Min J – volume: 145 year: 2021 ident: 4730_CR77 publication-title: Int J Rock Mech Min Sci – volume: 124 year: 2022 ident: 4730_CR79 publication-title: Tunn Undergr Space Technol – volume: 114 start-page: 24 year: 2016 ident: 4730_CR9 publication-title: ISPRS J Photogramm Remote Sens doi: 10.1016/j.isprsjprs.2016.01.011 – ident: 4730_CR57 doi: 10.1016/j.trgeo.2024.101371 – volume: 29 start-page: 641 year: 2020 ident: 4730_CR38 publication-title: Nat Resour Res doi: 10.1007/s11053-019-09532-2 – volume: 49 start-page: 3631 year: 2016 ident: 4730_CR5 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-016-1015-z – volume: 29 start-page: 571 issue: 2 year: 2020 ident: 4730_CR12 publication-title: Nat Resour Res doi: 10.1007/s11053-019-09461-0 – volume: 13 start-page: 177 issue: 1 year: 2019 ident: 4730_CR49 publication-title: Eng Appl Comput Fluid Mech – volume: 8 start-page: 225 issue: 2 year: 2016 ident: 4730_CR61 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2015.10.005 – volume: 78 start-page: 177 year: 2019 ident: 4730_CR30 publication-title: Bull Eng Geol Env doi: 10.1007/s10064-017-1100-x – volume: 12 start-page: 754 issue: 5 year: 2024 ident: 4730_CR32 publication-title: J Marine Sci Eng doi: 10.3390/jmse12050754 – ident: 4730_CR45 doi: 10.1007/s12517-010-0185-3 – volume: 129 year: 2023 ident: 4730_CR56 publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2023.102844 – volume: 29 start-page: 655 year: 2020 ident: 4730_CR26 publication-title: Nat Resour Res doi: 10.1007/s11053-019-09611-4 – volume: 13 start-page: 1345 issue: 3 year: 2023 ident: 4730_CR71 publication-title: Appl Sci doi: 10.3390/app13031345 – volume: 2014 issue: 1 year: 2014 ident: 4730_CR40 publication-title: Sci World J – volume: 47 start-page: 476 issue: 3 year: 2010 ident: 4730_CR44 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2009.09.008 – volume: 7 start-page: 5383 year: 2014 ident: 4730_CR4 publication-title: Arab J Geosci doi: 10.1007/s12517-013-1174-0 – volume: 47 year: 2024 ident: 4730_CR66 publication-title: Transp Geotech – volume: 38 start-page: 2619 issue: 3 year: 2022 ident: 4730_CR20 publication-title: Eng Comput doi: 10.1007/s00366-020-01231-4 – volume: 34 start-page: 15 year: 2016 ident: 4730_CR54 publication-title: Geotech Geol Eng doi: 10.1007/s10706-015-9924-2 – volume: 13 start-page: 375 issue: 2 year: 2022 ident: 4730_CR60 publication-title: J Mining Environ – volume: 32 start-page: 2995 issue: 6 year: 2023 ident: 4730_CR36 publication-title: Nat Resour Res doi: 10.1007/s11053-023-10259-4 – volume: 38 start-page: 4145 year: 2022 ident: 4730_CR53 publication-title: Eng Comput doi: 10.1007/s00366-021-01393-9 – ident: 4730_CR37 – volume: 29 start-page: 609 year: 2020 ident: 4730_CR47 publication-title: Nat Resour Res doi: 10.1007/s11053-019-09464-x – volume: 15 issue: 12 year: 2024 ident: 4730_CR73 publication-title: Ain Shams Eng J – volume: 33 start-page: 13594 issue: 6 year: 2025 ident: 4730_CR67 publication-title: Opt Express doi: 10.1364/OE.547412 – volume: 72 start-page: 1847 issue: 3 year: 2024 ident: 4730_CR83 publication-title: Acta Geophys doi: 10.1007/s11600-024-01320-8 – volume: 81 start-page: 281 issue: 10 year: 2022 ident: 4730_CR28 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-022-10408-7 – ident: 4730_CR48 doi: 10.1109/ECTIDAMTNCON64748.2025.10962095 – volume: 36 start-page: 713 year: 2020 ident: 4730_CR75 publication-title: Eng Comput doi: 10.1007/s00366-019-00726-z – volume: 88 start-page: 254 year: 2016 ident: 4730_CR18 publication-title: Int J Rock Mech Min Sci doi: 10.1016/j.ijrmms.2016.07.028 – volume: 72 year: 2023 ident: 4730_CR81 publication-title: J Comput Sci doi: 10.1016/j.jocs.2023.102097 – volume: 8 start-page: 9647 year: 2015 ident: 4730_CR31 publication-title: Arab J Geosci doi: 10.1007/s12517-015-1908-2 – volume: 14 start-page: 717 year: 2017 ident: 4730_CR8 publication-title: Int J Environ Sci Technol doi: 10.1007/s13762-016-1192-z – volume: 75 start-page: 993 year: 2016 ident: 4730_CR17 publication-title: Bull Eng Geol Env doi: 10.1007/s10064-016-0872-8 – volume: 76 start-page: 1 year: 2017 ident: 4730_CR27 publication-title: Environmental Earth Sciences doi: 10.1007/s12665-016-6335-5 – volume: 47 start-page: 31 issue: 1 year: 2017 ident: 4730_CR58 publication-title: J Insur Med doi: 10.17849/insm-47-01-31-39.1 – volume: 27 start-page: 699 year: 2016 ident: 4730_CR70 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1889-9 – volume: 29 start-page: 269 year: 2018 ident: 4730_CR19 publication-title: Neural Comput Appl doi: 10.1007/s00521-016-2537-8 – volume: 18 start-page: 6655 issue: 12 year: 2023 ident: 4730_CR51 publication-title: Acta Geotech doi: 10.1007/s11440-023-01988-0 – volume: 13 start-page: 2574 issue: 4 year: 2023 ident: 4730_CR68 publication-title: Appl Sci doi: 10.3390/app13042574 – ident: 4730_CR13 – ident: 4730_CR14 doi: 10.32604/cmes.2023.025714 – volume: 106 start-page: 7183 issue: D7 year: 2001 ident: 4730_CR63 publication-title: J Geophys Res doi: 10.1029/2000JD900719 – volume: 10 start-page: 3466 issue: 19 year: 2022 ident: 4730_CR1 publication-title: Mathematics doi: 10.3390/math10193466 – volume: 49 start-page: 298 issue: 2 year: 2011 ident: 4730_CR55 publication-title: Saf Sci doi: 10.1016/j.ssci.2010.09.004 – ident: 4730_CR15 doi: 10.1007/s00521-021-06776-z – volume: 35 start-page: 243 year: 2019 ident: 4730_CR34 publication-title: Eng Comput doi: 10.1007/s00366-018-0596-4 – volume: 21 start-page: 25761 issue: 22 year: 2013 ident: 4730_CR72 publication-title: Opt Express doi: 10.1364/OE.21.025761 – volume: 6 start-page: 447 issue: 5 year: 2014 ident: 4730_CR65 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2014.07.003 – start-page: 23 volume-title: Surface blasting and its impact on environment year: 1980 ident: 4730_CR25 – volume: 232 year: 2023 ident: 4730_CR64 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.120772 – volume: 40 start-page: 2331 issue: 6 year: 2023 ident: 4730_CR29 publication-title: Mining, Metallurgy & Exploration doi: 10.1007/s42461-023-00879-y – ident: 4730_CR42 – volume: 17 start-page: 2585 year: 2012 ident: 4730_CR43 publication-title: Electron J Geotech Eng – volume: 16 start-page: 2405 issue: 3 year: 2023 ident: 4730_CR80 publication-title: Earth Sci Inf doi: 10.1007/s12145-023-01042-3 – ident: 4730_CR23 doi: 10.1016/j.heliyon.2024.e37876 – ident: 4730_CR10 – ident: 4730_CR7 doi: 10.1007/s10462-021-10065-5 – volume: 25 start-page: 197 year: 2016 ident: 4730_CR11 publication-title: TEST doi: 10.1007/s11749-016-0481-7 – volume: 57 start-page: 1 issue: 1 year: 2024 ident: 4730_CR82 publication-title: Artif Intell Rev doi: 10.1007/s10462-023-10636-8 – volume: 56 start-page: 8745 issue: 12 year: 2023 ident: 4730_CR50 publication-title: Rock Mech Rock Eng doi: 10.1007/s00603-023-03522-w – volume: 4 start-page: 5 year: 2023 ident: 4730_CR59 publication-title: Sustain Mach Intell J doi: 10.61185/SMIJ.2023.44105 – volume: 7 start-page: 193 year: 2014 ident: 4730_CR22 publication-title: Arab J Geosci doi: 10.1007/s12517-012-0703-6 – ident: 4730_CR16 doi: 10.1007/978-3-642-32964-7_31 – ident: 4730_CR41 doi: 10.1007/s00202-024-02631-1 – volume: 55 start-page: 5673 issue: 7 year: 2022 ident: 4730_CR78 publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10140-5 – volume: 13 start-page: 1413 issue: 6 year: 2021 ident: 4730_CR46 publication-title: J Rock Mech Geotech Eng doi: 10.1016/j.jrmge.2021.08.005 – volume: 30 start-page: 4753 year: 2021 ident: 4730_CR76 publication-title: Nat Resour Res doi: 10.1007/s11053-021-09929-y |
| SSID | ssj0014378 |
| Score | 2.4154265 |
| Snippet | Flyrock occurrences pose significant environmental and safety risks in open-pit blasting, threatening equipment, personnel, and potentially causing fatal... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 12523 |
| SubjectTerms | Algorithms Artificial intelligence Blasting Civil Engineering Datasets Dimensional analysis Earth and Environmental Science Earth Sciences Fuzzy logic Geophysics/Geodesy Learning algorithms Machine learning Mines Monte Carlo simulation Neural networks Optimization Original Paper Parameter identification Parameter sensitivity Quarries Real time Reliability Risk reduction Root-mean-square errors Sensitivity analysis Software reliability Statistical analysis Training |
| Title | Optimizing Flyrock Forecasting in Open-Pit Blasting Using Hybrid Machine Learning Models |
| URI | https://link.springer.com/article/10.1007/s00603-025-04730-2 https://www.proquest.com/docview/3273741939 |
| Volume | 58 |
| WOSCitedRecordID | wos001529145800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK customDbUrl: eissn: 1434-453X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014378 issn: 0723-2632 databaseCode: RSV dateStart: 19970101 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yFfTBj6k4nZIH3zTQJt2aPqo49-IcfrG3kqSpFGuVtQrzr_eStZ2KCvqaL8old_crd_c7hA4CJqSkkhINvoZ41FFE8q5DaNxlvuyAesWxbTbhDwZ8NAqGZVFYXmW7VyFJa6nrYjdDHWJijh3iePAuCRjeeXB33Kjj1fVdHTvw2NT--pQRw0Zelsp8f8ZndzTDmF_Cotbb9Fb_951raKVEl_h4-hzW0ZzOmmj5A-dgEy2e216-kw00ugRz8Zi8wTDupRPwZA_YdOpUIje50DjJsEk3IcOkwCdpOWhTDHB_Ygq98IXNxNS4JGm9x6azWppvotve2c1pn5SNFohi1C0IaH0Qy0gxoZyYSY9HABRiziMRALpShrGdCy6V8FzJYd7nTKmO5AKwWST9iG2hRvaU6W2EPS5prD0t3MCDP79IiEj52tcRdbsaoEALuZW8Q1WykJtmGGlY8ydb-YUgv9DKL6QtdFjveZ5ycPy6ul1dY1jqYx4yQGmAnQIWtNBRdW2z6Z9P2_nb8l20RM3N22LFNmoU4xe9hxbUa5Hk4337Tt8B2_bftw |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB7EA_XBW6xnHnzTQDdJu9lHFWtFreJF35Ykm5VirdKtQv31TtLdeqCCvuZimUxmvmVmvgHYjrjSmmlGLfoaKljZUC2rZcrSKg91BZ9XmvpmE2GjIZvN6CIvCsuKbPciJOkt9bDYzVGHuJhjhZYF6iVFwzsm0GO5RL7Lq9th7EDwgf0NGaeOjTwvlfn-jM_u6B1jfgmLem9Tm_3fd87BTI4uyd5AHeZhxHYWYPoD5-ACTBz5Xr79RWieo7l4aL3iMKm1--jJ7onr1GlU5nKhSatDXLoJvWj1yH47H_QpBqTed4Ve5MxnYlqSk7TeEddZrZ0twU3t8PqgTvNGC9RwFvQovvoo1YnhypRTroVMECikUiYqQnRlHGO7VFIbJQItcT6U3JiKlgqxWaLDhC_DaOexY1eACKlZaoVVQSTwzy9RKjGhDW3CgqpFKFCCoJB3bHIWctcMox0P-ZO9_GKUX-zlF7MS7Az3PA04OH5dvV5cY5y_xyzmiNIQO0U8KsFucW3v0z-ftvq35VswWb8-O41PjxsnazDFnBb4wsV1GO11n-0GjJuXXivrbnqdfQNhJOKb |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6hDqbxMKDbRFkZfuCNWWtst3Ee2UbpBJRKwNS3yL-CKkqo2mxS99fv7CZpQTAJ7dV2rOh8vvusu_sO4HXCldZMM-rQ11DBOoZq2etQlvV4rLt4vbIsNJuIh0M5HiejjSr-kO1ehSRXNQ2epSkvTmY2O6kL3zyNiI8_dmlHoI5SNMJbwjcN8u_1L5d1HEHwlS2OGaeembwsm_n7Hr-7pjXe_CNEGjxP_8n9__kp7Jaok7xdqckzeODyJjze4CJswqP3ocfvcg_Gn9GM_Jzc4DDpT5fo4X4Q38HTqIXPkSaTnPg0FDqaFOR0Wg6G1AMyWPoCMPIpZGg6UpK3fie-49p0sQ_f-u--ng1o2YCBGs6igqI1SDJtDVemk3EtpEUAkUlpVYKoy3gmd6mkNkpEWuJ8LLkxXS0VYjarY8sPoJH_yt1zIEJqljnhVJQIfBFapayJXewsi3oOIUILokr2qSnZyX2TjGla8yoH-aUovzTIL2UteFN_M1txc9y5ul0daVre00XKEb0hpkp40oLj6gjX0__e7cX_LX8F26PzfvrxYvjhEHaYV4JQz9iGRjG_ci_hobkuJov5UVDfWznL638 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Flyrock+Forecasting+in+Open-Pit+Blasting+Using+Hybrid+Machine+Learning+Models&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.au=Zhang%2C+Yulin&rft.au=Qiu%2C+Yingui&rft.au=Du%2C+Kun&rft.au=Nguyen%2C+Hoang&rft.date=2025-11-01&rft.pub=Springer+Vienna&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=58&rft.issue=11&rft.spage=12523&rft.epage=12550&rft_id=info:doi/10.1007%2Fs00603-025-04730-2&rft.externalDocID=10_1007_s00603_025_04730_2 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon |