Optimizing Flyrock Forecasting in Open-Pit Blasting Using Hybrid Machine Learning Models

Flyrock occurrences pose significant environmental and safety risks in open-pit blasting, threatening equipment, personnel, and potentially causing fatal accidents. This study intends to reduce the risk of flyrock by developing multiple machine learning approaches to estimate its throw range, utiliz...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Rock mechanics and rock engineering Ročník 58; číslo 11; s. 12523 - 12550
Hlavní autoři: Zhang, Yulin, Qiu, Yingui, Du, Kun, Nguyen, Hoang, Armaghani, Danial Jahed, Zhou, Jian
Médium: Journal Article
Jazyk:angličtina
Vydáno: Vienna Springer Vienna 01.11.2025
Springer Nature B.V
Témata:
ISSN:0723-2632, 1434-453X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Flyrock occurrences pose significant environmental and safety risks in open-pit blasting, threatening equipment, personnel, and potentially causing fatal accidents. This study intends to reduce the risk of flyrock by developing multiple machine learning approaches to estimate its throw range, utilizing Random Forest (RF) as the primary model. Two optimization algorithms, the Light Spectrum Optimizer (LSO) and the Puma Optimizer Algorithm (POA), were employed to fine-tune the hyperparameters of the RF model. Researchers conducted field surveys of blasting events in quarries in Malaysia and the Ayazaga area of Istanbul to compile two databases. Based on these datasets, the reliability and practicality of the LSO-RF and POA-RF models were examined. For comparison, an unoptimized RF model was also created to estimate the flyrock throw distance. The performance of the models was assessed using four metrics: root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R 2 ), and variance accounted for (VAF). Results show that LSO-RF and POA-RF outperform the unoptimized RF model across all metrics. For the Malaysian dataset, LSO-RF achieves training/testing R 2 of 0.9661/0.9597, MAPE of 4.445/6.711, and RMSE of 12.081/16.091; POA-RF yields training/testing R 2 of 0.9662/0.9596, MAPE of 4.443/6.717, and RMSE of 12.075/16.094. For the Istanbul dataset, LSO-RF achieves training/testing R 2 of 0.9706/0.9698, MAPE of 5.369/6.512, and RMSE of 6.128/6.537; POA-RF yields training/testing R 2 of 0.9725/0.9680, MAPE of 6.006/7.554, and RMSE of 6.087/7.335. Performance differences between hybrid models are within 0.2% across datasets, indicating consistent reliability. Results from the engineering case validation demonstrate that the developed hybrid model exhibits strong generalization performance, with R 2 of 0.8778. SHAP-based sensitivity analysis identifies key parameters: hole diameter (HD) and maximum charge per delay (CD) for Malaysia, specific charge (q) and spacing-to-burden ratio (S/B) for Istanbul, all positively correlated with FD. An intelligent software tool integrating these models supports data-driven blasting parameter optimization, enhancing safety and efficiency by minimizing flyrock risks. Highlights Optimized machine learning models predict flyrock throw range in open-pit blasting. Light Spectrum Optimizer and Puma Optimizer Algorithm enhance Random Forest performance. Field data from Malaysia and Istanbul validate model accuracy and reliability. Intelligent software tool developed for real-time flyrock prediction and blasting optimization.
AbstractList Flyrock occurrences pose significant environmental and safety risks in open-pit blasting, threatening equipment, personnel, and potentially causing fatal accidents. This study intends to reduce the risk of flyrock by developing multiple machine learning approaches to estimate its throw range, utilizing Random Forest (RF) as the primary model. Two optimization algorithms, the Light Spectrum Optimizer (LSO) and the Puma Optimizer Algorithm (POA), were employed to fine-tune the hyperparameters of the RF model. Researchers conducted field surveys of blasting events in quarries in Malaysia and the Ayazaga area of Istanbul to compile two databases. Based on these datasets, the reliability and practicality of the LSO-RF and POA-RF models were examined. For comparison, an unoptimized RF model was also created to estimate the flyrock throw distance. The performance of the models was assessed using four metrics: root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R2), and variance accounted for (VAF). Results show that LSO-RF and POA-RF outperform the unoptimized RF model across all metrics. For the Malaysian dataset, LSO-RF achieves training/testing R2 of 0.9661/0.9597, MAPE of 4.445/6.711, and RMSE of 12.081/16.091; POA-RF yields training/testing R2 of 0.9662/0.9596, MAPE of 4.443/6.717, and RMSE of 12.075/16.094. For the Istanbul dataset, LSO-RF achieves training/testing R2 of 0.9706/0.9698, MAPE of 5.369/6.512, and RMSE of 6.128/6.537; POA-RF yields training/testing R2 of 0.9725/0.9680, MAPE of 6.006/7.554, and RMSE of 6.087/7.335. Performance differences between hybrid models are within 0.2% across datasets, indicating consistent reliability. Results from the engineering case validation demonstrate that the developed hybrid model exhibits strong generalization performance, with R2 of 0.8778. SHAP-based sensitivity analysis identifies key parameters: hole diameter (HD) and maximum charge per delay (CD) for Malaysia, specific charge (q) and spacing-to-burden ratio (S/B) for Istanbul, all positively correlated with FD. An intelligent software tool integrating these models supports data-driven blasting parameter optimization, enhancing safety and efficiency by minimizing flyrock risks.HighlightsOptimized machine learning models predict flyrock throw range in open-pit blasting.Light Spectrum Optimizer and Puma Optimizer Algorithm enhance Random Forest performance.Field data from Malaysia and Istanbul validate model accuracy and reliability.Intelligent software tool developed for real-time flyrock prediction and blasting optimization.
Flyrock occurrences pose significant environmental and safety risks in open-pit blasting, threatening equipment, personnel, and potentially causing fatal accidents. This study intends to reduce the risk of flyrock by developing multiple machine learning approaches to estimate its throw range, utilizing Random Forest (RF) as the primary model. Two optimization algorithms, the Light Spectrum Optimizer (LSO) and the Puma Optimizer Algorithm (POA), were employed to fine-tune the hyperparameters of the RF model. Researchers conducted field surveys of blasting events in quarries in Malaysia and the Ayazaga area of Istanbul to compile two databases. Based on these datasets, the reliability and practicality of the LSO-RF and POA-RF models were examined. For comparison, an unoptimized RF model was also created to estimate the flyrock throw distance. The performance of the models was assessed using four metrics: root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient of determination (R 2 ), and variance accounted for (VAF). Results show that LSO-RF and POA-RF outperform the unoptimized RF model across all metrics. For the Malaysian dataset, LSO-RF achieves training/testing R 2 of 0.9661/0.9597, MAPE of 4.445/6.711, and RMSE of 12.081/16.091; POA-RF yields training/testing R 2 of 0.9662/0.9596, MAPE of 4.443/6.717, and RMSE of 12.075/16.094. For the Istanbul dataset, LSO-RF achieves training/testing R 2 of 0.9706/0.9698, MAPE of 5.369/6.512, and RMSE of 6.128/6.537; POA-RF yields training/testing R 2 of 0.9725/0.9680, MAPE of 6.006/7.554, and RMSE of 6.087/7.335. Performance differences between hybrid models are within 0.2% across datasets, indicating consistent reliability. Results from the engineering case validation demonstrate that the developed hybrid model exhibits strong generalization performance, with R 2 of 0.8778. SHAP-based sensitivity analysis identifies key parameters: hole diameter (HD) and maximum charge per delay (CD) for Malaysia, specific charge (q) and spacing-to-burden ratio (S/B) for Istanbul, all positively correlated with FD. An intelligent software tool integrating these models supports data-driven blasting parameter optimization, enhancing safety and efficiency by minimizing flyrock risks. Highlights Optimized machine learning models predict flyrock throw range in open-pit blasting. Light Spectrum Optimizer and Puma Optimizer Algorithm enhance Random Forest performance. Field data from Malaysia and Istanbul validate model accuracy and reliability. Intelligent software tool developed for real-time flyrock prediction and blasting optimization.
Author Zhou, Jian
Armaghani, Danial Jahed
Nguyen, Hoang
Du, Kun
Qiu, Yingui
Zhang, Yulin
Author_xml – sequence: 1
  givenname: Yulin
  surname: Zhang
  fullname: Zhang, Yulin
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 2
  givenname: Yingui
  surname: Qiu
  fullname: Qiu, Yingui
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 3
  givenname: Kun
  surname: Du
  fullname: Du, Kun
  organization: School of Resources and Safety Engineering, Central South University
– sequence: 4
  givenname: Hoang
  surname: Nguyen
  fullname: Nguyen, Hoang
  organization: Department of Surface Mining, Mining Faculty, Hanoi University of Mining and Geology
– sequence: 5
  givenname: Danial Jahed
  surname: Armaghani
  fullname: Armaghani, Danial Jahed
  organization: School of Civil and Environmental Engineering, University of Technology Sydney
– sequence: 6
  givenname: Jian
  surname: Zhou
  fullname: Zhou, Jian
  email: j.zhou@csu.edu.cn
  organization: School of Resources and Safety Engineering, Central South University
BookMark eNp9kDFPwzAQhS1UJNrCH2CKxGw420ntjFBRitSqDFTqZjmOU1xSJ9jpUH49CamExNDlTnr3vrvTG6GBq5xB6JbAPQHgDwFgAgwDTTDEnAGmF2hIYhbjOGGbARoCpwzTCaNXaBTCDqAdcjFEm1Xd2L39tm4bzcqjr_RnNKu80So0nWZdtKqNw2-2iZ7Kk7gOXZ0fM2_zaKn0h3UmWhjlXacvq9yU4RpdFqoM5ubUx2g9e36fzvFi9fI6fVxgzShpMAeWFlmumdJQsCwWOQhSCJGrdEJAcyCpUCLTKiaZaOdcMK2TTChI0jzjORuju35v7auvgwmN3FUH79qTklHOeExSlrYu0bu0r0LwppDaNqqxlWu8sqUkILscZZ-jbHOUvzlK2qL0H1p7u1f-eB5iPRRas9sa__fVGeoHZnGHSQ
CitedBy_id crossref_primary_10_3390_app15158614
Cites_doi 10.3390/ma16114034
10.1016/j.eswa.2019.05.028
10.1007/s10586-023-04221-5
10.1007/s10064-020-01834-7
10.1002/int.22448
10.1016/S0370-1573(01)00076-X
10.1007/s11771-024-5699-z
10.1016/j.ijrmms.2012.03.011
10.1007/s00603-012-0269-3
10.1016/j.undsp.2024.03.003
10.1007/s00366-019-00816-y
10.1016/j.isprsjprs.2016.01.011
10.1016/j.trgeo.2024.101371
10.1007/s11053-019-09532-2
10.1007/s00603-016-1015-z
10.1007/s11053-019-09461-0
10.1016/j.jrmge.2015.10.005
10.1007/s10064-017-1100-x
10.3390/jmse12050754
10.1007/s12517-010-0185-3
10.1016/j.simpat.2023.102844
10.1007/s11053-019-09611-4
10.3390/app13031345
10.1016/j.ijrmms.2009.09.008
10.1007/s12517-013-1174-0
10.1007/s00366-020-01231-4
10.1007/s10706-015-9924-2
10.1007/s11053-023-10259-4
10.1007/s00366-021-01393-9
10.1007/s11053-019-09464-x
10.1364/OE.547412
10.1007/s11600-024-01320-8
10.1007/s12665-022-10408-7
10.1109/ECTIDAMTNCON64748.2025.10962095
10.1007/s00366-019-00726-z
10.1016/j.ijrmms.2016.07.028
10.1016/j.jocs.2023.102097
10.1007/s12517-015-1908-2
10.1007/s13762-016-1192-z
10.1007/s10064-016-0872-8
10.1007/s12665-016-6335-5
10.17849/insm-47-01-31-39.1
10.1007/s00521-015-1889-9
10.1007/s00521-016-2537-8
10.1007/s11440-023-01988-0
10.3390/app13042574
10.32604/cmes.2023.025714
10.1029/2000JD900719
10.3390/math10193466
10.1016/j.ssci.2010.09.004
10.1007/s00521-021-06776-z
10.1007/s00366-018-0596-4
10.1364/OE.21.025761
10.1016/j.jrmge.2014.07.003
10.1016/j.eswa.2023.120772
10.1007/s42461-023-00879-y
10.1007/s12145-023-01042-3
10.1016/j.heliyon.2024.e37876
10.1007/s10462-021-10065-5
10.1007/s11749-016-0481-7
10.1007/s10462-023-10636-8
10.1007/s00603-023-03522-w
10.61185/SMIJ.2023.44105
10.1007/s12517-012-0703-6
10.1007/978-3-642-32964-7_31
10.1007/s00202-024-02631-1
10.1007/s10462-022-10140-5
10.1016/j.jrmge.2021.08.005
10.1007/s11053-021-09929-y
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Austria, part of Springer Nature 2025.
DBID AAYXX
CITATION
7TN
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
DOI 10.1007/s00603-025-04730-2
DatabaseName CrossRef
Oceanic Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Geology
Engineering
EISSN 1434-453X
EndPage 12550
ExternalDocumentID 10_1007_s00603_025_04730_2
GrantInformation_xml – fundername: National Natural Science Foundation of China
  grantid: 42177164; 52474121
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID -Y2
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29P
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5QI
5VS
67M
67Z
6NX
78A
88I
8FE
8FG
8FH
8TC
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKIV
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFFHD
AFFNX
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
L8X
LAS
LK5
LLZTM
M2P
M4Y
M7R
M7S
MA-
MK~
MM-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PCBAR
PF0
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
ROL
RPX
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TN5
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK6
WK8
Y6R
YLTOR
Z45
Z8Z
ZMTXR
ZY4
~02
~EX
AAYXX
CITATION
7TN
7UA
8FD
C1K
F1W
FR3
H96
KR7
L.G
ID FETCH-LOGICAL-c321t-7039fbdc3ac0f3b48d081f88da9610c70198a8bca41b83b4783cc5b8a059db7d3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001529145800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0723-2632
IngestDate Sat Nov 22 03:13:22 EST 2025
Thu Nov 27 00:33:52 EST 2025
Tue Nov 18 22:07:02 EST 2025
Fri Nov 21 01:11:42 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords Open-pit blasting optimization
Puma optimizer algorithm
Intelligent feedback system
Flyrock distance prediction
Light spectrum optimizer
Random forest
Interpretability analysis
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-7039fbdc3ac0f3b48d081f88da9610c70198a8bca41b83b4783cc5b8a059db7d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3273741939
PQPubID 60272
PageCount 28
ParticipantIDs proquest_journals_3273741939
crossref_citationtrail_10_1007_s00603_025_04730_2
crossref_primary_10_1007_s00603_025_04730_2
springer_journals_10_1007_s00603_025_04730_2
PublicationCentury 2000
PublicationDate 2025-11-01
PublicationDateYYYYMMDD 2025-11-01
PublicationDate_xml – month: 11
  year: 2025
  text: 2025-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Vienna
PublicationPlace_xml – name: Vienna
– name: Wien
PublicationTitle Rock mechanics and rock engineering
PublicationTitleAbbrev Rock Mech Rock Eng
PublicationYear 2025
Publisher Springer Vienna
Springer Nature B.V
Publisher_xml – name: Springer Vienna
– name: Springer Nature B.V
References PK Singh (4730_CR61) 2016; 8
T Hudaverdi (4730_CR29) 2023; 40
4730_CR7
Z Wang (4730_CR66) 2024; 47
4730_CR41
KE Taylor (4730_CR63) 2001; 106
H Guo (4730_CR24) 2021; 37
4730_CR42
DJ Armaghani (4730_CR4) 2014; 7
4730_CR45
S Saber (4730_CR59) 2023; 4
L Jiang (4730_CR32) 2024; 12
N Lundborg (4730_CR39) 1975; 176
P Yang (4730_CR69) 2023; 16
X Lu (4730_CR38) 2020; 29
4730_CR2
J Zhou (4730_CR82) 2024; 57
A Marto (4730_CR40) 2014; 2014
RS Faradonbeh (4730_CR18) 2016; 88
C Li (4730_CR36) 2023; 32
JL Speiser (4730_CR62) 2019; 134
M Yari (4730_CR71) 2023; 13
4730_CR48
M Belgiu (4730_CR9) 2016; 114
J Zhou (4730_CR77) 2021; 145
J Zhou (4730_CR78) 2022; 55
RS Faradonbeh (4730_CR19) 2018; 29
H Fattahi (4730_CR20) 2022; 38
Y Qiu (4730_CR50) 2023; 56
J Zhou (4730_CR76) 2021; 30
J Zhou (4730_CR81) 2023; 72
DJ Armaghani (4730_CR5) 2016; 49
G Biau (4730_CR11) 2016; 25
DJ Armaghani (4730_CR6) 2020; 79
M Abdel-Basset (4730_CR1) 2022; 10
M Koopialipoor (4730_CR34) 2019; 35
T Hudaverdi (4730_CR30) 2019; 78
RS Faradonbeh (4730_CR17) 2016; 75
M Khandelwal (4730_CR33) 2013; 46
L Lang (4730_CR35) 2021; 36
M Monjezi (4730_CR44) 2010; 47
SN Qasem (4730_CR49) 2019; 13
4730_CR37
M Hasanipanah (4730_CR27) 2017; 76
E Ghasemi (4730_CR21) 2012; 52
M Yari (4730_CR70) 2016; 27
DA Zaki (4730_CR73) 2024; 15
XN Bui (4730_CR12) 2020; 29
ET Mohamad (4730_CR43) 2012; 17
4730_CR23
Y Qiu (4730_CR51) 2023; 18
SJ Rigatti (4730_CR58) 2017; 47
Y Qiu (4730_CR53) 2022; 38
JA Adam (4730_CR3) 2002; 356
YL Zhang (4730_CR74) 2024; 31
R Trivedi (4730_CR65) 2014; 6
X Wang (4730_CR67) 2025; 33
J Zhou (4730_CR80) 2023; 16
RN Gupta (4730_CR25) 1980
D Jahed Armaghani (4730_CR31) 2015; 8
J Shakeri (4730_CR60) 2022; 13
H Han (4730_CR26) 2020; 29
AK Raina (4730_CR54) 2016; 34
H Yu (4730_CR72) 2013; 21
BR Murlidhar (4730_CR46) 2021; 13
H Nikafshan Rad (4730_CR47) 2020; 29
T Thulasi (4730_CR64) 2023; 232
J Zhou (4730_CR79) 2022; 124
E Ghasemi (4730_CR22) 2014; 7
4730_CR10
J Zhou (4730_CR75) 2020; 36
T Hudaverdi (4730_CR28) 2022; 81
Y Qiu (4730_CR52) 2024; 19
E Bakhtavar (4730_CR8) 2017; 14
M Rezaei (4730_CR56) 2023; 129
J Zhou (4730_CR83) 2024; 72
M Rezaei (4730_CR55) 2011; 49
4730_CR13
4730_CR57
4730_CR14
4730_CR15
4730_CR16
P Yang (4730_CR68) 2023; 13
References_xml – volume: 16
  start-page: 4034
  issue: 11
  year: 2023
  ident: 4730_CR69
  publication-title: Materials
  doi: 10.3390/ma16114034
– volume: 134
  start-page: 93
  year: 2019
  ident: 4730_CR62
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.05.028
– ident: 4730_CR2
  doi: 10.1007/s10586-023-04221-5
– volume: 79
  start-page: 4369
  issue: 8
  year: 2020
  ident: 4730_CR6
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-020-01834-7
– volume: 36
  start-page: 4016
  issue: 8
  year: 2021
  ident: 4730_CR35
  publication-title: Int J Intell Syst
  doi: 10.1002/int.22448
– volume: 356
  start-page: 229
  issue: 4–5
  year: 2002
  ident: 4730_CR3
  publication-title: Phys Rep
  doi: 10.1016/S0370-1573(01)00076-X
– volume: 31
  start-page: 2916
  issue: 8
  year: 2024
  ident: 4730_CR74
  publication-title: J Central South Univ
  doi: 10.1007/s11771-024-5699-z
– volume: 52
  start-page: 163
  year: 2012
  ident: 4730_CR21
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2012.03.011
– volume: 46
  start-page: 389
  year: 2013
  ident: 4730_CR33
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-012-0269-3
– volume: 19
  start-page: 101
  year: 2024
  ident: 4730_CR52
  publication-title: Underground Space
  doi: 10.1016/j.undsp.2024.03.003
– volume: 37
  start-page: 173
  year: 2021
  ident: 4730_CR24
  publication-title: Engineering with Computers
  doi: 10.1007/s00366-019-00816-y
– volume: 176
  start-page: 95
  year: 1975
  ident: 4730_CR39
  publication-title: Eng Min J
– volume: 145
  year: 2021
  ident: 4730_CR77
  publication-title: Int J Rock Mech Min Sci
– volume: 124
  year: 2022
  ident: 4730_CR79
  publication-title: Tunn Undergr Space Technol
– volume: 114
  start-page: 24
  year: 2016
  ident: 4730_CR9
  publication-title: ISPRS J Photogramm Remote Sens
  doi: 10.1016/j.isprsjprs.2016.01.011
– ident: 4730_CR57
  doi: 10.1016/j.trgeo.2024.101371
– volume: 29
  start-page: 641
  year: 2020
  ident: 4730_CR38
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-019-09532-2
– volume: 49
  start-page: 3631
  year: 2016
  ident: 4730_CR5
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-016-1015-z
– volume: 29
  start-page: 571
  issue: 2
  year: 2020
  ident: 4730_CR12
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-019-09461-0
– volume: 13
  start-page: 177
  issue: 1
  year: 2019
  ident: 4730_CR49
  publication-title: Eng Appl Comput Fluid Mech
– volume: 8
  start-page: 225
  issue: 2
  year: 2016
  ident: 4730_CR61
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2015.10.005
– volume: 78
  start-page: 177
  year: 2019
  ident: 4730_CR30
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-017-1100-x
– volume: 12
  start-page: 754
  issue: 5
  year: 2024
  ident: 4730_CR32
  publication-title: J Marine Sci Eng
  doi: 10.3390/jmse12050754
– ident: 4730_CR45
  doi: 10.1007/s12517-010-0185-3
– volume: 129
  year: 2023
  ident: 4730_CR56
  publication-title: Simul Model Pract Theory
  doi: 10.1016/j.simpat.2023.102844
– volume: 29
  start-page: 655
  year: 2020
  ident: 4730_CR26
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-019-09611-4
– volume: 13
  start-page: 1345
  issue: 3
  year: 2023
  ident: 4730_CR71
  publication-title: Appl Sci
  doi: 10.3390/app13031345
– volume: 2014
  issue: 1
  year: 2014
  ident: 4730_CR40
  publication-title: Sci World J
– volume: 47
  start-page: 476
  issue: 3
  year: 2010
  ident: 4730_CR44
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2009.09.008
– volume: 7
  start-page: 5383
  year: 2014
  ident: 4730_CR4
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-013-1174-0
– volume: 47
  year: 2024
  ident: 4730_CR66
  publication-title: Transp Geotech
– volume: 38
  start-page: 2619
  issue: 3
  year: 2022
  ident: 4730_CR20
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01231-4
– volume: 34
  start-page: 15
  year: 2016
  ident: 4730_CR54
  publication-title: Geotech Geol Eng
  doi: 10.1007/s10706-015-9924-2
– volume: 13
  start-page: 375
  issue: 2
  year: 2022
  ident: 4730_CR60
  publication-title: J Mining Environ
– volume: 32
  start-page: 2995
  issue: 6
  year: 2023
  ident: 4730_CR36
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-023-10259-4
– volume: 38
  start-page: 4145
  year: 2022
  ident: 4730_CR53
  publication-title: Eng Comput
  doi: 10.1007/s00366-021-01393-9
– ident: 4730_CR37
– volume: 29
  start-page: 609
  year: 2020
  ident: 4730_CR47
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-019-09464-x
– volume: 15
  issue: 12
  year: 2024
  ident: 4730_CR73
  publication-title: Ain Shams Eng J
– volume: 33
  start-page: 13594
  issue: 6
  year: 2025
  ident: 4730_CR67
  publication-title: Opt Express
  doi: 10.1364/OE.547412
– volume: 72
  start-page: 1847
  issue: 3
  year: 2024
  ident: 4730_CR83
  publication-title: Acta Geophys
  doi: 10.1007/s11600-024-01320-8
– volume: 81
  start-page: 281
  issue: 10
  year: 2022
  ident: 4730_CR28
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-022-10408-7
– ident: 4730_CR48
  doi: 10.1109/ECTIDAMTNCON64748.2025.10962095
– volume: 36
  start-page: 713
  year: 2020
  ident: 4730_CR75
  publication-title: Eng Comput
  doi: 10.1007/s00366-019-00726-z
– volume: 88
  start-page: 254
  year: 2016
  ident: 4730_CR18
  publication-title: Int J Rock Mech Min Sci
  doi: 10.1016/j.ijrmms.2016.07.028
– volume: 72
  year: 2023
  ident: 4730_CR81
  publication-title: J Comput Sci
  doi: 10.1016/j.jocs.2023.102097
– volume: 8
  start-page: 9647
  year: 2015
  ident: 4730_CR31
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-015-1908-2
– volume: 14
  start-page: 717
  year: 2017
  ident: 4730_CR8
  publication-title: Int J Environ Sci Technol
  doi: 10.1007/s13762-016-1192-z
– volume: 75
  start-page: 993
  year: 2016
  ident: 4730_CR17
  publication-title: Bull Eng Geol Env
  doi: 10.1007/s10064-016-0872-8
– volume: 76
  start-page: 1
  year: 2017
  ident: 4730_CR27
  publication-title: Environmental Earth Sciences
  doi: 10.1007/s12665-016-6335-5
– volume: 47
  start-page: 31
  issue: 1
  year: 2017
  ident: 4730_CR58
  publication-title: J Insur Med
  doi: 10.17849/insm-47-01-31-39.1
– volume: 27
  start-page: 699
  year: 2016
  ident: 4730_CR70
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1889-9
– volume: 29
  start-page: 269
  year: 2018
  ident: 4730_CR19
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-016-2537-8
– volume: 18
  start-page: 6655
  issue: 12
  year: 2023
  ident: 4730_CR51
  publication-title: Acta Geotech
  doi: 10.1007/s11440-023-01988-0
– volume: 13
  start-page: 2574
  issue: 4
  year: 2023
  ident: 4730_CR68
  publication-title: Appl Sci
  doi: 10.3390/app13042574
– ident: 4730_CR13
– ident: 4730_CR14
  doi: 10.32604/cmes.2023.025714
– volume: 106
  start-page: 7183
  issue: D7
  year: 2001
  ident: 4730_CR63
  publication-title: J Geophys Res
  doi: 10.1029/2000JD900719
– volume: 10
  start-page: 3466
  issue: 19
  year: 2022
  ident: 4730_CR1
  publication-title: Mathematics
  doi: 10.3390/math10193466
– volume: 49
  start-page: 298
  issue: 2
  year: 2011
  ident: 4730_CR55
  publication-title: Saf Sci
  doi: 10.1016/j.ssci.2010.09.004
– ident: 4730_CR15
  doi: 10.1007/s00521-021-06776-z
– volume: 35
  start-page: 243
  year: 2019
  ident: 4730_CR34
  publication-title: Eng Comput
  doi: 10.1007/s00366-018-0596-4
– volume: 21
  start-page: 25761
  issue: 22
  year: 2013
  ident: 4730_CR72
  publication-title: Opt Express
  doi: 10.1364/OE.21.025761
– volume: 6
  start-page: 447
  issue: 5
  year: 2014
  ident: 4730_CR65
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2014.07.003
– start-page: 23
  volume-title: Surface blasting and its impact on environment
  year: 1980
  ident: 4730_CR25
– volume: 232
  year: 2023
  ident: 4730_CR64
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120772
– volume: 40
  start-page: 2331
  issue: 6
  year: 2023
  ident: 4730_CR29
  publication-title: Mining, Metallurgy & Exploration
  doi: 10.1007/s42461-023-00879-y
– ident: 4730_CR42
– volume: 17
  start-page: 2585
  year: 2012
  ident: 4730_CR43
  publication-title: Electron J Geotech Eng
– volume: 16
  start-page: 2405
  issue: 3
  year: 2023
  ident: 4730_CR80
  publication-title: Earth Sci Inf
  doi: 10.1007/s12145-023-01042-3
– ident: 4730_CR23
  doi: 10.1016/j.heliyon.2024.e37876
– ident: 4730_CR10
– ident: 4730_CR7
  doi: 10.1007/s10462-021-10065-5
– volume: 25
  start-page: 197
  year: 2016
  ident: 4730_CR11
  publication-title: TEST
  doi: 10.1007/s11749-016-0481-7
– volume: 57
  start-page: 1
  issue: 1
  year: 2024
  ident: 4730_CR82
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-023-10636-8
– volume: 56
  start-page: 8745
  issue: 12
  year: 2023
  ident: 4730_CR50
  publication-title: Rock Mech Rock Eng
  doi: 10.1007/s00603-023-03522-w
– volume: 4
  start-page: 5
  year: 2023
  ident: 4730_CR59
  publication-title: Sustain Mach Intell J
  doi: 10.61185/SMIJ.2023.44105
– volume: 7
  start-page: 193
  year: 2014
  ident: 4730_CR22
  publication-title: Arab J Geosci
  doi: 10.1007/s12517-012-0703-6
– ident: 4730_CR16
  doi: 10.1007/978-3-642-32964-7_31
– ident: 4730_CR41
  doi: 10.1007/s00202-024-02631-1
– volume: 55
  start-page: 5673
  issue: 7
  year: 2022
  ident: 4730_CR78
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10140-5
– volume: 13
  start-page: 1413
  issue: 6
  year: 2021
  ident: 4730_CR46
  publication-title: J Rock Mech Geotech Eng
  doi: 10.1016/j.jrmge.2021.08.005
– volume: 30
  start-page: 4753
  year: 2021
  ident: 4730_CR76
  publication-title: Nat Resour Res
  doi: 10.1007/s11053-021-09929-y
SSID ssj0014378
Score 2.4154265
Snippet Flyrock occurrences pose significant environmental and safety risks in open-pit blasting, threatening equipment, personnel, and potentially causing fatal...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 12523
SubjectTerms Algorithms
Artificial intelligence
Blasting
Civil Engineering
Datasets
Dimensional analysis
Earth and Environmental Science
Earth Sciences
Fuzzy logic
Geophysics/Geodesy
Learning algorithms
Machine learning
Mines
Monte Carlo simulation
Neural networks
Optimization
Original Paper
Parameter identification
Parameter sensitivity
Quarries
Real time
Reliability
Risk reduction
Root-mean-square errors
Sensitivity analysis
Software reliability
Statistical analysis
Training
Title Optimizing Flyrock Forecasting in Open-Pit Blasting Using Hybrid Machine Learning Models
URI https://link.springer.com/article/10.1007/s00603-025-04730-2
https://www.proquest.com/docview/3273741939
Volume 58
WOSCitedRecordID wos001529145800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK
  customDbUrl:
  eissn: 1434-453X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014378
  issn: 0723-2632
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwEA8yFfTBj6k4nZIH3zTQJt2aPqo49-IcfrG3kqSpFGuVtQrzr_eStZ2KCvqaL8old_crd_c7hA4CJqSkkhINvoZ41FFE8q5DaNxlvuyAesWxbTbhDwZ8NAqGZVFYXmW7VyFJa6nrYjdDHWJijh3iePAuCRjeeXB33Kjj1fVdHTvw2NT--pQRw0Zelsp8f8ZndzTDmF_Cotbb9Fb_951raKVEl_h4-hzW0ZzOmmj5A-dgEy2e216-kw00ugRz8Zi8wTDupRPwZA_YdOpUIje50DjJsEk3IcOkwCdpOWhTDHB_Ygq98IXNxNS4JGm9x6azWppvotve2c1pn5SNFohi1C0IaH0Qy0gxoZyYSY9HABRiziMRALpShrGdCy6V8FzJYd7nTKmO5AKwWST9iG2hRvaU6W2EPS5prD0t3MCDP79IiEj52tcRdbsaoEALuZW8Q1WykJtmGGlY8ydb-YUgv9DKL6QtdFjveZ5ycPy6ul1dY1jqYx4yQGmAnQIWtNBRdW2z6Z9P2_nb8l20RM3N22LFNmoU4xe9hxbUa5Hk4337Tt8B2_bftw
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ZSwMxEB7EA_XBW6xnHnzTQDdJu9lHFWtFreJF35Ykm5VirdKtQv31TtLdeqCCvuZimUxmvmVmvgHYjrjSmmlGLfoaKljZUC2rZcrSKg91BZ9XmvpmE2GjIZvN6CIvCsuKbPciJOkt9bDYzVGHuJhjhZYF6iVFwzsm0GO5RL7Lq9th7EDwgf0NGaeOjTwvlfn-jM_u6B1jfgmLem9Tm_3fd87BTI4uyd5AHeZhxHYWYPoD5-ACTBz5Xr79RWieo7l4aL3iMKm1--jJ7onr1GlU5nKhSatDXLoJvWj1yH47H_QpBqTed4Ve5MxnYlqSk7TeEddZrZ0twU3t8PqgTvNGC9RwFvQovvoo1YnhypRTroVMECikUiYqQnRlHGO7VFIbJQItcT6U3JiKlgqxWaLDhC_DaOexY1eACKlZaoVVQSTwzy9RKjGhDW3CgqpFKFCCoJB3bHIWctcMox0P-ZO9_GKUX-zlF7MS7Az3PA04OH5dvV5cY5y_xyzmiNIQO0U8KsFucW3v0z-ftvq35VswWb8-O41PjxsnazDFnBb4wsV1GO11n-0GjJuXXivrbnqdfQNhJOKb
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fb9MwED6hDqbxMKDbRFkZfuCNWWtst3Ee2UbpBJRKwNS3yL-CKkqo2mxS99fv7CZpQTAJ7dV2rOh8vvusu_sO4HXCldZMM-rQ11DBOoZq2etQlvV4rLt4vbIsNJuIh0M5HiejjSr-kO1ehSRXNQ2epSkvTmY2O6kL3zyNiI8_dmlHoI5SNMJbwjcN8u_1L5d1HEHwlS2OGaeembwsm_n7Hr-7pjXe_CNEGjxP_8n9__kp7Jaok7xdqckzeODyJjze4CJswqP3ocfvcg_Gn9GM_Jzc4DDpT5fo4X4Q38HTqIXPkSaTnPg0FDqaFOR0Wg6G1AMyWPoCMPIpZGg6UpK3fie-49p0sQ_f-u--ng1o2YCBGs6igqI1SDJtDVemk3EtpEUAkUlpVYKoy3gmd6mkNkpEWuJ8LLkxXS0VYjarY8sPoJH_yt1zIEJqljnhVJQIfBFapayJXewsi3oOIUILokr2qSnZyX2TjGla8yoH-aUovzTIL2UteFN_M1txc9y5ul0daVre00XKEb0hpkp40oLj6gjX0__e7cX_LX8F26PzfvrxYvjhEHaYV4JQz9iGRjG_ci_hobkuJov5UVDfWznL638
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimizing+Flyrock+Forecasting+in+Open-Pit+Blasting+Using+Hybrid+Machine+Learning+Models&rft.jtitle=Rock+mechanics+and+rock+engineering&rft.au=Zhang%2C+Yulin&rft.au=Qiu%2C+Yingui&rft.au=Du%2C+Kun&rft.au=Nguyen%2C+Hoang&rft.date=2025-11-01&rft.pub=Springer+Vienna&rft.issn=0723-2632&rft.eissn=1434-453X&rft.volume=58&rft.issue=11&rft.spage=12523&rft.epage=12550&rft_id=info:doi/10.1007%2Fs00603-025-04730-2&rft.externalDocID=10_1007_s00603_025_04730_2
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0723-2632&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0723-2632&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0723-2632&client=summon