Computational fluid dynamics modeling of a discrete feed atomic layer deposition reactor: Application to reactor design and operation

Novel transistor fabrication methods such as area-selective atomic layer deposition (AS-ALD) are crucial to improving nanopatterning, which is essential for facilitating transistor stacking in semiconducting wafers. However, transistor surfaces are subjected to nonuniformities during the initial AS-...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computers & chemical engineering Ročník 178; s. 108400
Hlavní autoři: Tom, Matthew, Wang, Henrik, Ou, Feiyang, Yun, Sungil, Orkoulas, Gerassimos, Christofides, Panagiotis D.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.10.2023
Témata:
ISSN:0098-1354, 1873-4375
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Novel transistor fabrication methods such as area-selective atomic layer deposition (AS-ALD) are crucial to improving nanopatterning, which is essential for facilitating transistor stacking in semiconducting wafers. However, transistor surfaces are subjected to nonuniformities during the initial AS-ALD adsorption reactions that are attributed to steric hindrance effects. To minimize the role of steric hindrance generated by an oversaturation of reagent on the substrate surface, a discrete feed method is proposed for an ALD reactor configuration where reagent is introduced in short pulses through a perpendicular delivery system. An optimal reactor configuration is developed by modifying the inlet geometries of the reactor to ensure ideal fluid dynamics conditions (e.g., minimal vortices, radial flow distribution) are achieved. Detailed computational fluid dynamics simulations demonstrate the performance of the new reactor configuration and operational strategy. •Computational fluid dynamics modeling of a discrete feed ALD reactor.•Optimization of reagent delivery system.•Minimization of steric hindrance effects.•Reactor optimal operation is determined.
AbstractList Novel transistor fabrication methods such as area-selective atomic layer deposition (AS-ALD) are crucial to improving nanopatterning, which is essential for facilitating transistor stacking in semiconducting wafers. However, transistor surfaces are subjected to nonuniformities during the initial AS-ALD adsorption reactions that are attributed to steric hindrance effects. To minimize the role of steric hindrance generated by an oversaturation of reagent on the substrate surface, a discrete feed method is proposed for an ALD reactor configuration where reagent is introduced in short pulses through a perpendicular delivery system. An optimal reactor configuration is developed by modifying the inlet geometries of the reactor to ensure ideal fluid dynamics conditions (e.g., minimal vortices, radial flow distribution) are achieved. Detailed computational fluid dynamics simulations demonstrate the performance of the new reactor configuration and operational strategy. •Computational fluid dynamics modeling of a discrete feed ALD reactor.•Optimization of reagent delivery system.•Minimization of steric hindrance effects.•Reactor optimal operation is determined.
ArticleNumber 108400
Author Tom, Matthew
Yun, Sungil
Wang, Henrik
Ou, Feiyang
Christofides, Panagiotis D.
Orkoulas, Gerassimos
Author_xml – sequence: 1
  givenname: Matthew
  orcidid: 0000-0002-7892-7418
  surname: Tom
  fullname: Tom, Matthew
  organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA
– sequence: 2
  givenname: Henrik
  surname: Wang
  fullname: Wang, Henrik
  organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA
– sequence: 3
  givenname: Feiyang
  orcidid: 0000-0002-1350-3657
  surname: Ou
  fullname: Ou, Feiyang
  organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA
– sequence: 4
  givenname: Sungil
  surname: Yun
  fullname: Yun, Sungil
  organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA
– sequence: 5
  givenname: Gerassimos
  surname: Orkoulas
  fullname: Orkoulas, Gerassimos
  organization: Department of Chemical Engineering, Widener University, Chester, PA 19013, USA
– sequence: 6
  givenname: Panagiotis D.
  surname: Christofides
  fullname: Christofides, Panagiotis D.
  email: pdc@seas.ucla.edu
  organization: Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA, 90095-1592, USA
BookMark eNqNkMtKBDEQRYMoOD7-IX5Aj0mnOx3diAy-QHCj65CpVMYM3UmTRGE-wP-2x1EQV64Kqu49UOeI7IcYkJAzzuaccXm-nkMcRnjFAcNqXrNaTHvVMLZHZlx1ompE1-6TGWMXquKibQ7JUc5rxljdKDUjH4up_lZM8TGYnrr-zVtqN8EMHjIdosXehxWNjhpqfYaEBalDtNSUOGVobzaYqMUxZr-F0IQGSkyX9Hocew9fZFriz36KZr8K1ARL44jp635CDpzpM55-z2PycnvzvLivHp_uHhbXjxWImpeqdcJZWTvXGdGAkaCUtZ1tzJKBBN6BrJmEthXIG4ntUomaLV3tRCPZ0koljsnFjgsp5pzQ6TH5waSN5kxvfeq1_uVTb33qnc-pe_WnC37nrSTj-38RFjsCTi--e0w6g8cAaH1CKNpG_w_KJ-98n8k
CitedBy_id crossref_primary_10_1016_j_optmat_2024_115440
crossref_primary_10_1093_nsr_nwaf247
crossref_primary_10_1016_j_dche_2024_100140
crossref_primary_10_1016_j_jece_2025_119101
Cites_doi 10.1021/acsnano.7b04701
10.1063/1.4953034
10.1016/j.vacuum.2015.10.023
10.1016/j.ces.2012.07.015
10.1021/acs.langmuir.1c02216
10.1116/6.0000840
10.1002/aic.690460502
10.1021/acs.chemmater.8b03454
10.1021/acs.chemmater.9b02992
10.1063/1.4942439
10.3390/pr11030686
10.3390/coatings13030558
10.1016/B978-0-443-15274-0.50012-3
10.1016/j.memsci.2020.118610
10.1016/j.ces.2020.115513
10.1021/acs.jpcc.1c10816
10.1016/j.mattod.2014.04.026
10.1021/acs.chemmater.2c00513
10.1109/55.823570
10.1088/0022-3727/30/12/006
10.1016/j.ifacol.2022.09.439
10.23919/VLSIT.2017.7998183
10.1016/j.cherd.2022.09.051
10.1002/cvde.200500024
10.54097/hset.v27i.3779
10.3390/coatings9010005
10.1002/adma.202109796
10.1016/j.cej.2023.144944
10.1007/s10853-015-9303-7
10.1002/adma.202270332
10.1063/1.5095515
10.1080/10408436.2012.736886
10.1021/acs.chemmater.9b04647
10.1149/2.0021506jss
10.1016/j.ijheatmasstransfer.2016.01.034
10.1109/ISQED.2016.7479212
10.1116/6.0002096
10.1063/1.1922076
10.1016/j.ces.2023.119118
10.1149/2.0051506jss
10.1116/1.4913379
10.1021/acsami.5b05262
10.3390/mi14020279
10.1109/JPROC.1998.658762
10.1016/j.compchemeng.2022.107757
10.1039/D3TC00704A
10.1116/1.3670745
10.1116/1.4932564
10.1063/1.1940727
10.1016/j.compchemeng.2022.107861
10.1109/ASMC.2007.375064
10.1021/cr900056b
10.1063/1.4742991
10.1016/j.ces.2021.116447
10.1021/cm100900k
ContentType Journal Article
Copyright 2023 Elsevier Ltd
Copyright_xml – notice: 2023 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.compchemeng.2023.108400
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-4375
ExternalDocumentID 10_1016_j_compchemeng_2023_108400
S0098135423002703
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKC
AAIKJ
AAKOC
AALRI
AAMNW
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHPOS
AI.
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLY
HLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LG9
LX7
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCE
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSG
SST
SSZ
T5K
VH1
WUQ
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c321t-5f3fd62ff7a34ca6c88dd7d4ab0c6c17c6206c553e146e5b8320bf2f3460bd683
ISICitedReferencesCount 5
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001072416300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0098-1354
IngestDate Sat Nov 29 07:28:32 EST 2025
Tue Nov 18 22:31:38 EST 2025
Sat Apr 13 16:39:05 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords Computational fluid dynamics modeling
Area-selective atomic layer deposition
Reactor optimal operation
Semiconductor manufacturing processes
Reactor optimal design
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-5f3fd62ff7a34ca6c88dd7d4ab0c6c17c6206c553e146e5b8320bf2f3460bd683
ORCID 0000-0002-1350-3657
0000-0002-7892-7418
ParticipantIDs crossref_primary_10_1016_j_compchemeng_2023_108400
crossref_citationtrail_10_1016_j_compchemeng_2023_108400
elsevier_sciencedirect_doi_10_1016_j_compchemeng_2023_108400
PublicationCentury 2000
PublicationDate October 2023
2023-10-00
PublicationDateYYYYMMDD 2023-10-01
PublicationDate_xml – month: 10
  year: 2023
  text: October 2023
PublicationDecade 2020
PublicationTitle Computers & chemical engineering
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kanarik, Lill, Hudson, Sriraman, Tan, Marks, Vahedi, Gottscho (b25) 2015; 33
Chen, Li, Dai, Yang, Wen, Shan, Chen (b10) 2023; 472
Elers, Blomberg, Peussa, Aitchison, Haukka, Marcus (b18) 2006; 12
Merkx, Angelidis, Mameli, Li, Lemaire, Sharma, Hausmann, Kessels, Sandoval, Mackus (b39) 2022; 126
Park, Kim, Jang, Kim, Lee, Lee, Jung, Hwang (b48) 2011; 23
Yun, Tom, Orkoulas, Christofides (b67) 2022; 163
Faraz, Roozeboom, Knoops, Kessels (b19) 2015; 4
Muneshwar, Cadien (b44) 2016; 119
Mohammad, Elomri, Kerbache (b41) 2022; 55
ANSYS (b3) 2022
Puurunen (b53) 2005; 97
Ritala, Leskelä (b55) 2002
Yarbrough, Pieck, Grigjanis, Oh, Maue, Tonner-Zech, Bent (b64) 2022; 34
Yun, Wang, Tom, Ou, Orkoulas, Christofides (b69) 2023; 13
Carver, Plombon, Romero, Suri, Tronic, Jr. (b7) 2015; 4
Yun, Ou, Wang, Tom, Orkoulas, Christofides (b66) 2022; 188
Chandrasekar, Zhang, Mhaskar (b8) 2023; 281
Handwerker (b21) 2021
Johnson, Hultqvist, Bent (b24) 2014; 17
Ponraj, Attolini, Bosi (b50) 2013; 38
Poodt, Cameron, Dickey, George, Kuznetsov, Parsons, Roozeboom, Sundaram, Vermeer (b51) 2012; 30
George (b20) 2010; 110
Mameli, Merkx, Karasulu, Roozeboom, Kessels, Mackus (b36) 2017; 11
Pan, Jen, Yuan (b47) 2016; 96
Andreoni, Yip (b1) 2020
Merkx, Sandoval, Hausmann, Kessels, Mackus (b40) 2020; 32
Wang, Liu, Zhou (b60) 2022; 34
Xiong, Jia, Mi, Wang (b62) 2021; 617
Cao, Cai, Chen (b6) 2020; 32
Deng, He, Duan, Shan, Chen (b16) 2016; 123
Mousa, Oldham, Parsons (b43) 2015; 7
Xu, Haeve, Lemaire, Sharma, Hausmann, Agarwal (b63) 2022; 38
Lee, Cho, Kim (b28) 2017; 2
Mackus, Bol, Kessels (b34) 2014; 6
Petti, Münzenrieder, Vogt, Faber, Büthe, Cantarella, Bottacchi, Anthopoulos, Tröster (b49) 2016; 3
Tom, M., Yun, S., Wang, H., Ou, F., Orkoulas, G., Christofides, P.D., 2023. Multiscale Modeling of Spatial Area-Selective Thermal Atomic Layer Deposition. In: Kokossis, A.C., Georgiadis, M.C., Pistikopoulos, E. (Eds.), Proceedings of 33rd European Symposium on Computer Aided Process Engineering. In: Computer Aided Chemical Engineering, vol. 52, Athens, Greece, pp. 71–76.
Lee, Bent (b27) 2011
Mackus, Merkx, Kessels (b35) 2019; 31
Wang, Wang, Xu, Liu, Chen, Chen, Hu, Duan (b61) 2019; 114
Yun, Tom, Ou, Orkoulas, Christofides (b68) 2022; 161
Cong, Li, Cao, Feng, Chen (b12) 2020; 217
De la Huerta, Nguyen, Dedulle, Bellet, Jiménez, Muñoz-Rojas (b14) 2018; 9
Powell, Glasse, Green, French, Stemp (b52) 2000; 21
Kimes, Moore, Maslar (b26) 2012; 83
Meng, Goodrich (b38) 2021
Li, Tezsevin, Merkx, Maas, Kessels, Sandoval, Mackus (b31) 2022; 40
Anitha, Banerjee, Joo (b2) 2015; 50
Swanson (b58) 2023
Siimon, Aarik (b57) 1997; 30
Lee, Lee, Han, Kim, Jeon (b29) 2023; 11
ANSYS (b4) 2022
Lee, F., Marcus, S., Shero, E., Wilk, G., Swerts, J., Maes, J.W., Blomberg, T., Delabie, A., Gros-Jean, M., Deloffre, E., 2007. Atomic Layer Deposition: An Enabling Technology for Microelectronic Device Manufacturing. In: Proceedings of IEEE/SEMI Advanced Semiconductor Manufacturing Conference. Stresa, Italy, pp. 359–365.
Schram, Sutar, Radu, Asselberghs (b56) 2022; 34
Asenov, A., Wang, Y., Cheng, B., Wang, X., Asenov, P., Al-Ameri, T., Georgiev, V.P., 2016. Nanowire transistor solutions for 5nm and beyond. In: Proceedings of 17th International Symposium on Quality Electronic Design. Santa Clara, CA, USA, pp. 269–274.
Deng, He, Duan, Chen, Shan (b15) 2016; 34
Christofides, Armaou, Lou, Varshney (b11) 2009
Holmqvist, Törndahl, Stenström (b22) 2012; 81
Maroudas (b37) 2000; 46
Rashid, Mhaskar (b54) 2023; 11
Yarbrough, Shearer, Bent (b65) 2021; 39
Loubet, N., Hook, T., Montanini, P., Yeung, C.-W., Kanakasabapathy, S., Guillom, M., Yamashita, T., Zhang, J., Miao, X., Wang, J., Young, A., Chao, R., Kang, M., Liu, Z., Fan, S., Hamieh, B., Sieg, S., Mignot, Y., Xu, W., Seo, S.-C., Yoo, J., Mochizuki, S., Sankarapandian, M., Kwon, O., Carr, A., Greene, A., Park, Y., Frougier, J., Galatage, R., Bao, R., Shearer, J., Conti, R., Song, H., Lee, D., Kong, D., Xu, Y., Arceo, A., Bi, Z., Xu, P., Muthinti, R., Li, J., Wong, R., Brown, D., Oldiges, P., Robison, R., Arnold, J., Felix, N., Skordas, S., Gaudiello, J., Standaert, T., Jagannathan, H., Corliss, D., Na, M.-H., Knorr, A., Wu, T., Gupta, D., Lian, S., Divakaruni, R., Gow, T., Labelle, C., Lee, S., Paruchuri, V., Bu, H., Khare, M., 2017. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In: Proceedings of Symposium on VLSI Technology. Kyoto, Japan, pp. T230–T231.
Dziczek (b17) 2022
Dahmen (b13) 2003
Lin, Wang, Tien, Tung, Wang, Lai (b32) 2023; 14
Huang (b23) 2022; 27
Pan (b46) 2021; 234
Moore (b42) 1998; 86
Chen, Kim, McIntyre, Porter, Bent (b9) 2005; 86
Muñoz-Rojas, Nguyen, De la Huerta, Jiménez, Bellet (b45) 2019
Xu (10.1016/j.compchemeng.2023.108400_b63) 2022; 38
Maroudas (10.1016/j.compchemeng.2023.108400_b37) 2000; 46
Kanarik (10.1016/j.compchemeng.2023.108400_b25) 2015; 33
Yun (10.1016/j.compchemeng.2023.108400_b68) 2022; 161
10.1016/j.compchemeng.2023.108400_b30
Yun (10.1016/j.compchemeng.2023.108400_b69) 2023; 13
Rashid (10.1016/j.compchemeng.2023.108400_b54) 2023; 11
Mackus (10.1016/j.compchemeng.2023.108400_b35) 2019; 31
Siimon (10.1016/j.compchemeng.2023.108400_b57) 1997; 30
Wang (10.1016/j.compchemeng.2023.108400_b61) 2019; 114
Lee (10.1016/j.compchemeng.2023.108400_b29) 2023; 11
Chandrasekar (10.1016/j.compchemeng.2023.108400_b8) 2023; 281
Cao (10.1016/j.compchemeng.2023.108400_b6) 2020; 32
Dziczek (10.1016/j.compchemeng.2023.108400_b17) 2022
Wang (10.1016/j.compchemeng.2023.108400_b60) 2022; 34
De la Huerta (10.1016/j.compchemeng.2023.108400_b14) 2018; 9
ANSYS (10.1016/j.compchemeng.2023.108400_b3) 2022
George (10.1016/j.compchemeng.2023.108400_b20) 2010; 110
Cong (10.1016/j.compchemeng.2023.108400_b12) 2020; 217
Handwerker (10.1016/j.compchemeng.2023.108400_b21) 2021
Faraz (10.1016/j.compchemeng.2023.108400_b19) 2015; 4
Holmqvist (10.1016/j.compchemeng.2023.108400_b22) 2012; 81
Xiong (10.1016/j.compchemeng.2023.108400_b62) 2021; 617
Deng (10.1016/j.compchemeng.2023.108400_b15) 2016; 34
Muñoz-Rojas (10.1016/j.compchemeng.2023.108400_b45) 2019
Puurunen (10.1016/j.compchemeng.2023.108400_b53) 2005; 97
ANSYS (10.1016/j.compchemeng.2023.108400_b4) 2022
Pan (10.1016/j.compchemeng.2023.108400_b46) 2021; 234
Moore (10.1016/j.compchemeng.2023.108400_b42) 1998; 86
Dahmen (10.1016/j.compchemeng.2023.108400_b13) 2003
Poodt (10.1016/j.compchemeng.2023.108400_b51) 2012; 30
Yun (10.1016/j.compchemeng.2023.108400_b67) 2022; 163
Chen (10.1016/j.compchemeng.2023.108400_b10) 2023; 472
Elers (10.1016/j.compchemeng.2023.108400_b18) 2006; 12
10.1016/j.compchemeng.2023.108400_b33
Schram (10.1016/j.compchemeng.2023.108400_b56) 2022; 34
Lee (10.1016/j.compchemeng.2023.108400_b28) 2017; 2
Carver (10.1016/j.compchemeng.2023.108400_b7) 2015; 4
Meng (10.1016/j.compchemeng.2023.108400_b38) 2021
Mackus (10.1016/j.compchemeng.2023.108400_b34) 2014; 6
Mousa (10.1016/j.compchemeng.2023.108400_b43) 2015; 7
Li (10.1016/j.compchemeng.2023.108400_b31) 2022; 40
Ponraj (10.1016/j.compchemeng.2023.108400_b50) 2013; 38
Mohammad (10.1016/j.compchemeng.2023.108400_b41) 2022; 55
Christofides (10.1016/j.compchemeng.2023.108400_b11) 2009
10.1016/j.compchemeng.2023.108400_b5
Merkx (10.1016/j.compchemeng.2023.108400_b40) 2020; 32
Mameli (10.1016/j.compchemeng.2023.108400_b36) 2017; 11
Yarbrough (10.1016/j.compchemeng.2023.108400_b65) 2021; 39
Park (10.1016/j.compchemeng.2023.108400_b48) 2011; 23
Pan (10.1016/j.compchemeng.2023.108400_b47) 2016; 96
Powell (10.1016/j.compchemeng.2023.108400_b52) 2000; 21
Yarbrough (10.1016/j.compchemeng.2023.108400_b64) 2022; 34
Petti (10.1016/j.compchemeng.2023.108400_b49) 2016; 3
Huang (10.1016/j.compchemeng.2023.108400_b23) 2022; 27
Chen (10.1016/j.compchemeng.2023.108400_b9) 2005; 86
Andreoni (10.1016/j.compchemeng.2023.108400_b1) 2020
10.1016/j.compchemeng.2023.108400_b59
Kimes (10.1016/j.compchemeng.2023.108400_b26) 2012; 83
Deng (10.1016/j.compchemeng.2023.108400_b16) 2016; 123
Lin (10.1016/j.compchemeng.2023.108400_b32) 2023; 14
Yun (10.1016/j.compchemeng.2023.108400_b66) 2022; 188
Johnson (10.1016/j.compchemeng.2023.108400_b24) 2014; 17
Anitha (10.1016/j.compchemeng.2023.108400_b2) 2015; 50
Lee (10.1016/j.compchemeng.2023.108400_b27) 2011
Muneshwar (10.1016/j.compchemeng.2023.108400_b44) 2016; 119
Merkx (10.1016/j.compchemeng.2023.108400_b39) 2022; 126
Ritala (10.1016/j.compchemeng.2023.108400_b55) 2002
Swanson (10.1016/j.compchemeng.2023.108400_b58) 2023
References_xml – volume: 11
  start-page: 686
  year: 2023
  ident: b54
  article-title: Are neural networks the right tool for process modeling and control of batch and batch-like processes?
  publication-title: Processes
– volume: 472
  year: 2023
  ident: b10
  article-title: Multiscale CFD modelling for conformal atomic layer deposition in high aspect ratio nanostructures
  publication-title: Chem. Eng. J.
– reference: Asenov, A., Wang, Y., Cheng, B., Wang, X., Asenov, P., Al-Ameri, T., Georgiev, V.P., 2016. Nanowire transistor solutions for 5nm and beyond. In: Proceedings of 17th International Symposium on Quality Electronic Design. Santa Clara, CA, USA, pp. 269–274.
– volume: 4
  start-page: N5005
  year: 2015
  ident: b7
  article-title: Atomic layer etching: An industry perspective
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 14
  year: 2023
  ident: b32
  article-title: Fabrication of aluminum oxide thin-film devices based on atomic layer deposition and pulsed discrete feed method
  publication-title: Micromachines
– volume: 13
  start-page: 558
  year: 2023
  ident: b69
  article-title: Multiscale CFD modeling of area-selective atomic layer deposition: Application to reactor design and operating condition calculation
  publication-title: Coatings
– year: 2020
  ident: b1
  article-title: Handbook of Materials Modeling: Methods: Theory and Modeling
– volume: 55
  start-page: 476
  year: 2022
  end-page: 483
  ident: b41
  article-title: The global semiconductor chip shortage: Causes, implications, and potential remedies
  publication-title: IFAC-PapersOnLine
– volume: 34
  year: 2022
  ident: b60
  article-title: The road for 2D semiconductors in the silicon age
  publication-title: Adv. Mater.
– volume: 30
  start-page: 1725
  year: 1997
  end-page: 1728
  ident: b57
  article-title: Thickness profiles of thin films caused by secondary reactions in flow-type atomic layer deposition reactors
  publication-title: J. Phys. D: Appl. Phys.
– volume: 234
  year: 2021
  ident: b46
  article-title: Density functional theory (DFT)-enhanced computational fluid dynamics modeling of substrate movement and chemical deposition process in spatial atomic layer deposition
  publication-title: Chem. Eng. Sci.
– volume: 23
  start-page: 1654
  year: 2011
  end-page: 1658
  ident: b48
  article-title: Improved growth and electrical properties of atomic-layer-deposited metal-oxide film by discrete feeding method of metal precursor
  publication-title: Chem. Mater.
– start-page: 103
  year: 2002
  end-page: 159
  ident: b55
  article-title: Chapter 2 - Atomic layer deposition
  publication-title: Handbook of Thin Films
– volume: 4
  start-page: N5023
  year: 2015
  end-page: N5032
  ident: b19
  article-title: Atomic layer etching: What can we learn from atomic layer deposition?
  publication-title: ECS J. Solid State Sci. Technol.
– volume: 83
  year: 2012
  ident: b26
  article-title: Perpendicular-flow, single-wafer atomic layer deposition reactor chamber design for use with in situ diagnostics
  publication-title: Rev. Sci. Instrum.
– volume: 11
  start-page: 6894
  year: 2023
  end-page: 6901
  ident: b29
  article-title: Enhancing chemisorption efficiency and thin-film characteristics via a discrete feeding method in high-k dielectric atomic layer deposition for preventing interfacial layer formation
  publication-title: J. Mater. Chem. C
– volume: 119
  year: 2016
  ident: b44
  article-title: A
  publication-title: J. Appl. Phys.
– volume: 12
  start-page: 13
  year: 2006
  end-page: 24
  ident: b18
  article-title: Film uniformity in atomic layer deposition
  publication-title: Chem. Vapor Depos.
– volume: 617
  year: 2021
  ident: b62
  article-title: Upgrading polytetrafluoroethylene hollow-fiber membranes by CFD-optimized atomic layer deposition
  publication-title: J. Membr. Sci.
– volume: 30
  year: 2012
  ident: b51
  article-title: Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A
– volume: 217
  year: 2020
  ident: b12
  article-title: Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method
  publication-title: Chem. Eng. Sci.
– start-page: 1
  year: 2022
  end-page: 7
  ident: b17
  article-title: Why the automotive chip crisis isn’t over (yet)
  publication-title: Chicago Fed Letter.
– volume: 34
  start-page: 4646
  year: 2022
  end-page: 4659
  ident: b64
  article-title: Tuning molecular inhibitors and aluminum precursors for the area-selective atomic layer deposition of Al
  publication-title: Chem. Mater.
– volume: 3
  year: 2016
  ident: b49
  article-title: Metal oxide semiconductor thin-film transistors for flexible electronics
  publication-title: Appl. Phys. Rev.
– volume: 2
  start-page: 37
  year: 2017
  end-page: 46
  ident: b28
  article-title: Is there a better semiconductor firm in Taiwan?
  publication-title: Manage. Econ. Rev.
– start-page: 787
  year: 2003
  end-page: 808
  ident: b13
  article-title: Chemical vapor deposition
  publication-title: Encyclopedia of Physical Science and Technology
– volume: 50
  start-page: 7495
  year: 2015
  end-page: 7536
  ident: b2
  article-title: Recent developments in TiO
  publication-title: J. Mater. Sci.
– volume: 38
  start-page: 203
  year: 2013
  end-page: 233
  ident: b50
  article-title: Review on atomic layer deposition and applications of oxide thin films
  publication-title: Crit. Rev. Solid State Mater. Sci.
– volume: 9
  start-page: 5
  year: 2018
  ident: b14
  article-title: Influence of the geometric parameters on the deposition mode in spatial atomic layer deposition: A novel approach to area-selective deposition
  publication-title: Coatings
– volume: 33
  year: 2015
  ident: b25
  article-title: Overview of atomic layer etching in the semiconductor industry
  publication-title: J. Vac. Sci. Technol. A
– volume: 163
  year: 2022
  ident: b67
  article-title: Multiscale computational fluid dynamics modeling of spatial thermal atomic layer etching
  publication-title: Comput. Chem. Eng.
– volume: 34
  start-page: 01A108
  year: 2016
  ident: b15
  article-title: Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A
– reference: Lee, F., Marcus, S., Shero, E., Wilk, G., Swerts, J., Maes, J.W., Blomberg, T., Delabie, A., Gros-Jean, M., Deloffre, E., 2007. Atomic Layer Deposition: An Enabling Technology for Microelectronic Device Manufacturing. In: Proceedings of IEEE/SEMI Advanced Semiconductor Manufacturing Conference. Stresa, Italy, pp. 359–365.
– year: 2009
  ident: b11
  article-title: Control and Optimization of Multiscale Process Systems
– volume: 46
  start-page: 878
  year: 2000
  end-page: 882
  ident: b37
  article-title: Multiscale modeling of hard materials: Challenges and opportunities for chemical engineering
  publication-title: AIChE J.
– volume: 123
  start-page: 103
  year: 2016
  end-page: 110
  ident: b16
  article-title: Atomic layer deposition process optimization by computational fluid dynamics
  publication-title: Vacuum
– volume: 110
  start-page: 111
  year: 2010
  end-page: 131
  ident: b20
  article-title: Atomic layer deposition: An overview
  publication-title: Chem. Rev.
– volume: 86
  year: 2005
  ident: b9
  article-title: Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification
  publication-title: Appl. Phys. Lett.
– reference: Tom, M., Yun, S., Wang, H., Ou, F., Orkoulas, G., Christofides, P.D., 2023. Multiscale Modeling of Spatial Area-Selective Thermal Atomic Layer Deposition. In: Kokossis, A.C., Georgiadis, M.C., Pistikopoulos, E. (Eds.), Proceedings of 33rd European Symposium on Computer Aided Process Engineering. In: Computer Aided Chemical Engineering, vol. 52, Athens, Greece, pp. 71–76.
– start-page: 1
  year: 2019
  end-page: 25
  ident: b45
  article-title: Spatial atomic layer deposition
  publication-title: Chemical Vapor Deposition for Nanotechnology
– volume: 281
  year: 2023
  ident: b8
  article-title: A hybrid hubspace-RNN based approach for modelling of non-linear batch processes
  publication-title: Chem. Eng. Sci.
– start-page: 193
  year: 2011
  end-page: 225
  ident: b27
  article-title: Nanopatterning by area-selective atomic layer deposition
  publication-title: Atomic Layer Deposition of Nanostructured Materials
– volume: 38
  start-page: 652
  year: 2022
  end-page: 660
  ident: b63
  article-title: Functionalization of the SiO
  publication-title: Langmuir
– reference: Loubet, N., Hook, T., Montanini, P., Yeung, C.-W., Kanakasabapathy, S., Guillom, M., Yamashita, T., Zhang, J., Miao, X., Wang, J., Young, A., Chao, R., Kang, M., Liu, Z., Fan, S., Hamieh, B., Sieg, S., Mignot, Y., Xu, W., Seo, S.-C., Yoo, J., Mochizuki, S., Sankarapandian, M., Kwon, O., Carr, A., Greene, A., Park, Y., Frougier, J., Galatage, R., Bao, R., Shearer, J., Conti, R., Song, H., Lee, D., Kong, D., Xu, Y., Arceo, A., Bi, Z., Xu, P., Muthinti, R., Li, J., Wong, R., Brown, D., Oldiges, P., Robison, R., Arnold, J., Felix, N., Skordas, S., Gaudiello, J., Standaert, T., Jagannathan, H., Corliss, D., Na, M.-H., Knorr, A., Wu, T., Gupta, D., Lian, S., Divakaruni, R., Gow, T., Labelle, C., Lee, S., Paruchuri, V., Bu, H., Khare, M., 2017. Stacked nanosheet gate-all-around transistor to enable scaling beyond FinFET. In: Proceedings of Symposium on VLSI Technology. Kyoto, Japan, pp. T230–T231.
– volume: 96
  start-page: 189
  year: 2016
  end-page: 198
  ident: b47
  article-title: Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition of Al
  publication-title: Int. J. Heat Mass Transfer
– volume: 188
  start-page: 271
  year: 2022
  end-page: 286
  ident: b66
  article-title: Atomistic-mesoscopic modeling of area-selective thermal atomic layer deposition
  publication-title: Chem. Eng. Res. Des.
– year: 2021
  ident: b21
  article-title: A global semiconductor shortage highlights a troubling trend: A small and shrinking number of the world’s computer chips are made in the US
  publication-title: Conversation
– volume: 32
  start-page: 2195
  year: 2020
  end-page: 2207
  ident: b6
  article-title: Inherently selective atomic layer deposition and applications
  publication-title: Chem. Mater.
– volume: 31
  start-page: 2
  year: 2019
  end-page: 12
  ident: b35
  article-title: From the bottom-up: Toward area-selective atomic layer deposition with high selectivity
  publication-title: Chem. Mater.
– volume: 11
  start-page: 9303
  year: 2017
  end-page: 9311
  ident: b36
  article-title: Area-selective atomic layer deposition of SiO
  publication-title: ACS Nano
– volume: 126
  start-page: 4845
  year: 2022
  end-page: 4853
  ident: b39
  article-title: Relation between reactive surface sites and precursor choice for area-selective atomic layer deposition using small molecule inhibitors
  publication-title: J. Phys. Chem. C
– volume: 7
  start-page: 19523
  year: 2015
  end-page: 19529
  ident: b43
  article-title: Precise nanoscale surface modification and coating of macroscale objects: Open-environment in loco atomic layer deposition on an automobile
  publication-title: ACS Appl. Mater. Interfaces
– year: 2022
  ident: b3
  article-title: Ansys Fluent Theory Guide
– volume: 27
  start-page: 361
  year: 2022
  end-page: 367
  ident: b23
  article-title: Research progresses on suppressing the short-channel effects of field-effect transistor
  publication-title: Highlights Sci. Eng. Technol.
– volume: 21
  start-page: 104
  year: 2000
  end-page: 106
  ident: b52
  article-title: An amorphous silicon thin-film transistor with fully self-aligned top gate structure
  publication-title: IEEE Electron Device Lett.
– year: 2023
  ident: b58
  article-title: The CHIPS act is about more than chips: Here’s what’s in it
  publication-title: N. Y. Times
– volume: 114
  year: 2019
  ident: b61
  article-title: Multiple short pulse process for low-temperature atomic layer deposition and its transient steric hindrance
  publication-title: Appl. Phys. Lett.
– volume: 17
  start-page: 236
  year: 2014
  end-page: 246
  ident: b24
  article-title: A brief review of atomic layer deposition: from fundamentals to applications
  publication-title: Mater. Today
– volume: 161
  year: 2022
  ident: b68
  article-title: Multiscale computational fluid dynamics modeling of thermal atomic layer etching: Application to chamber configuration design
  publication-title: Comput. Chem. Eng.
– year: 2021
  ident: b38
  article-title: Global governments ramp up pace of chip investments
  publication-title: Semicond. Ind. Assoc.
– volume: 40
  year: 2022
  ident: b31
  article-title: Packing of inhibitor molecules during area-selective atomic layer deposition studied using random sequential adsorption simulations
  publication-title: J. Vac. Sci. Technol. A
– volume: 81
  start-page: 260
  year: 2012
  end-page: 272
  ident: b22
  article-title: A model-based methodology for the analysis and design of atomic layer deposition processes-Part I: Mechanistic modelling of continuous flow reactors
  publication-title: Chem. Eng. Sci.
– volume: 86
  start-page: 82
  year: 1998
  end-page: 85
  ident: b42
  article-title: Cramming more components onto integrated circuits
  publication-title: Proc. IEEE
– volume: 32
  start-page: 3335
  year: 2020
  end-page: 3345
  ident: b40
  article-title: Mechanism of precursor blocking by acetylacetone inhibitor molecules during area-selective atomic layer deposition of SiO
  publication-title: Chem. Mater.
– volume: 97
  year: 2005
  ident: b53
  article-title: Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process
  publication-title: J. Appl. Phys.
– volume: 34
  year: 2022
  ident: b56
  article-title: Challenges of wafer-scale integration of 2D semiconductors for high-performance transistor circuits
  publication-title: Adv. Mater.
– year: 2022
  ident: b4
  article-title: Ansys Fluent User’s Guide
– volume: 6
  start-page: 10941
  year: 2014
  end-page: 10960
  ident: b34
  article-title: The use of atomic layer deposition in advanced nanopatterning
  publication-title: IEEE Electron Device Lett.
– volume: 39
  year: 2021
  ident: b65
  article-title: Next generation nanopatterning using small molecule inhibitors for area-selective atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A
– volume: 11
  start-page: 9303
  year: 2017
  ident: 10.1016/j.compchemeng.2023.108400_b36
  article-title: Area-selective atomic layer deposition of SiO2 using acetylacetone as a chemoselective inhibitor in an ABC-type cycle
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b04701
– volume: 3
  year: 2016
  ident: 10.1016/j.compchemeng.2023.108400_b49
  article-title: Metal oxide semiconductor thin-film transistors for flexible electronics
  publication-title: Appl. Phys. Rev.
  doi: 10.1063/1.4953034
– volume: 123
  start-page: 103
  year: 2016
  ident: 10.1016/j.compchemeng.2023.108400_b16
  article-title: Atomic layer deposition process optimization by computational fluid dynamics
  publication-title: Vacuum
  doi: 10.1016/j.vacuum.2015.10.023
– start-page: 103
  year: 2002
  ident: 10.1016/j.compchemeng.2023.108400_b55
  article-title: Chapter 2 - Atomic layer deposition
– volume: 81
  start-page: 260
  year: 2012
  ident: 10.1016/j.compchemeng.2023.108400_b22
  article-title: A model-based methodology for the analysis and design of atomic layer deposition processes-Part I: Mechanistic modelling of continuous flow reactors
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2012.07.015
– start-page: 787
  year: 2003
  ident: 10.1016/j.compchemeng.2023.108400_b13
  article-title: Chemical vapor deposition
– volume: 38
  start-page: 652
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108400_b63
  article-title: Functionalization of the SiO2 surface with aminosilanes to enable area-selective atomic layer deposition of Al2O3
  publication-title: Langmuir
  doi: 10.1021/acs.langmuir.1c02216
– volume: 39
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108400_b65
  article-title: Next generation nanopatterning using small molecule inhibitors for area-selective atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/6.0000840
– start-page: 1
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108400_b17
  article-title: Why the automotive chip crisis isn’t over (yet)
  publication-title: Chicago Fed Letter.
– volume: 46
  start-page: 878
  year: 2000
  ident: 10.1016/j.compchemeng.2023.108400_b37
  article-title: Multiscale modeling of hard materials: Challenges and opportunities for chemical engineering
  publication-title: AIChE J.
  doi: 10.1002/aic.690460502
– volume: 31
  start-page: 2
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108400_b35
  article-title: From the bottom-up: Toward area-selective atomic layer deposition with high selectivity
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.8b03454
– volume: 32
  start-page: 3335
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108400_b40
  article-title: Mechanism of precursor blocking by acetylacetone inhibitor molecules during area-selective atomic layer deposition of SiO2
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b02992
– volume: 119
  year: 2016
  ident: 10.1016/j.compchemeng.2023.108400_b44
  article-title: AxBAxB... pulsed atomic layer deposition: Numerical growth model and experiments
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4942439
– year: 2021
  ident: 10.1016/j.compchemeng.2023.108400_b21
  article-title: A global semiconductor shortage highlights a troubling trend: A small and shrinking number of the world’s computer chips are made in the US
  publication-title: Conversation
– volume: 11
  start-page: 686
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108400_b54
  article-title: Are neural networks the right tool for process modeling and control of batch and batch-like processes?
  publication-title: Processes
  doi: 10.3390/pr11030686
– volume: 13
  start-page: 558
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108400_b69
  article-title: Multiscale CFD modeling of area-selective atomic layer deposition: Application to reactor design and operating condition calculation
  publication-title: Coatings
  doi: 10.3390/coatings13030558
– start-page: 193
  year: 2011
  ident: 10.1016/j.compchemeng.2023.108400_b27
  article-title: Nanopatterning by area-selective atomic layer deposition
– ident: 10.1016/j.compchemeng.2023.108400_b59
  doi: 10.1016/B978-0-443-15274-0.50012-3
– volume: 617
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108400_b62
  article-title: Upgrading polytetrafluoroethylene hollow-fiber membranes by CFD-optimized atomic layer deposition
  publication-title: J. Membr. Sci.
  doi: 10.1016/j.memsci.2020.118610
– volume: 217
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108400_b12
  article-title: Transient analysis and process optimization of the spatial atomic layer deposition using the dynamic mesh method
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2020.115513
– volume: 126
  start-page: 4845
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108400_b39
  article-title: Relation between reactive surface sites and precursor choice for area-selective atomic layer deposition using small molecule inhibitors
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.1c10816
– volume: 17
  start-page: 236
  year: 2014
  ident: 10.1016/j.compchemeng.2023.108400_b24
  article-title: A brief review of atomic layer deposition: from fundamentals to applications
  publication-title: Mater. Today
  doi: 10.1016/j.mattod.2014.04.026
– volume: 34
  start-page: 4646
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108400_b64
  article-title: Tuning molecular inhibitors and aluminum precursors for the area-selective atomic layer deposition of Al2O3
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.2c00513
– volume: 21
  start-page: 104
  year: 2000
  ident: 10.1016/j.compchemeng.2023.108400_b52
  article-title: An amorphous silicon thin-film transistor with fully self-aligned top gate structure
  publication-title: IEEE Electron Device Lett.
  doi: 10.1109/55.823570
– volume: 30
  start-page: 1725
  year: 1997
  ident: 10.1016/j.compchemeng.2023.108400_b57
  article-title: Thickness profiles of thin films caused by secondary reactions in flow-type atomic layer deposition reactors
  publication-title: J. Phys. D: Appl. Phys.
  doi: 10.1088/0022-3727/30/12/006
– volume: 55
  start-page: 476
  issue: 10
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108400_b41
  article-title: The global semiconductor chip shortage: Causes, implications, and potential remedies
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2022.09.439
– year: 2021
  ident: 10.1016/j.compchemeng.2023.108400_b38
  article-title: Global governments ramp up pace of chip investments
  publication-title: Semicond. Ind. Assoc.
– ident: 10.1016/j.compchemeng.2023.108400_b33
  doi: 10.23919/VLSIT.2017.7998183
– volume: 188
  start-page: 271
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108400_b66
  article-title: Atomistic-mesoscopic modeling of area-selective thermal atomic layer deposition
  publication-title: Chem. Eng. Res. Des.
  doi: 10.1016/j.cherd.2022.09.051
– volume: 12
  start-page: 13
  year: 2006
  ident: 10.1016/j.compchemeng.2023.108400_b18
  article-title: Film uniformity in atomic layer deposition
  publication-title: Chem. Vapor Depos.
  doi: 10.1002/cvde.200500024
– volume: 27
  start-page: 361
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108400_b23
  article-title: Research progresses on suppressing the short-channel effects of field-effect transistor
  publication-title: Highlights Sci. Eng. Technol.
  doi: 10.54097/hset.v27i.3779
– year: 2022
  ident: 10.1016/j.compchemeng.2023.108400_b4
– volume: 9
  start-page: 5
  year: 2018
  ident: 10.1016/j.compchemeng.2023.108400_b14
  article-title: Influence of the geometric parameters on the deposition mode in spatial atomic layer deposition: A novel approach to area-selective deposition
  publication-title: Coatings
  doi: 10.3390/coatings9010005
– volume: 34
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108400_b56
  article-title: Challenges of wafer-scale integration of 2D semiconductors for high-performance transistor circuits
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202109796
– volume: 472
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108400_b10
  article-title: Multiscale CFD modelling for conformal atomic layer deposition in high aspect ratio nanostructures
  publication-title: Chem. Eng. J.
  doi: 10.1016/j.cej.2023.144944
– volume: 50
  start-page: 7495
  year: 2015
  ident: 10.1016/j.compchemeng.2023.108400_b2
  article-title: Recent developments in TiO2 as n- and p-type transparent semiconductors: synthesis, modification, properties, and energy-related applications
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-015-9303-7
– volume: 34
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108400_b60
  article-title: The road for 2D semiconductors in the silicon age
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202270332
– volume: 114
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108400_b61
  article-title: Multiple short pulse process for low-temperature atomic layer deposition and its transient steric hindrance
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.5095515
– volume: 38
  start-page: 203
  year: 2013
  ident: 10.1016/j.compchemeng.2023.108400_b50
  article-title: Review on atomic layer deposition and applications of oxide thin films
  publication-title: Crit. Rev. Solid State Mater. Sci.
  doi: 10.1080/10408436.2012.736886
– volume: 32
  start-page: 2195
  year: 2020
  ident: 10.1016/j.compchemeng.2023.108400_b6
  article-title: Inherently selective atomic layer deposition and applications
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b04647
– volume: 6
  start-page: 10941
  year: 2014
  ident: 10.1016/j.compchemeng.2023.108400_b34
  article-title: The use of atomic layer deposition in advanced nanopatterning
  publication-title: IEEE Electron Device Lett.
– year: 2020
  ident: 10.1016/j.compchemeng.2023.108400_b1
– volume: 4
  start-page: N5005
  year: 2015
  ident: 10.1016/j.compchemeng.2023.108400_b7
  article-title: Atomic layer etching: An industry perspective
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0021506jss
– volume: 96
  start-page: 189
  year: 2016
  ident: 10.1016/j.compchemeng.2023.108400_b47
  article-title: Effects of gap size, temperature and pumping pressure on the fluid dynamics and chemical kinetics of in-line spatial atomic layer deposition of Al2O3
  publication-title: Int. J. Heat Mass Transfer
  doi: 10.1016/j.ijheatmasstransfer.2016.01.034
– ident: 10.1016/j.compchemeng.2023.108400_b5
  doi: 10.1109/ISQED.2016.7479212
– volume: 40
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108400_b31
  article-title: Packing of inhibitor molecules during area-selective atomic layer deposition studied using random sequential adsorption simulations
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/6.0002096
– volume: 86
  year: 2005
  ident: 10.1016/j.compchemeng.2023.108400_b9
  article-title: Achieving area-selective atomic layer deposition on patterned substrates by selective surface modification
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1922076
– volume: 281
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108400_b8
  article-title: A hybrid hubspace-RNN based approach for modelling of non-linear batch processes
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2023.119118
– volume: 4
  start-page: N5023
  year: 2015
  ident: 10.1016/j.compchemeng.2023.108400_b19
  article-title: Atomic layer etching: What can we learn from atomic layer deposition?
  publication-title: ECS J. Solid State Sci. Technol.
  doi: 10.1149/2.0051506jss
– year: 2023
  ident: 10.1016/j.compchemeng.2023.108400_b58
  article-title: The CHIPS act is about more than chips: Here’s what’s in it
  publication-title: N. Y. Times
– volume: 33
  year: 2015
  ident: 10.1016/j.compchemeng.2023.108400_b25
  article-title: Overview of atomic layer etching in the semiconductor industry
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.4913379
– volume: 7
  start-page: 19523
  year: 2015
  ident: 10.1016/j.compchemeng.2023.108400_b43
  article-title: Precise nanoscale surface modification and coating of macroscale objects: Open-environment in loco atomic layer deposition on an automobile
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b05262
– volume: 14
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108400_b32
  article-title: Fabrication of aluminum oxide thin-film devices based on atomic layer deposition and pulsed discrete feed method
  publication-title: Micromachines
  doi: 10.3390/mi14020279
– volume: 86
  start-page: 82
  year: 1998
  ident: 10.1016/j.compchemeng.2023.108400_b42
  article-title: Cramming more components onto integrated circuits
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.1998.658762
– volume: 161
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108400_b68
  article-title: Multiscale computational fluid dynamics modeling of thermal atomic layer etching: Application to chamber configuration design
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107757
– volume: 2
  start-page: 37
  year: 2017
  ident: 10.1016/j.compchemeng.2023.108400_b28
  article-title: Is there a better semiconductor firm in Taiwan?
  publication-title: Manage. Econ. Rev.
– volume: 11
  start-page: 6894
  year: 2023
  ident: 10.1016/j.compchemeng.2023.108400_b29
  article-title: Enhancing chemisorption efficiency and thin-film characteristics via a discrete feeding method in high-k dielectric atomic layer deposition for preventing interfacial layer formation
  publication-title: J. Mater. Chem. C
  doi: 10.1039/D3TC00704A
– volume: 30
  year: 2012
  ident: 10.1016/j.compchemeng.2023.108400_b51
  article-title: Spatial atomic layer deposition: A route towards further industrialization of atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.3670745
– volume: 34
  start-page: 01A108
  year: 2016
  ident: 10.1016/j.compchemeng.2023.108400_b15
  article-title: Mechanistic modeling study on process optimization and precursor utilization with atmospheric spatial atomic layer deposition
  publication-title: J. Vac. Sci. Technol. A
  doi: 10.1116/1.4932564
– year: 2022
  ident: 10.1016/j.compchemeng.2023.108400_b3
– volume: 97
  year: 2005
  ident: 10.1016/j.compchemeng.2023.108400_b53
  article-title: Surface chemistry of atomic layer deposition: A case study for the trimethylaluminum/water process
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1940727
– year: 2009
  ident: 10.1016/j.compchemeng.2023.108400_b11
– volume: 163
  year: 2022
  ident: 10.1016/j.compchemeng.2023.108400_b67
  article-title: Multiscale computational fluid dynamics modeling of spatial thermal atomic layer etching
  publication-title: Comput. Chem. Eng.
  doi: 10.1016/j.compchemeng.2022.107861
– ident: 10.1016/j.compchemeng.2023.108400_b30
  doi: 10.1109/ASMC.2007.375064
– volume: 110
  start-page: 111
  year: 2010
  ident: 10.1016/j.compchemeng.2023.108400_b20
  article-title: Atomic layer deposition: An overview
  publication-title: Chem. Rev.
  doi: 10.1021/cr900056b
– volume: 83
  year: 2012
  ident: 10.1016/j.compchemeng.2023.108400_b26
  article-title: Perpendicular-flow, single-wafer atomic layer deposition reactor chamber design for use with in situ diagnostics
  publication-title: Rev. Sci. Instrum.
  doi: 10.1063/1.4742991
– volume: 234
  year: 2021
  ident: 10.1016/j.compchemeng.2023.108400_b46
  article-title: Density functional theory (DFT)-enhanced computational fluid dynamics modeling of substrate movement and chemical deposition process in spatial atomic layer deposition
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2021.116447
– start-page: 1
  year: 2019
  ident: 10.1016/j.compchemeng.2023.108400_b45
  article-title: Spatial atomic layer deposition
– volume: 23
  start-page: 1654
  year: 2011
  ident: 10.1016/j.compchemeng.2023.108400_b48
  article-title: Improved growth and electrical properties of atomic-layer-deposited metal-oxide film by discrete feeding method of metal precursor
  publication-title: Chem. Mater.
  doi: 10.1021/cm100900k
SSID ssj0002488
Score 2.4351492
Snippet Novel transistor fabrication methods such as area-selective atomic layer deposition (AS-ALD) are crucial to improving nanopatterning, which is essential for...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 108400
SubjectTerms Area-selective atomic layer deposition
Computational fluid dynamics modeling
Reactor optimal design
Reactor optimal operation
Semiconductor manufacturing processes
Title Computational fluid dynamics modeling of a discrete feed atomic layer deposition reactor: Application to reactor design and operation
URI https://dx.doi.org/10.1016/j.compchemeng.2023.108400
Volume 178
WOSCitedRecordID wos001072416300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-4375
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002488
  issn: 0098-1354
  databaseCode: AIEXJ
  dateStart: 19950611
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9swFBZZOsb6UHZl3Q0N9hZcHMm25LKXMjq2PXR76CB7MrIukBCckDml_QH7Sft_O7Ikyy0d7QZ7MUGOZCvny7npXBB6m2dEAWuUiSpFmmRUkURQahJJQNwRqXKl6q7ZBDs54bNZ-XU0-hVyYc6WrGn4-Xm5_q-khjEgtk2d_Qty94vCAHwGosMVyA7XWxHe9WkIPj6z3M7VRLm-877xjQ90FvZ0BpTGVk8MyLAJmN82UH4pLrqu4SGcawJqZefZty7EeNxtlVZ_B75sw0C6c4jVWm8isRfDV7KpwhZoMtQo0LEWYnR2Oxet60Ievf2OI9mMinmfWvRl22neen4h4gLft86hCzzMB494lwaJwXE9my7BtKWuunTPpl2rH89opylYpum1MsC5IxaWhGu7I9jMgX3KQZxzue72FXnYRymGALhFNViqsktVbqk7aIewvORjtHP06Xj2uVcBSMZ5KNZq93EPvYmBhX94r-sVo4Gyc_oA7XkrBR85dD1EI908QruD2pWP0c9LOMMdznDAGQ44wyuDBQ44wxZn2OEMdzjDEWfYo-kQD1CG21UYxw5lGFCGe5Q9Qd8-HJ--_5j4nh6JpGTaJrmhRhXEGCZoJkUhOVeKqUzUqSzklMmCpIXMc6pBhOu8BoGT1oYYmhVprQpOn6Jxs2r0M4SnCmwTSjnRtLRxDTXoY6JUhKicKcbMPuLhB62kL3hv-64sqxsJu49IP3Xtqr7cZtK7QLXKq69OLa0AmTdPf_4vz3yB7sc_0Es0bjdb_QrdlWft_MfmtYflb76XyNc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+fluid+dynamics+modeling+of+a+discrete+feed+atomic+layer+deposition+reactor%3A+Application+to+reactor+design+and+operation&rft.jtitle=Computers+%26+chemical+engineering&rft.au=Tom%2C+Matthew&rft.au=Wang%2C+Henrik&rft.au=Ou%2C+Feiyang&rft.au=Yun%2C+Sungil&rft.date=2023-10-01&rft.issn=0098-1354&rft.volume=178&rft.spage=108400&rft_id=info:doi/10.1016%2Fj.compchemeng.2023.108400&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_compchemeng_2023_108400
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0098-1354&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0098-1354&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0098-1354&client=summon