Lossless Coding for Distributed Streaming Sources

Distributed source coding is traditionally viewed in a block coding context wherein all source symbols are known in advance by the encoders. However, many modern applications to which distributed source coding ideas are applied, are better modeled as having streaming data. In a streaming setting, so...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:IEEE transactions on information theory Ročník 60; číslo 3; s. 1447 - 1474
Hlavní autoři: Draper, Stark C., Cheng Chang, Sahai, Anant
Médium: Journal Article
Jazyk:angličtina
Vydáno: New York, NY IEEE 01.03.2014
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Témata:
ISSN:0018-9448, 1557-9654
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Distributed source coding is traditionally viewed in a block coding context wherein all source symbols are known in advance by the encoders. However, many modern applications to which distributed source coding ideas are applied, are better modeled as having streaming data. In a streaming setting, source symbol pairs are revealed to separate encoders in real time and need to be reconstructed at the decoder with subject to some tolerable end-to-end delay. In this paper, a causal sequential random binning encoder is introduced and paired with maximum likelihood (ML) and universal decoders. The latter uses a novel weighted empirical suffix entropy decoding rule. We derive a lower bounds on the error exponent with delay for each decoder. We also provide upper bounds for the special case of streaming with decoder side information and discuss when upper and lower bounds match. We show that both ML and universal decoders achieve the same (positive) error exponents for all rate pairs inside the Slepian-Wolf achievable rate region. The dominant error events in streaming are different from those in block-coding and result in different exponents. Because the sequential random binning scheme is also universal over delays, the resulting code eventually reconstructs every source symbol correctly with probability one.
Bibliografie:SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2013.2294368