A multi-strategy improved electric eel foraging optimization algorithm: continuous and binary variants for solving optimization problems

Electric Eel Foraging Optimization (EEFO) algorithm is a metaheuristic inspired by the social predation behavior of electric eels. It incorporates interactions, resting, migration, and hunting activities to enhance search efficiency. Although EEFO is effective for optimization tasks, it is character...

Full description

Saved in:
Bibliographic Details
Published in:International journal of machine learning and cybernetics Vol. 16; no. 9; pp. 5985 - 6030
Main Authors: Mostafa, Reham R., Khedr, Ahmed M., AL Aghbari, Zaher, Afyouni, Imad, Kamel, Ibrahim, Ahmed, Naveed
Format: Journal Article
Language:English
Published: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2025
Springer Nature B.V
Subjects:
ISSN:1868-8071, 1868-808X
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Electric Eel Foraging Optimization (EEFO) algorithm is a metaheuristic inspired by the social predation behavior of electric eels. It incorporates interactions, resting, migration, and hunting activities to enhance search efficiency. Although EEFO is effective for optimization tasks, it is characterized by slower convergence rates and a tendency to fall into local optima in certain cases. To overcome these limitations, this paper proposes a Multi-strategy Improved Electric Eel Foraging Optimization (MIEEFO) that integrates three key strategies: adaptive tent chaotic mapping, Differential Evolution (DE) mutation strategy, and an enhanced solution technique based on the Fibonacci search technique (FSM). Firstly, MIEEFO employs an adaptive tent chaotic mapping strategy for initializing a uniformly distributed high-quality population for effective search space exploration. Secondly, a novel DE-based mutation strategy is introduced to balance the exploration and exploitation phases. Additionally, to enhance solution quality and mitigate the risk of local optima, an FSM-based improved solution technique is applied to refine the current optimal solution. To conduct a thorough assessment of MIEEFO’s global optimization capabilities, the established numerical challenge of the CEC’22 test suite is utilized. MIEEFO undergoes a comparative analysis with a range of modern, enhanced algorithms, employing the Wilcoxon signed-rank test and the Friedman test to integrate the results of these comparisons. The findings reveal that MIEEFO stands out for its superior optimization abilities, evidenced by its lowest average Friedman ranking of 1.37. MIEEFO consistently outperforms its rivals in most test scenarios, offering solutions that are both more precise and reliable. In addition, the application of MIEEFO is presented through five real-world constrained engineering design challenges, indicating its practical utility. These results highlight MIEEFO’s robust optimization capabilities and its potential for widespread application. Moreover, the proficiency of MIEEFO in managing discrete feature selection tasks is examined through tests on 17 datasets, in conjunction with ten established classification techniques and two advanced classification methods. The results confirm that MIEEFO achieved an average feature selection reduction of 72.59% across datasets while improving classification accuracy by up to 7.2% compared to competing methods.
AbstractList Electric Eel Foraging Optimization (EEFO) algorithm is a metaheuristic inspired by the social predation behavior of electric eels. It incorporates interactions, resting, migration, and hunting activities to enhance search efficiency. Although EEFO is effective for optimization tasks, it is characterized by slower convergence rates and a tendency to fall into local optima in certain cases. To overcome these limitations, this paper proposes a Multi-strategy Improved Electric Eel Foraging Optimization (MIEEFO) that integrates three key strategies: adaptive tent chaotic mapping, Differential Evolution (DE) mutation strategy, and an enhanced solution technique based on the Fibonacci search technique (FSM). Firstly, MIEEFO employs an adaptive tent chaotic mapping strategy for initializing a uniformly distributed high-quality population for effective search space exploration. Secondly, a novel DE-based mutation strategy is introduced to balance the exploration and exploitation phases. Additionally, to enhance solution quality and mitigate the risk of local optima, an FSM-based improved solution technique is applied to refine the current optimal solution. To conduct a thorough assessment of MIEEFO’s global optimization capabilities, the established numerical challenge of the CEC’22 test suite is utilized. MIEEFO undergoes a comparative analysis with a range of modern, enhanced algorithms, employing the Wilcoxon signed-rank test and the Friedman test to integrate the results of these comparisons. The findings reveal that MIEEFO stands out for its superior optimization abilities, evidenced by its lowest average Friedman ranking of 1.37. MIEEFO consistently outperforms its rivals in most test scenarios, offering solutions that are both more precise and reliable. In addition, the application of MIEEFO is presented through five real-world constrained engineering design challenges, indicating its practical utility. These results highlight MIEEFO’s robust optimization capabilities and its potential for widespread application. Moreover, the proficiency of MIEEFO in managing discrete feature selection tasks is examined through tests on 17 datasets, in conjunction with ten established classification techniques and two advanced classification methods. The results confirm that MIEEFO achieved an average feature selection reduction of 72.59% across datasets while improving classification accuracy by up to 7.2% compared to competing methods.
Author Mostafa, Reham R.
Khedr, Ahmed M.
Ahmed, Naveed
AL Aghbari, Zaher
Kamel, Ibrahim
Afyouni, Imad
Author_xml – sequence: 1
  givenname: Reham R.
  surname: Mostafa
  fullname: Mostafa, Reham R.
  email: REldeiasti@sharjah.ac.ae, reham_2006@mans.edu.eg
  organization: Big Data Mining and Multimedia Research Group, Centre for Data Analytics and Cybersecurity (CDAC), Research Institute of Sciences and Engineering (RISE), University of Sharjah, Department of Information Systems, Faculty of Computers and Information Sciences, Mansoura University
– sequence: 2
  givenname: Ahmed M.
  surname: Khedr
  fullname: Khedr, Ahmed M.
  organization: Department of Computer Science, University of Sharjah
– sequence: 3
  givenname: Zaher
  surname: AL Aghbari
  fullname: AL Aghbari, Zaher
  organization: Department of Computer Science, University of Sharjah
– sequence: 4
  givenname: Imad
  surname: Afyouni
  fullname: Afyouni, Imad
  organization: Department of Computer Science, University of Sharjah
– sequence: 5
  givenname: Ibrahim
  surname: Kamel
  fullname: Kamel, Ibrahim
  organization: Department of Computer Engineering, University of Sharjah
– sequence: 6
  givenname: Naveed
  surname: Ahmed
  fullname: Ahmed, Naveed
  organization: Department of Computer Science, University of Sharjah
BookMark eNp9kMtOxCAUhonRxNu8gCsS11WgHaDujPGWmLhx4Y5QSiuGwgh0JuMT-NgyU6OJJpIQzuJ85z98h2DXeacBOMHoDCPEziMuUUUKROb5UlQXqx1wgDnlBUf8efe7ZngfzGJ8RflQVJaIHICPSziMNpkipiCT7tfQDIvgl7qF2mqVglFQaws7H2RvXA_9IpnBvMtkvIPS9j6Y9DJcQOVdMm70Y4TStbAxToY1XMpgpEtxw8Po7fLPiBzWWD3EY7DXSRv17Os9Ak83109Xd8XD4-391eVDoUqCU1EpVhGEUZO_RmjNGto2FVYcq66tOel4WzeUq06rOe1qzWhL6LxlTVPWiihZHoHTaWzOfRt1TOLVj8HlRFGSis0p4YzlLj51qeBjDLoTyqTtvtmSsQIjsTEvJvMimxdb82KVUfILXQQzZBf_Q-UExdzseh1-tvqH-gRHBp0x
CitedBy_id crossref_primary_10_3390_s25103151
crossref_primary_10_1007_s13042_025_02785_9
crossref_primary_10_48084_etasr_10505
Cites_doi 10.1007/s10489-021-02444-w
10.1016/j.eswa.2022.118365
10.1016/j.aej.2023.11.004
10.1007/s11227-022-04959-6
10.1016/j.advengsoft.2022.103282
10.1007/s10898-007-9149-x
10.1016/j.compeleceng.2013.11.024
10.1016/j.eswa.2021.115079
10.1016/j.ijmedinf.2005.05.002
10.1016/j.cie.2020.107050
10.1038/381413a0
10.1016/j.engappai.2022.105075
10.1134/S0006297916120026
10.1007/s13042-023-01872-z
10.1080/01621459.1937.10503522
10.1016/j.eswa.2022.116924
10.1007/s12205-020-0504-5
10.1007/s11831-022-09817-5
10.1016/j.eswa.2019.113103
10.1016/j.advengsoft.2013.12.007
10.1007/s11227-023-05790-3
10.1109/TCSS.2022.3141114
10.1002/nme.1620010402
10.1007/s00521-015-1870-7
10.1023/A:1008202821328
10.1016/j.asoc.2019.105583
10.1109/4235.585893
10.2991/ijcis.d.210309.001
10.1007/s13042-024-02361-7
10.1016/j.cam.2019.112574
10.1007/s10489-022-03994-3
10.1007/s42235-023-00394-2
10.1016/j.knosys.2019.105190
10.1504/IJVD.2001.005210
10.1109/CEC.2016.7744378
10.1016/j.swevo.2023.101296
10.1016/j.ins.2020.06.037
10.1016/j.cie.2020.107086
10.1016/j.cad.2010.12.015
10.1016/j.cma.2022.114570
10.1007/s00500-022-07470-5
10.1016/j.ins.2020.08.040
10.1016/j.eswa.2022.116516
10.1016/j.engappai.2021.104314
10.1016/j.knosys.2022.110011
10.1016/j.cma.2022.114616
10.1016/j.engappai.2019.03.021
10.1007/s00366-022-01604-x
10.1016/j.knosys.2022.108743
10.1016/j.knosys.2022.110146
10.1016/j.knosys.2015.12.022
10.1016/j.ins.2020.05.004
10.1162/evco.1995.3.1.1
10.1016/j.eswa.2023.120404
10.1007/s00366-020-01028-5
10.1109/TAC.2014.2298712
10.1016/j.neucom.2023.02.010
10.1016/j.knosys.2015.07.006
10.1016/j.knosys.2020.105709
10.1016/j.aej.2022.12.045
10.1007/s10489-020-01981-0
10.1016/j.eswa.2021.114689
10.1016/j.knosys.2023.110454
10.1038/scientificamerican0792-66
10.1016/j.knosys.2023.110305
10.1109/TKDE.2015.2426703
10.1016/j.knosys.2024.111725
10.1016/j.engappai.2020.103541
10.1016/j.asoc.2020.106367
10.1109/TKDE.2005.66
10.1007/s10489-021-03121-8
10.1016/j.knosys.2023.110462
10.1007/s44196-023-00216-7
10.1016/j.eswa.2020.113338
10.1016/j.advengsoft.2016.01.008
10.1109/TCYB.2017.2714145
10.1007/s00366-020-00971-7
10.1214/ss/1177011077
10.1016/j.eswa.2018.07.013
10.1007/s10462-023-10567-4
10.1002/9780470640425
10.1016/j.eswa.2022.119303
10.1007/s10462-023-10653-7
10.1016/j.knosys.2022.110032
10.1016/j.cie.2021.107224
10.1007/s10462-022-10173-w
10.1109/MHS.1995.494215
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025.
DBID AAYXX
CITATION
JQ2
DOI 10.1007/s13042-025-02609-w
DatabaseName CrossRef
ProQuest Computer Science Collection
DatabaseTitle CrossRef
ProQuest Computer Science Collection
DatabaseTitleList
ProQuest Computer Science Collection
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Sciences (General)
Physics
EISSN 1868-808X
EndPage 6030
ExternalDocumentID 10_1007_s13042_025_02609_w
GroupedDBID 06D
0R~
0VY
1N0
203
29~
2JY
2VQ
30V
4.4
406
408
409
40D
96X
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
AAZMS
ABAKF
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABMQK
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACDTI
ACGFS
ACHSB
ACKNC
ACMLO
ACOKC
ACPIV
ACSTC
ACZOJ
ADHHG
ADHIR
ADKFA
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETCA
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKLTO
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
AMYLF
AMYQR
ANMIH
ARAPS
ATHPR
AUKKA
AXYYD
AYFIA
AYJHY
BENPR
BGLVJ
BGNMA
CCPQU
CSCUP
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGCAI
GGRSB
GJIRD
GQ7
GQ8
H13
HCIFZ
HMJXF
HQYDN
HRMNR
HZ~
I0C
IKXTQ
IWAJR
IXD
IZIGR
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KOV
LLZTM
M4Y
M7S
NPVJJ
NQJWS
NU0
O9-
O93
O9J
P2P
P9P
PHGZM
PHGZT
PQGLB
PT4
PTHSS
PUEGO
QOS
R89
R9I
RLLFE
ROL
RSV
S27
S3B
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T13
TSG
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
WK8
Z45
ZMTXR
~A9
AAYXX
AFFHD
CITATION
JQ2
ID FETCH-LOGICAL-c321t-4c742010b8082697b6db41c81cfd982f8d9b68cfec56f9e76d265d7bb39c2ca3
IEDL.DBID RSV
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001463319500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1868-8071
IngestDate Wed Nov 05 08:27:40 EST 2025
Sat Nov 29 07:37:02 EST 2025
Tue Nov 18 22:29:07 EST 2025
Sun Sep 07 01:10:21 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Metaheuristic
Electric eel foraging optimization (EEFO)
Real-world optimization problems
Optimization
Differential evolution (DE)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-4c742010b8082697b6db41c81cfd982f8d9b68cfec56f9e76d265d7bb39c2ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3247562877
PQPubID 2043904
PageCount 46
ParticipantIDs proquest_journals_3247562877
crossref_citationtrail_10_1007_s13042_025_02609_w
crossref_primary_10_1007_s13042_025_02609_w
springer_journals_10_1007_s13042_025_02609_w
PublicationCentury 2000
PublicationDate 20250900
2025-09-00
20250901
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250900
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationTitle International journal of machine learning and cybernetics
PublicationTitleAbbrev Int. J. Mach. Learn. & Cyber
PublicationYear 2025
Publisher Springer Berlin Heidelberg
Springer Nature B.V
Publisher_xml – name: Springer Berlin Heidelberg
– name: Springer Nature B.V
References M Shehab (2609_CR5) 2021; 37
D Bertsimas (2609_CR21) 1993; 8
R-E Precup (2609_CR7) 2021; 14
C Wang (2609_CR29) 2022; 10
S Chakraborty (2609_CR40) 2021; 153
MS Daoud (2609_CR46) 2023; 20
A Seyyedabbasi (2609_CR71) 2023; 39
G D’Angelo (2609_CR42) 2021; 547
M Elhoseny (2609_CR49) 2024; 295
X-S Yang (2609_CR3) 2010
Y Li (2609_CR51) 2020; 24
N Neggaz (2609_CR82) 2020; 145
H Karami (2609_CR69) 2021; 156
AK Das (2609_CR96) 2022; 52
FA Hashim (2609_CR65) 2023; 85
A Mohammadi-Balani (2609_CR20) 2021; 152
R Kundu (2609_CR23) 2024; 80
R Storn (2609_CR12) 1997; 11
2609_CR14
H Jia (2609_CR60) 2023; 56
S Kaur (2609_CR72) 2020; 90
E-SM El-kenawy (2609_CR6) 2024; 238
EH Houssein (2609_CR41) 2021; 174
M Shehab (2609_CR8) 2022; 26
G Chandrashekar (2609_CR84) 2014; 40
H Peraza-Vázquez (2609_CR59) 2024; 57
H Chen (2609_CR38) 2020; 369
B Karmakar (2609_CR44) 2023; 79
W Zhao (2609_CR34) 2024; 238
S Mirjalili (2609_CR22) 2016; 27
Y Zhou (2609_CR87) 2020; 532
JO Agushaka (2609_CR17) 2022; 391
M Shehab (2609_CR31) 2023; 30
M Amoozegar (2609_CR86) 2018; 113
L Gu (2609_CR81) 2001; 26
M Mirrashid (2609_CR97) 2023; 264
2609_CR48
D Karaboga (2609_CR15) 2007; 39
MA Abu-Hashem (2609_CR33) 2024; 41
FA Hashim (2609_CR25) 2023; 260
B Abdollahzadeh (2609_CR98) 2022; 174
S Mirjalili (2609_CR75) 2014; 69
S Zhao (2609_CR56) 2022; 114
M Alweshah (2609_CR92) 2021; 51
M Abdel-Basset (2609_CR26) 2023; 268
2609_CR1
CM Fonseca (2609_CR9) 1995; 3
H Song (2609_CR47) 2024; 237
JH Holland (2609_CR10) 1992; 267
S Mirjalili (2609_CR76) 2016; 95
H Zamani (2609_CR36) 2019; 85
M Liu (2609_CR52) 2023; 16
A Mahdavi-Meymand (2609_CR63) 2022; 258
M Khishe (2609_CR16) 2020; 149
SK Sahoo (2609_CR55) 2023; 227
F Youfa (2609_CR19) 2024; 57
R Venkata Rao (2609_CR27) 2011; 43
DH Wolpert (2609_CR35) 1997; 1
C Zhong (2609_CR45) 2023; 215
B Tran (2609_CR90) 2017; 48
I Ahmadianfar (2609_CR70) 2020; 540
I Ahmadianfar (2609_CR68) 2022; 195
M Azizi (2609_CR30) 2023; 56
GM Viswanathan (2609_CR50) 1996; 381
X-S Yang (2609_CR2) 2008
DA Pierre (2609_CR54) 1986
H Zamani (2609_CR61) 2022; 392
M Friedman (2609_CR67) 1937; 32
Z Sharifian (2609_CR101) 2023; 228
DB Fogel (2609_CR11) 1998
S Gupta (2609_CR37) 2020; 93
H Zamani (2609_CR39) 2021; 104
RR Mostafa (2609_CR66) 2022; 246
F Moses (2609_CR78) 1969; 1
Q Askari (2609_CR28) 2020; 195
A Chhabra (2609_CR102) 2023; 68
JS Arora (2609_CR77) 2004
S Mirjalili (2609_CR74) 2016; 96
H Liu (2609_CR89) 2005; 17
D Jakovetić (2609_CR4) 2014; 59
S Zhao (2609_CR57) 2023; 53
A Faramarzi (2609_CR58) 2020; 191
X Zhou (2609_CR85) 2022; 52
H Bayzidi (2609_CR80) 2021; 1–32
I Ahmadianfar (2609_CR64) 2021; 181
S Mirjalili (2609_CR99) 2015; 89
2609_CR94
H Jiao (2609_CR43) 2022; 237
S Hang (2609_CR24) 2023; 532
G Dhiman (2609_CR73) 2019; 82
2609_CR91
TC Goldsmith (2609_CR53) 2016; 81
2609_CR79
D Wang (2609_CR83) 2015; 27
N Das (2609_CR88) 2023; 14
J Xue (2609_CR18) 2023; 79
N Chopra (2609_CR62) 2022; 198
RR Mostafa (2609_CR100) 2023; 269
H Esmaeili (2609_CR13) 2022; 210
A Statnikov (2609_CR95) 2005; 74
M Dehghani (2609_CR32) 2023; 259
Y Zhang (2609_CR93) 2021; 37
References_xml – volume: 52
  start-page: 2942
  issue: 3
  year: 2022
  ident: 2609_CR96
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-02444-w
– volume: 227
  year: 2023
  ident: 2609_CR55
  publication-title: Expert Syst Appl
– ident: 2609_CR79
– volume: 210
  year: 2022
  ident: 2609_CR13
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.118365
– volume: 85
  start-page: 29
  year: 2023
  ident: 2609_CR65
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2023.11.004
– volume: 79
  start-page: 7305
  issue: 7
  year: 2023
  ident: 2609_CR18
  publication-title: J Supercomput
  doi: 10.1007/s11227-022-04959-6
– ident: 2609_CR94
– volume: 174
  year: 2022
  ident: 2609_CR98
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2022.103282
– volume: 1–32
  start-page: 2021
  year: 2021
  ident: 2609_CR80
  publication-title: Comput Intell Neurosci
– volume: 238
  year: 2024
  ident: 2609_CR34
  publication-title: Expert Syst Appl
– volume: 39
  start-page: 459
  year: 2007
  ident: 2609_CR15
  publication-title: J Glob Optim
  doi: 10.1007/s10898-007-9149-x
– volume: 40
  start-page: 16
  issue: 1
  year: 2014
  ident: 2609_CR84
  publication-title: Comput Electr Eng
  doi: 10.1016/j.compeleceng.2013.11.024
– volume-title: Optimization theory with applications
  year: 1986
  ident: 2609_CR54
– volume: 181
  year: 2021
  ident: 2609_CR64
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.115079
– volume: 74
  start-page: 491
  issue: 7–8
  year: 2005
  ident: 2609_CR95
  publication-title: Int J Med Inform
  doi: 10.1016/j.ijmedinf.2005.05.002
– volume: 152
  year: 2021
  ident: 2609_CR20
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2020.107050
– volume: 381
  start-page: 413
  issue: 6581
  year: 1996
  ident: 2609_CR50
  publication-title: Nature
  doi: 10.1038/381413a0
– volume: 114
  year: 2022
  ident: 2609_CR56
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2022.105075
– volume-title: Introduction to optimum design
  year: 2004
  ident: 2609_CR77
– volume: 81
  start-page: 1406
  issue: 12
  year: 2016
  ident: 2609_CR53
  publication-title: Biochemistry (Moscow)
  doi: 10.1134/S0006297916120026
– volume: 14
  start-page: 3911
  issue: 11
  year: 2023
  ident: 2609_CR88
  publication-title: Int J Mach Learn Cybern
  doi: 10.1007/s13042-023-01872-z
– volume-title: Artificial intelligence through simulated evolution
  year: 1998
  ident: 2609_CR11
– ident: 2609_CR1
– volume: 32
  start-page: 675
  issue: 200
  year: 1937
  ident: 2609_CR67
  publication-title: J Am Stat Assoc
  doi: 10.1080/01621459.1937.10503522
– volume: 198
  year: 2022
  ident: 2609_CR62
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116924
– volume: 41
  year: 2024
  ident: 2609_CR33
  publication-title: Sustain Comput Inform Syst
– volume: 24
  start-page: 3703
  issue: 12
  year: 2020
  ident: 2609_CR51
  publication-title: KSCE J Civ Eng
  doi: 10.1007/s12205-020-0504-5
– volume: 30
  start-page: 765
  issue: 2
  year: 2023
  ident: 2609_CR31
  publication-title: Arch Comput Methods Eng
  doi: 10.1007/s11831-022-09817-5
– volume: 145
  year: 2020
  ident: 2609_CR82
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2019.113103
– volume: 69
  start-page: 46
  year: 2014
  ident: 2609_CR75
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2013.12.007
– volume: 80
  start-page: 1
  year: 2024
  ident: 2609_CR23
  publication-title: J Supercomput
  doi: 10.1007/s11227-023-05790-3
– volume: 10
  start-page: 166
  issue: 1
  year: 2022
  ident: 2609_CR29
  publication-title: IEEE Trans Comput Soc Syst
  doi: 10.1109/TCSS.2022.3141114
– volume: 1
  start-page: 311
  issue: 4
  year: 1969
  ident: 2609_CR78
  publication-title: Int J Numer Methods Eng
  doi: 10.1002/nme.1620010402
– volume: 238
  year: 2024
  ident: 2609_CR6
  publication-title: Expert Syst Appl
– volume: 27
  start-page: 495
  year: 2016
  ident: 2609_CR22
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-015-1870-7
– volume: 11
  start-page: 341
  issue: 4
  year: 1997
  ident: 2609_CR12
  publication-title: J Glob Optim
  doi: 10.1023/A:1008202821328
– volume: 85
  year: 2019
  ident: 2609_CR36
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2019.105583
– volume: 1
  start-page: 67
  issue: 1
  year: 1997
  ident: 2609_CR35
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.585893
– volume: 14
  start-page: 1042
  issue: 1
  year: 2021
  ident: 2609_CR7
  publication-title: Int J Comput Intell Syst
  doi: 10.2991/ijcis.d.210309.001
– ident: 2609_CR48
  doi: 10.1007/s13042-024-02361-7
– volume: 369
  year: 2020
  ident: 2609_CR38
  publication-title: Appl Math Comput
  doi: 10.1016/j.cam.2019.112574
– volume: 53
  start-page: 11833
  issue: 10
  year: 2023
  ident: 2609_CR57
  publication-title: Appl Intell
  doi: 10.1007/s10489-022-03994-3
– volume: 20
  start-page: 2896
  issue: 6
  year: 2023
  ident: 2609_CR46
  publication-title: J Bionic Eng
  doi: 10.1007/s42235-023-00394-2
– volume: 191
  year: 2020
  ident: 2609_CR58
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2019.105190
– volume: 26
  start-page: 348
  issue: 4
  year: 2001
  ident: 2609_CR81
  publication-title: Int J Veh Des
  doi: 10.1504/IJVD.2001.005210
– ident: 2609_CR91
  doi: 10.1109/CEC.2016.7744378
– volume: 79
  year: 2023
  ident: 2609_CR44
  publication-title: Swarm Evol Comput
  doi: 10.1016/j.swevo.2023.101296
– volume: 540
  start-page: 131
  year: 2020
  ident: 2609_CR70
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.06.037
– volume: 153
  year: 2021
  ident: 2609_CR40
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2020.107086
– volume: 43
  start-page: 303
  issue: 3
  year: 2011
  ident: 2609_CR27
  publication-title: Comput Aided Des
  doi: 10.1016/j.cad.2010.12.015
– volume: 391
  year: 2022
  ident: 2609_CR17
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114570
– volume: 26
  start-page: 11669
  issue: 21
  year: 2022
  ident: 2609_CR8
  publication-title: Soft Comput
  doi: 10.1007/s00500-022-07470-5
– volume: 547
  start-page: 136
  year: 2021
  ident: 2609_CR42
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.08.040
– volume: 195
  year: 2022
  ident: 2609_CR68
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.116516
– volume: 237
  year: 2024
  ident: 2609_CR47
  publication-title: Expert Syst Appl
– volume: 104
  year: 2021
  ident: 2609_CR39
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2021.104314
– volume: 259
  year: 2023
  ident: 2609_CR32
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2022.110011
– volume: 392
  year: 2022
  ident: 2609_CR61
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2022.114616
– volume: 82
  start-page: 148
  year: 2019
  ident: 2609_CR73
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2019.03.021
– volume: 39
  start-page: 2627
  issue: 4
  year: 2023
  ident: 2609_CR71
  publication-title: Eng Comput
  doi: 10.1007/s00366-022-01604-x
– volume: 246
  year: 2022
  ident: 2609_CR66
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2022.108743
– volume: 260
  year: 2023
  ident: 2609_CR25
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2022.110146
– volume: 237
  year: 2022
  ident: 2609_CR43
  publication-title: Knowl Based Syst
– volume: 96
  start-page: 120
  year: 2016
  ident: 2609_CR74
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.12.022
– volume: 532
  start-page: 91
  year: 2020
  ident: 2609_CR87
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2020.05.004
– volume: 3
  start-page: 1
  issue: 1
  year: 1995
  ident: 2609_CR9
  publication-title: Evol Comput
  doi: 10.1162/evco.1995.3.1.1
– volume: 228
  year: 2023
  ident: 2609_CR101
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2023.120404
– volume: 37
  start-page: 3741
  year: 2021
  ident: 2609_CR93
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-01028-5
– volume: 59
  start-page: 1131
  issue: 5
  year: 2014
  ident: 2609_CR4
  publication-title: IEEE Trans Autom Control
  doi: 10.1109/TAC.2014.2298712
– volume: 532
  start-page: 183
  year: 2023
  ident: 2609_CR24
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2023.02.010
– volume: 89
  start-page: 228
  year: 2015
  ident: 2609_CR99
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2015.07.006
– volume: 195
  year: 2020
  ident: 2609_CR28
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2020.105709
– volume: 68
  start-page: 141
  year: 2023
  ident: 2609_CR102
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2022.12.045
– volume-title: Introduction to mathematical optimization: from linear programming to metaheuristics
  year: 2008
  ident: 2609_CR2
– volume: 51
  start-page: 4058
  issue: 6
  year: 2021
  ident: 2609_CR92
  publication-title: Appl Intell
  doi: 10.1007/s10489-020-01981-0
– volume: 57
  start-page: 1
  issue: 5
  year: 2024
  ident: 2609_CR19
  publication-title: Artif Intell Rev
– volume: 174
  year: 2021
  ident: 2609_CR41
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2021.114689
– volume: 268
  year: 2023
  ident: 2609_CR26
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2023.110454
– volume: 267
  start-page: 66
  issue: 1
  year: 1992
  ident: 2609_CR10
  publication-title: Sci Am
  doi: 10.1038/scientificamerican0792-66
– volume: 264
  year: 2023
  ident: 2609_CR97
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2023.110305
– volume: 27
  start-page: 2743
  issue: 10
  year: 2015
  ident: 2609_CR83
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2015.2426703
– volume: 295
  year: 2024
  ident: 2609_CR49
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2024.111725
– volume: 90
  year: 2020
  ident: 2609_CR72
  publication-title: Eng Appl Artif Intell
  doi: 10.1016/j.engappai.2020.103541
– volume: 93
  year: 2020
  ident: 2609_CR37
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2020.106367
– volume: 17
  start-page: 491
  issue: 4
  year: 2005
  ident: 2609_CR89
  publication-title: IEEE Trans Knowl Data Eng
  doi: 10.1109/TKDE.2005.66
– volume: 52
  start-page: 12556
  issue: 11
  year: 2022
  ident: 2609_CR85
  publication-title: Appl Intell
  doi: 10.1007/s10489-021-03121-8
– volume: 269
  year: 2023
  ident: 2609_CR100
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2023.110462
– volume: 16
  start-page: 39
  issue: 1
  year: 2023
  ident: 2609_CR52
  publication-title: Int J Comput Intell Syst
  doi: 10.1007/s44196-023-00216-7
– volume: 149
  year: 2020
  ident: 2609_CR16
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2020.113338
– volume: 95
  start-page: 51
  year: 2016
  ident: 2609_CR76
  publication-title: Adv Eng Softw
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 48
  start-page: 1733
  issue: 6
  year: 2017
  ident: 2609_CR90
  publication-title: IEEE Trans Cybern
  doi: 10.1109/TCYB.2017.2714145
– volume: 37
  start-page: 2931
  year: 2021
  ident: 2609_CR5
  publication-title: Eng Comput
  doi: 10.1007/s00366-020-00971-7
– volume: 8
  start-page: 10
  issue: 1
  year: 1993
  ident: 2609_CR21
  publication-title: Stat Sci
  doi: 10.1214/ss/1177011077
– volume: 113
  start-page: 499
  year: 2018
  ident: 2609_CR86
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2018.07.013
– volume: 56
  start-page: 1919
  issue: Suppl 2
  year: 2023
  ident: 2609_CR60
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-023-10567-4
– volume-title: Engineering optimization: an introduction with metaheuristic applications
  year: 2010
  ident: 2609_CR3
  doi: 10.1002/9780470640425
– volume: 215
  year: 2023
  ident: 2609_CR45
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2022.119303
– volume: 57
  start-page: 59
  issue: 3
  year: 2024
  ident: 2609_CR59
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-023-10653-7
– volume: 258
  year: 2022
  ident: 2609_CR63
  publication-title: Knowl Based Syst
  doi: 10.1016/j.knosys.2022.110032
– volume: 156
  year: 2021
  ident: 2609_CR69
  publication-title: Comput Ind Eng
  doi: 10.1016/j.cie.2021.107224
– volume: 56
  start-page: 287
  issue: 1
  year: 2023
  ident: 2609_CR30
  publication-title: Artif Intell Rev
  doi: 10.1007/s10462-022-10173-w
– ident: 2609_CR14
  doi: 10.1109/MHS.1995.494215
SSID ssj0000603302
ssib031263576
ssib033405570
Score 2.3717217
Snippet Electric Eel Foraging Optimization (EEFO) algorithm is a metaheuristic inspired by the social predation behavior of electric eels. It incorporates...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 5985
SubjectTerms Algorithms
Artificial Intelligence
Classification
Complex Systems
Computational Intelligence
Control
Datasets
Design engineering
Energy consumption
Engineering
Evolutionary computation
Exploitation
Foraging behavior
Genetic algorithms
Global optimization
Heuristic
Heuristic methods
Mapping
Mechatronics
Mutation
Optimization algorithms
Optimization techniques
Original Article
Pattern Recognition
Physics
Rank tests
Robotics
Searching
Space exploration
Strategy
Systems Biology
Title A multi-strategy improved electric eel foraging optimization algorithm: continuous and binary variants for solving optimization problems
URI https://link.springer.com/article/10.1007/s13042-025-02609-w
https://www.proquest.com/docview/3247562877
Volume 16
WOSCitedRecordID wos001463319500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1868-808X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000603302
  issn: 1868-8071
  databaseCode: RSV
  dateStart: 20101201
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RpYdyaGFbxJYt8qEHUGtpYyexww1VXXFaIbqq9hYlttNGWrJosw_xD_jZjB2H9C2Va2I7ij3j-cae-Qbgvd300fCE1BLH0JAZ1Dkeacq0ibiSIx5lyhWbEJOJnM2SK58UVrfR7u2VpNupu2Q363lTW37V8mAldPsMdtHcSVuw4frL11aKeGD5VTojy3noeKYeT15GMT5rghFlLC0bb-Czaf78mZ8tVgdDf7k5dQZp_Oppv7IPLz0AJReNxBzAjqn6sPcDLWEfDrzC1-TUs1KfvYb7C-KCD2nd8NnekdKdRxhNmlI6pSLGzAmCYFf4iCxwM7rxWZ4km39bLMvV95tzYoPjy2q9WNckqzTJXUIw2aDPbkNybH-C-rD5bQhf-qZ-A9Px5-mnS-rLOFDFWbCioUL3G92-XCLciBORxzoPAyUDVehEskLqJI-lKoyK4iIxItYsjrTIc54opjJ-CL1qUZkjIKNC65xrhLC8CEXBJaITJRiCxkQznqkBBO1KpcpTnNtKG_O0I2e2M5_izKdu5tPtAD489rltCD7-2XrYCkDqlb1OEZMKhJFSiAF8bBe8e_330d7-X_NjeMGczNgItyH0Vsu1eQfP1WZV1ssTpwQPrkL_3A
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB1RQGp7gEKp2ALFhx6oWksbO4md3lBVRAVdVWWFuEWJ7UCkJYs2u4v6B3w2Y8chBUql9prYjmLPeN7YM28A3ttNHw1PSC1xDA2ZQZ3jkaZMm4gr2edRplyxCTEYyLOz5IdPCqvbaPf2StLt1F2ym_W8qS2_anmwEnr9DJZCtFiWMf_nyWkrRTyw_CqdkeU8dDxTdycv_RifNcGIMpaWjTfw2TR__sx9i9XB0Ac3p84gHaz-36-8ghUPQMl-IzFrsGCqdXj5Gy3hOqx5ha_Jnmel_vAabvaJCz6kdcNn-4uU7jzCaNKU0ikVMWZEEAS7wkdkjJvRpc_yJNnofDwppxeXn4kNji-r2XhWk6zSJHcJwWSOPrsNybH9CerD_NEQvvRNvQHDg6_DL4fUl3GgirNgSkOF7je6fblEuBEnIo91HgZKBqrQiWSF1EkeS1UYFcVFYkSsWRxpkec8UUxl_A0sVuPKbALpF1rnXCOE5UUoCi4RnSjBEDQmmvFM9SBoVypVnuLcVtoYpR05s535FGc-dTOfXvfg412fq4bg46-tt1sBSL2y1yliUoEwUgrRg0_tgnevnx7t7b8134Xnh8Pvx-nxt8HRFrxgTn5stNs2LE4nM7MDy2o-LevJO6cQt7K5As8
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VihAcaIEitjzqA4cisHZjJ7HDDUFXrUArpCLELUpsh0ZasmiTXcQ_4GfXdhxCy0NCXJPYSezxzDf2zDcAO0bpa8PjY0Mcg32i9JqjgcREqoAK3qNBImyxCTYY8MvL6OxRFr-Ndm-OJOucBsPSVFTdG5l128Q344VjU4rVcGJF-HYGPvomkN74678vGominuFaaQ0upb7lnHrYhemF-lodmMhDbph5PZdZ8_xr_rVeLST97xTVGqf-p_f_1mdYcsAUHdaStAwfVLECi4_oCldg2SmCEn13bNW7q3B_iGxQIi5rnts7lNt9CiVRXWInF0ipIdLg2BZEQiOtpK5d9idKhlejcV79uT5A5lPzYjKalCgpJEptojCaal_ehOqY9kivk-mTLlxJnPILnPd_nB_9xK68AxaUeBX2hXbLtTuYcg1DwoiloUx9T3BPZDLiJOMySkMuMiWCMIsUCyUJA8nSlEaCiISuwWwxKtQ6oF4mZUqlhrY081lGuUYtghENJiNJaCI64DWzFgtHfW4qcAzjlrTZjHysRz62Ix_fdmDvoc1NTfzx6tObjTDETgmUscaqTMNLzlgH9pvJb2-_3NvXtz3-DebPjvvx6a_ByQYsECs-JghuE2ar8URtwZyYVnk53rZr4y94Zguz
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-strategy+improved+electric+eel+foraging+optimization+algorithm%3A+continuous+and+binary+variants+for+solving+optimization+problems&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Mostafa%2C+Reham+R.&rft.au=Khedr%2C+Ahmed+M.&rft.au=AL+Aghbari%2C+Zaher&rft.au=Afyouni%2C+Imad&rft.date=2025-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=16&rft.issue=9&rft.spage=5985&rft.epage=6030&rft_id=info:doi/10.1007%2Fs13042-025-02609-w&rft.externalDocID=10_1007_s13042_025_02609_w
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon