A multi-strategy improved electric eel foraging optimization algorithm: continuous and binary variants for solving optimization problems
Electric Eel Foraging Optimization (EEFO) algorithm is a metaheuristic inspired by the social predation behavior of electric eels. It incorporates interactions, resting, migration, and hunting activities to enhance search efficiency. Although EEFO is effective for optimization tasks, it is character...
Saved in:
| Published in: | International journal of machine learning and cybernetics Vol. 16; no. 9; pp. 5985 - 6030 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.09.2025
Springer Nature B.V |
| Subjects: | |
| ISSN: | 1868-8071, 1868-808X |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Electric Eel Foraging Optimization (EEFO) algorithm is a metaheuristic inspired by the social predation behavior of electric eels. It incorporates interactions, resting, migration, and hunting activities to enhance search efficiency. Although EEFO is effective for optimization tasks, it is characterized by slower convergence rates and a tendency to fall into local optima in certain cases. To overcome these limitations, this paper proposes a Multi-strategy Improved Electric Eel Foraging Optimization (MIEEFO) that integrates three key strategies: adaptive tent chaotic mapping, Differential Evolution (DE) mutation strategy, and an enhanced solution technique based on the Fibonacci search technique (FSM). Firstly, MIEEFO employs an adaptive tent chaotic mapping strategy for initializing a uniformly distributed high-quality population for effective search space exploration. Secondly, a novel DE-based mutation strategy is introduced to balance the exploration and exploitation phases. Additionally, to enhance solution quality and mitigate the risk of local optima, an FSM-based improved solution technique is applied to refine the current optimal solution. To conduct a thorough assessment of MIEEFO’s global optimization capabilities, the established numerical challenge of the CEC’22 test suite is utilized. MIEEFO undergoes a comparative analysis with a range of modern, enhanced algorithms, employing the Wilcoxon signed-rank test and the Friedman test to integrate the results of these comparisons. The findings reveal that MIEEFO stands out for its superior optimization abilities, evidenced by its lowest average Friedman ranking of 1.37. MIEEFO consistently outperforms its rivals in most test scenarios, offering solutions that are both more precise and reliable. In addition, the application of MIEEFO is presented through five real-world constrained engineering design challenges, indicating its practical utility. These results highlight MIEEFO’s robust optimization capabilities and its potential for widespread application. Moreover, the proficiency of MIEEFO in managing discrete feature selection tasks is examined through tests on 17 datasets, in conjunction with ten established classification techniques and two advanced classification methods. The results confirm that MIEEFO achieved an average feature selection reduction of 72.59% across datasets while improving classification accuracy by up to 7.2% compared to competing methods. |
|---|---|
| AbstractList | Electric Eel Foraging Optimization (EEFO) algorithm is a metaheuristic inspired by the social predation behavior of electric eels. It incorporates interactions, resting, migration, and hunting activities to enhance search efficiency. Although EEFO is effective for optimization tasks, it is characterized by slower convergence rates and a tendency to fall into local optima in certain cases. To overcome these limitations, this paper proposes a Multi-strategy Improved Electric Eel Foraging Optimization (MIEEFO) that integrates three key strategies: adaptive tent chaotic mapping, Differential Evolution (DE) mutation strategy, and an enhanced solution technique based on the Fibonacci search technique (FSM). Firstly, MIEEFO employs an adaptive tent chaotic mapping strategy for initializing a uniformly distributed high-quality population for effective search space exploration. Secondly, a novel DE-based mutation strategy is introduced to balance the exploration and exploitation phases. Additionally, to enhance solution quality and mitigate the risk of local optima, an FSM-based improved solution technique is applied to refine the current optimal solution. To conduct a thorough assessment of MIEEFO’s global optimization capabilities, the established numerical challenge of the CEC’22 test suite is utilized. MIEEFO undergoes a comparative analysis with a range of modern, enhanced algorithms, employing the Wilcoxon signed-rank test and the Friedman test to integrate the results of these comparisons. The findings reveal that MIEEFO stands out for its superior optimization abilities, evidenced by its lowest average Friedman ranking of 1.37. MIEEFO consistently outperforms its rivals in most test scenarios, offering solutions that are both more precise and reliable. In addition, the application of MIEEFO is presented through five real-world constrained engineering design challenges, indicating its practical utility. These results highlight MIEEFO’s robust optimization capabilities and its potential for widespread application. Moreover, the proficiency of MIEEFO in managing discrete feature selection tasks is examined through tests on 17 datasets, in conjunction with ten established classification techniques and two advanced classification methods. The results confirm that MIEEFO achieved an average feature selection reduction of 72.59% across datasets while improving classification accuracy by up to 7.2% compared to competing methods. |
| Author | Mostafa, Reham R. Khedr, Ahmed M. Ahmed, Naveed AL Aghbari, Zaher Kamel, Ibrahim Afyouni, Imad |
| Author_xml | – sequence: 1 givenname: Reham R. surname: Mostafa fullname: Mostafa, Reham R. email: REldeiasti@sharjah.ac.ae, reham_2006@mans.edu.eg organization: Big Data Mining and Multimedia Research Group, Centre for Data Analytics and Cybersecurity (CDAC), Research Institute of Sciences and Engineering (RISE), University of Sharjah, Department of Information Systems, Faculty of Computers and Information Sciences, Mansoura University – sequence: 2 givenname: Ahmed M. surname: Khedr fullname: Khedr, Ahmed M. organization: Department of Computer Science, University of Sharjah – sequence: 3 givenname: Zaher surname: AL Aghbari fullname: AL Aghbari, Zaher organization: Department of Computer Science, University of Sharjah – sequence: 4 givenname: Imad surname: Afyouni fullname: Afyouni, Imad organization: Department of Computer Science, University of Sharjah – sequence: 5 givenname: Ibrahim surname: Kamel fullname: Kamel, Ibrahim organization: Department of Computer Engineering, University of Sharjah – sequence: 6 givenname: Naveed surname: Ahmed fullname: Ahmed, Naveed organization: Department of Computer Science, University of Sharjah |
| BookMark | eNp9kMtOxCAUhonRxNu8gCsS11WgHaDujPGWmLhx4Y5QSiuGwgh0JuMT-NgyU6OJJpIQzuJ85z98h2DXeacBOMHoDCPEziMuUUUKROb5UlQXqx1wgDnlBUf8efe7ZngfzGJ8RflQVJaIHICPSziMNpkipiCT7tfQDIvgl7qF2mqVglFQaws7H2RvXA_9IpnBvMtkvIPS9j6Y9DJcQOVdMm70Y4TStbAxToY1XMpgpEtxw8Po7fLPiBzWWD3EY7DXSRv17Os9Ak83109Xd8XD4-391eVDoUqCU1EpVhGEUZO_RmjNGto2FVYcq66tOel4WzeUq06rOe1qzWhL6LxlTVPWiihZHoHTaWzOfRt1TOLVj8HlRFGSis0p4YzlLj51qeBjDLoTyqTtvtmSsQIjsTEvJvMimxdb82KVUfILXQQzZBf_Q-UExdzseh1-tvqH-gRHBp0x |
| CitedBy_id | crossref_primary_10_3390_s25103151 crossref_primary_10_1007_s13042_025_02785_9 crossref_primary_10_48084_etasr_10505 |
| Cites_doi | 10.1007/s10489-021-02444-w 10.1016/j.eswa.2022.118365 10.1016/j.aej.2023.11.004 10.1007/s11227-022-04959-6 10.1016/j.advengsoft.2022.103282 10.1007/s10898-007-9149-x 10.1016/j.compeleceng.2013.11.024 10.1016/j.eswa.2021.115079 10.1016/j.ijmedinf.2005.05.002 10.1016/j.cie.2020.107050 10.1038/381413a0 10.1016/j.engappai.2022.105075 10.1134/S0006297916120026 10.1007/s13042-023-01872-z 10.1080/01621459.1937.10503522 10.1016/j.eswa.2022.116924 10.1007/s12205-020-0504-5 10.1007/s11831-022-09817-5 10.1016/j.eswa.2019.113103 10.1016/j.advengsoft.2013.12.007 10.1007/s11227-023-05790-3 10.1109/TCSS.2022.3141114 10.1002/nme.1620010402 10.1007/s00521-015-1870-7 10.1023/A:1008202821328 10.1016/j.asoc.2019.105583 10.1109/4235.585893 10.2991/ijcis.d.210309.001 10.1007/s13042-024-02361-7 10.1016/j.cam.2019.112574 10.1007/s10489-022-03994-3 10.1007/s42235-023-00394-2 10.1016/j.knosys.2019.105190 10.1504/IJVD.2001.005210 10.1109/CEC.2016.7744378 10.1016/j.swevo.2023.101296 10.1016/j.ins.2020.06.037 10.1016/j.cie.2020.107086 10.1016/j.cad.2010.12.015 10.1016/j.cma.2022.114570 10.1007/s00500-022-07470-5 10.1016/j.ins.2020.08.040 10.1016/j.eswa.2022.116516 10.1016/j.engappai.2021.104314 10.1016/j.knosys.2022.110011 10.1016/j.cma.2022.114616 10.1016/j.engappai.2019.03.021 10.1007/s00366-022-01604-x 10.1016/j.knosys.2022.108743 10.1016/j.knosys.2022.110146 10.1016/j.knosys.2015.12.022 10.1016/j.ins.2020.05.004 10.1162/evco.1995.3.1.1 10.1016/j.eswa.2023.120404 10.1007/s00366-020-01028-5 10.1109/TAC.2014.2298712 10.1016/j.neucom.2023.02.010 10.1016/j.knosys.2015.07.006 10.1016/j.knosys.2020.105709 10.1016/j.aej.2022.12.045 10.1007/s10489-020-01981-0 10.1016/j.eswa.2021.114689 10.1016/j.knosys.2023.110454 10.1038/scientificamerican0792-66 10.1016/j.knosys.2023.110305 10.1109/TKDE.2015.2426703 10.1016/j.knosys.2024.111725 10.1016/j.engappai.2020.103541 10.1016/j.asoc.2020.106367 10.1109/TKDE.2005.66 10.1007/s10489-021-03121-8 10.1016/j.knosys.2023.110462 10.1007/s44196-023-00216-7 10.1016/j.eswa.2020.113338 10.1016/j.advengsoft.2016.01.008 10.1109/TCYB.2017.2714145 10.1007/s00366-020-00971-7 10.1214/ss/1177011077 10.1016/j.eswa.2018.07.013 10.1007/s10462-023-10567-4 10.1002/9780470640425 10.1016/j.eswa.2022.119303 10.1007/s10462-023-10653-7 10.1016/j.knosys.2022.110032 10.1016/j.cie.2021.107224 10.1007/s10462-022-10173-w 10.1109/MHS.1995.494215 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2025. |
| DBID | AAYXX CITATION JQ2 |
| DOI | 10.1007/s13042-025-02609-w |
| DatabaseName | CrossRef ProQuest Computer Science Collection |
| DatabaseTitle | CrossRef ProQuest Computer Science Collection |
| DatabaseTitleList | ProQuest Computer Science Collection |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Sciences (General) Physics |
| EISSN | 1868-808X |
| EndPage | 6030 |
| ExternalDocumentID | 10_1007_s13042_025_02609_w |
| GroupedDBID | 06D 0R~ 0VY 1N0 203 29~ 2JY 2VQ 30V 4.4 406 408 409 40D 96X AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH AAZMS ABAKF ABBRH ABBXA ABDBE ABDZT ABECU ABFSG ABFTD ABFTV ABHQN ABJCF ABJNI ABJOX ABKCH ABMQK ABQBU ABRTQ ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACDTI ACGFS ACHSB ACKNC ACMLO ACOKC ACPIV ACSTC ACZOJ ADHHG ADHIR ADKFA ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEMSY AENEX AEOHA AEPYU AESKC AETCA AEVLU AEXYK AEZWR AFBBN AFDZB AFHIU AFKRA AFLOW AFOHR AFQWF AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWZB AGYKE AHAVH AHBYD AHKAY AHPBZ AHSBF AHWEU AHYZX AIAKS AIGIU AIIXL AILAN AITGF AIXLP AJBLW AJRNO AJZVZ AKLTO ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW AMYLF AMYQR ANMIH ARAPS ATHPR AUKKA AXYYD AYFIA AYJHY BENPR BGLVJ BGNMA CCPQU CSCUP DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGCAI GGRSB GJIRD GQ7 GQ8 H13 HCIFZ HMJXF HQYDN HRMNR HZ~ I0C IKXTQ IWAJR IXD IZIGR J-C J0Z JBSCW JCJTX JZLTJ K7- KOV LLZTM M4Y M7S NPVJJ NQJWS NU0 O9- O93 O9J P2P P9P PHGZM PHGZT PQGLB PT4 PTHSS PUEGO QOS R89 R9I RLLFE ROL RSV S27 S3B SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T13 TSG U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 WK8 Z45 ZMTXR ~A9 AAYXX AFFHD CITATION JQ2 |
| ID | FETCH-LOGICAL-c321t-4c742010b8082697b6db41c81cfd982f8d9b68cfec56f9e76d265d7bb39c2ca3 |
| IEDL.DBID | RSV |
| ISICitedReferencesCount | 3 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001463319500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1868-8071 |
| IngestDate | Wed Nov 05 08:27:40 EST 2025 Sat Nov 29 07:37:02 EST 2025 Tue Nov 18 22:29:07 EST 2025 Sun Sep 07 01:10:21 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Keywords | Metaheuristic Electric eel foraging optimization (EEFO) Real-world optimization problems Optimization Differential evolution (DE) |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c321t-4c742010b8082697b6db41c81cfd982f8d9b68cfec56f9e76d265d7bb39c2ca3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 3247562877 |
| PQPubID | 2043904 |
| PageCount | 46 |
| ParticipantIDs | proquest_journals_3247562877 crossref_citationtrail_10_1007_s13042_025_02609_w crossref_primary_10_1007_s13042_025_02609_w springer_journals_10_1007_s13042_025_02609_w |
| PublicationCentury | 2000 |
| PublicationDate | 20250900 2025-09-00 20250901 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 9 year: 2025 text: 20250900 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Heidelberg |
| PublicationTitle | International journal of machine learning and cybernetics |
| PublicationTitleAbbrev | Int. J. Mach. Learn. & Cyber |
| PublicationYear | 2025 |
| Publisher | Springer Berlin Heidelberg Springer Nature B.V |
| Publisher_xml | – name: Springer Berlin Heidelberg – name: Springer Nature B.V |
| References | M Shehab (2609_CR5) 2021; 37 D Bertsimas (2609_CR21) 1993; 8 R-E Precup (2609_CR7) 2021; 14 C Wang (2609_CR29) 2022; 10 S Chakraborty (2609_CR40) 2021; 153 MS Daoud (2609_CR46) 2023; 20 A Seyyedabbasi (2609_CR71) 2023; 39 G D’Angelo (2609_CR42) 2021; 547 M Elhoseny (2609_CR49) 2024; 295 X-S Yang (2609_CR3) 2010 Y Li (2609_CR51) 2020; 24 N Neggaz (2609_CR82) 2020; 145 H Karami (2609_CR69) 2021; 156 AK Das (2609_CR96) 2022; 52 FA Hashim (2609_CR65) 2023; 85 A Mohammadi-Balani (2609_CR20) 2021; 152 R Kundu (2609_CR23) 2024; 80 R Storn (2609_CR12) 1997; 11 2609_CR14 H Jia (2609_CR60) 2023; 56 S Kaur (2609_CR72) 2020; 90 E-SM El-kenawy (2609_CR6) 2024; 238 EH Houssein (2609_CR41) 2021; 174 M Shehab (2609_CR8) 2022; 26 G Chandrashekar (2609_CR84) 2014; 40 H Peraza-Vázquez (2609_CR59) 2024; 57 H Chen (2609_CR38) 2020; 369 B Karmakar (2609_CR44) 2023; 79 W Zhao (2609_CR34) 2024; 238 S Mirjalili (2609_CR22) 2016; 27 Y Zhou (2609_CR87) 2020; 532 JO Agushaka (2609_CR17) 2022; 391 M Shehab (2609_CR31) 2023; 30 M Amoozegar (2609_CR86) 2018; 113 L Gu (2609_CR81) 2001; 26 M Mirrashid (2609_CR97) 2023; 264 2609_CR48 D Karaboga (2609_CR15) 2007; 39 MA Abu-Hashem (2609_CR33) 2024; 41 FA Hashim (2609_CR25) 2023; 260 B Abdollahzadeh (2609_CR98) 2022; 174 S Mirjalili (2609_CR75) 2014; 69 S Zhao (2609_CR56) 2022; 114 M Alweshah (2609_CR92) 2021; 51 M Abdel-Basset (2609_CR26) 2023; 268 2609_CR1 CM Fonseca (2609_CR9) 1995; 3 H Song (2609_CR47) 2024; 237 JH Holland (2609_CR10) 1992; 267 S Mirjalili (2609_CR76) 2016; 95 H Zamani (2609_CR36) 2019; 85 M Liu (2609_CR52) 2023; 16 A Mahdavi-Meymand (2609_CR63) 2022; 258 M Khishe (2609_CR16) 2020; 149 SK Sahoo (2609_CR55) 2023; 227 F Youfa (2609_CR19) 2024; 57 R Venkata Rao (2609_CR27) 2011; 43 DH Wolpert (2609_CR35) 1997; 1 C Zhong (2609_CR45) 2023; 215 B Tran (2609_CR90) 2017; 48 I Ahmadianfar (2609_CR70) 2020; 540 I Ahmadianfar (2609_CR68) 2022; 195 M Azizi (2609_CR30) 2023; 56 GM Viswanathan (2609_CR50) 1996; 381 X-S Yang (2609_CR2) 2008 DA Pierre (2609_CR54) 1986 H Zamani (2609_CR61) 2022; 392 M Friedman (2609_CR67) 1937; 32 Z Sharifian (2609_CR101) 2023; 228 DB Fogel (2609_CR11) 1998 S Gupta (2609_CR37) 2020; 93 H Zamani (2609_CR39) 2021; 104 RR Mostafa (2609_CR66) 2022; 246 F Moses (2609_CR78) 1969; 1 Q Askari (2609_CR28) 2020; 195 A Chhabra (2609_CR102) 2023; 68 JS Arora (2609_CR77) 2004 S Mirjalili (2609_CR74) 2016; 96 H Liu (2609_CR89) 2005; 17 D Jakovetić (2609_CR4) 2014; 59 S Zhao (2609_CR57) 2023; 53 A Faramarzi (2609_CR58) 2020; 191 X Zhou (2609_CR85) 2022; 52 H Bayzidi (2609_CR80) 2021; 1–32 I Ahmadianfar (2609_CR64) 2021; 181 S Mirjalili (2609_CR99) 2015; 89 2609_CR94 H Jiao (2609_CR43) 2022; 237 S Hang (2609_CR24) 2023; 532 G Dhiman (2609_CR73) 2019; 82 2609_CR91 TC Goldsmith (2609_CR53) 2016; 81 2609_CR79 D Wang (2609_CR83) 2015; 27 N Das (2609_CR88) 2023; 14 J Xue (2609_CR18) 2023; 79 N Chopra (2609_CR62) 2022; 198 RR Mostafa (2609_CR100) 2023; 269 H Esmaeili (2609_CR13) 2022; 210 A Statnikov (2609_CR95) 2005; 74 M Dehghani (2609_CR32) 2023; 259 Y Zhang (2609_CR93) 2021; 37 |
| References_xml | – volume: 52 start-page: 2942 issue: 3 year: 2022 ident: 2609_CR96 publication-title: Appl Intell doi: 10.1007/s10489-021-02444-w – volume: 227 year: 2023 ident: 2609_CR55 publication-title: Expert Syst Appl – ident: 2609_CR79 – volume: 210 year: 2022 ident: 2609_CR13 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.118365 – volume: 85 start-page: 29 year: 2023 ident: 2609_CR65 publication-title: Alex Eng J doi: 10.1016/j.aej.2023.11.004 – volume: 79 start-page: 7305 issue: 7 year: 2023 ident: 2609_CR18 publication-title: J Supercomput doi: 10.1007/s11227-022-04959-6 – ident: 2609_CR94 – volume: 174 year: 2022 ident: 2609_CR98 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2022.103282 – volume: 1–32 start-page: 2021 year: 2021 ident: 2609_CR80 publication-title: Comput Intell Neurosci – volume: 238 year: 2024 ident: 2609_CR34 publication-title: Expert Syst Appl – volume: 39 start-page: 459 year: 2007 ident: 2609_CR15 publication-title: J Glob Optim doi: 10.1007/s10898-007-9149-x – volume: 40 start-page: 16 issue: 1 year: 2014 ident: 2609_CR84 publication-title: Comput Electr Eng doi: 10.1016/j.compeleceng.2013.11.024 – volume-title: Optimization theory with applications year: 1986 ident: 2609_CR54 – volume: 181 year: 2021 ident: 2609_CR64 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.115079 – volume: 74 start-page: 491 issue: 7–8 year: 2005 ident: 2609_CR95 publication-title: Int J Med Inform doi: 10.1016/j.ijmedinf.2005.05.002 – volume: 152 year: 2021 ident: 2609_CR20 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2020.107050 – volume: 381 start-page: 413 issue: 6581 year: 1996 ident: 2609_CR50 publication-title: Nature doi: 10.1038/381413a0 – volume: 114 year: 2022 ident: 2609_CR56 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2022.105075 – volume-title: Introduction to optimum design year: 2004 ident: 2609_CR77 – volume: 81 start-page: 1406 issue: 12 year: 2016 ident: 2609_CR53 publication-title: Biochemistry (Moscow) doi: 10.1134/S0006297916120026 – volume: 14 start-page: 3911 issue: 11 year: 2023 ident: 2609_CR88 publication-title: Int J Mach Learn Cybern doi: 10.1007/s13042-023-01872-z – volume-title: Artificial intelligence through simulated evolution year: 1998 ident: 2609_CR11 – ident: 2609_CR1 – volume: 32 start-page: 675 issue: 200 year: 1937 ident: 2609_CR67 publication-title: J Am Stat Assoc doi: 10.1080/01621459.1937.10503522 – volume: 198 year: 2022 ident: 2609_CR62 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116924 – volume: 41 year: 2024 ident: 2609_CR33 publication-title: Sustain Comput Inform Syst – volume: 24 start-page: 3703 issue: 12 year: 2020 ident: 2609_CR51 publication-title: KSCE J Civ Eng doi: 10.1007/s12205-020-0504-5 – volume: 30 start-page: 765 issue: 2 year: 2023 ident: 2609_CR31 publication-title: Arch Comput Methods Eng doi: 10.1007/s11831-022-09817-5 – volume: 145 year: 2020 ident: 2609_CR82 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2019.113103 – volume: 69 start-page: 46 year: 2014 ident: 2609_CR75 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2013.12.007 – volume: 80 start-page: 1 year: 2024 ident: 2609_CR23 publication-title: J Supercomput doi: 10.1007/s11227-023-05790-3 – volume: 10 start-page: 166 issue: 1 year: 2022 ident: 2609_CR29 publication-title: IEEE Trans Comput Soc Syst doi: 10.1109/TCSS.2022.3141114 – volume: 1 start-page: 311 issue: 4 year: 1969 ident: 2609_CR78 publication-title: Int J Numer Methods Eng doi: 10.1002/nme.1620010402 – volume: 238 year: 2024 ident: 2609_CR6 publication-title: Expert Syst Appl – volume: 27 start-page: 495 year: 2016 ident: 2609_CR22 publication-title: Neural Comput Appl doi: 10.1007/s00521-015-1870-7 – volume: 11 start-page: 341 issue: 4 year: 1997 ident: 2609_CR12 publication-title: J Glob Optim doi: 10.1023/A:1008202821328 – volume: 85 year: 2019 ident: 2609_CR36 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2019.105583 – volume: 1 start-page: 67 issue: 1 year: 1997 ident: 2609_CR35 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.585893 – volume: 14 start-page: 1042 issue: 1 year: 2021 ident: 2609_CR7 publication-title: Int J Comput Intell Syst doi: 10.2991/ijcis.d.210309.001 – ident: 2609_CR48 doi: 10.1007/s13042-024-02361-7 – volume: 369 year: 2020 ident: 2609_CR38 publication-title: Appl Math Comput doi: 10.1016/j.cam.2019.112574 – volume: 53 start-page: 11833 issue: 10 year: 2023 ident: 2609_CR57 publication-title: Appl Intell doi: 10.1007/s10489-022-03994-3 – volume: 20 start-page: 2896 issue: 6 year: 2023 ident: 2609_CR46 publication-title: J Bionic Eng doi: 10.1007/s42235-023-00394-2 – volume: 191 year: 2020 ident: 2609_CR58 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2019.105190 – volume: 26 start-page: 348 issue: 4 year: 2001 ident: 2609_CR81 publication-title: Int J Veh Des doi: 10.1504/IJVD.2001.005210 – ident: 2609_CR91 doi: 10.1109/CEC.2016.7744378 – volume: 79 year: 2023 ident: 2609_CR44 publication-title: Swarm Evol Comput doi: 10.1016/j.swevo.2023.101296 – volume: 540 start-page: 131 year: 2020 ident: 2609_CR70 publication-title: Inf Sci doi: 10.1016/j.ins.2020.06.037 – volume: 153 year: 2021 ident: 2609_CR40 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2020.107086 – volume: 43 start-page: 303 issue: 3 year: 2011 ident: 2609_CR27 publication-title: Comput Aided Des doi: 10.1016/j.cad.2010.12.015 – volume: 391 year: 2022 ident: 2609_CR17 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.114570 – volume: 26 start-page: 11669 issue: 21 year: 2022 ident: 2609_CR8 publication-title: Soft Comput doi: 10.1007/s00500-022-07470-5 – volume: 547 start-page: 136 year: 2021 ident: 2609_CR42 publication-title: Inf Sci doi: 10.1016/j.ins.2020.08.040 – volume: 195 year: 2022 ident: 2609_CR68 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.116516 – volume: 237 year: 2024 ident: 2609_CR47 publication-title: Expert Syst Appl – volume: 104 year: 2021 ident: 2609_CR39 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2021.104314 – volume: 259 year: 2023 ident: 2609_CR32 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2022.110011 – volume: 392 year: 2022 ident: 2609_CR61 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2022.114616 – volume: 82 start-page: 148 year: 2019 ident: 2609_CR73 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2019.03.021 – volume: 39 start-page: 2627 issue: 4 year: 2023 ident: 2609_CR71 publication-title: Eng Comput doi: 10.1007/s00366-022-01604-x – volume: 246 year: 2022 ident: 2609_CR66 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2022.108743 – volume: 260 year: 2023 ident: 2609_CR25 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2022.110146 – volume: 237 year: 2022 ident: 2609_CR43 publication-title: Knowl Based Syst – volume: 96 start-page: 120 year: 2016 ident: 2609_CR74 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.12.022 – volume: 532 start-page: 91 year: 2020 ident: 2609_CR87 publication-title: Inf Sci doi: 10.1016/j.ins.2020.05.004 – volume: 3 start-page: 1 issue: 1 year: 1995 ident: 2609_CR9 publication-title: Evol Comput doi: 10.1162/evco.1995.3.1.1 – volume: 228 year: 2023 ident: 2609_CR101 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2023.120404 – volume: 37 start-page: 3741 year: 2021 ident: 2609_CR93 publication-title: Eng Comput doi: 10.1007/s00366-020-01028-5 – volume: 59 start-page: 1131 issue: 5 year: 2014 ident: 2609_CR4 publication-title: IEEE Trans Autom Control doi: 10.1109/TAC.2014.2298712 – volume: 532 start-page: 183 year: 2023 ident: 2609_CR24 publication-title: Neurocomputing doi: 10.1016/j.neucom.2023.02.010 – volume: 89 start-page: 228 year: 2015 ident: 2609_CR99 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2015.07.006 – volume: 195 year: 2020 ident: 2609_CR28 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2020.105709 – volume: 68 start-page: 141 year: 2023 ident: 2609_CR102 publication-title: Alex Eng J doi: 10.1016/j.aej.2022.12.045 – volume-title: Introduction to mathematical optimization: from linear programming to metaheuristics year: 2008 ident: 2609_CR2 – volume: 51 start-page: 4058 issue: 6 year: 2021 ident: 2609_CR92 publication-title: Appl Intell doi: 10.1007/s10489-020-01981-0 – volume: 57 start-page: 1 issue: 5 year: 2024 ident: 2609_CR19 publication-title: Artif Intell Rev – volume: 174 year: 2021 ident: 2609_CR41 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2021.114689 – volume: 268 year: 2023 ident: 2609_CR26 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2023.110454 – volume: 267 start-page: 66 issue: 1 year: 1992 ident: 2609_CR10 publication-title: Sci Am doi: 10.1038/scientificamerican0792-66 – volume: 264 year: 2023 ident: 2609_CR97 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2023.110305 – volume: 27 start-page: 2743 issue: 10 year: 2015 ident: 2609_CR83 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2015.2426703 – volume: 295 year: 2024 ident: 2609_CR49 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2024.111725 – volume: 90 year: 2020 ident: 2609_CR72 publication-title: Eng Appl Artif Intell doi: 10.1016/j.engappai.2020.103541 – volume: 93 year: 2020 ident: 2609_CR37 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2020.106367 – volume: 17 start-page: 491 issue: 4 year: 2005 ident: 2609_CR89 publication-title: IEEE Trans Knowl Data Eng doi: 10.1109/TKDE.2005.66 – volume: 52 start-page: 12556 issue: 11 year: 2022 ident: 2609_CR85 publication-title: Appl Intell doi: 10.1007/s10489-021-03121-8 – volume: 269 year: 2023 ident: 2609_CR100 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2023.110462 – volume: 16 start-page: 39 issue: 1 year: 2023 ident: 2609_CR52 publication-title: Int J Comput Intell Syst doi: 10.1007/s44196-023-00216-7 – volume: 149 year: 2020 ident: 2609_CR16 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2020.113338 – volume: 95 start-page: 51 year: 2016 ident: 2609_CR76 publication-title: Adv Eng Softw doi: 10.1016/j.advengsoft.2016.01.008 – volume: 48 start-page: 1733 issue: 6 year: 2017 ident: 2609_CR90 publication-title: IEEE Trans Cybern doi: 10.1109/TCYB.2017.2714145 – volume: 37 start-page: 2931 year: 2021 ident: 2609_CR5 publication-title: Eng Comput doi: 10.1007/s00366-020-00971-7 – volume: 8 start-page: 10 issue: 1 year: 1993 ident: 2609_CR21 publication-title: Stat Sci doi: 10.1214/ss/1177011077 – volume: 113 start-page: 499 year: 2018 ident: 2609_CR86 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2018.07.013 – volume: 56 start-page: 1919 issue: Suppl 2 year: 2023 ident: 2609_CR60 publication-title: Artif Intell Rev doi: 10.1007/s10462-023-10567-4 – volume-title: Engineering optimization: an introduction with metaheuristic applications year: 2010 ident: 2609_CR3 doi: 10.1002/9780470640425 – volume: 215 year: 2023 ident: 2609_CR45 publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2022.119303 – volume: 57 start-page: 59 issue: 3 year: 2024 ident: 2609_CR59 publication-title: Artif Intell Rev doi: 10.1007/s10462-023-10653-7 – volume: 258 year: 2022 ident: 2609_CR63 publication-title: Knowl Based Syst doi: 10.1016/j.knosys.2022.110032 – volume: 156 year: 2021 ident: 2609_CR69 publication-title: Comput Ind Eng doi: 10.1016/j.cie.2021.107224 – volume: 56 start-page: 287 issue: 1 year: 2023 ident: 2609_CR30 publication-title: Artif Intell Rev doi: 10.1007/s10462-022-10173-w – ident: 2609_CR14 doi: 10.1109/MHS.1995.494215 |
| SSID | ssj0000603302 ssib031263576 ssib033405570 |
| Score | 2.3717217 |
| Snippet | Electric Eel Foraging Optimization (EEFO) algorithm is a metaheuristic inspired by the social predation behavior of electric eels. It incorporates... |
| SourceID | proquest crossref springer |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 5985 |
| SubjectTerms | Algorithms Artificial Intelligence Classification Complex Systems Computational Intelligence Control Datasets Design engineering Energy consumption Engineering Evolutionary computation Exploitation Foraging behavior Genetic algorithms Global optimization Heuristic Heuristic methods Mapping Mechatronics Mutation Optimization algorithms Optimization techniques Original Article Pattern Recognition Physics Rank tests Robotics Searching Space exploration Strategy Systems Biology |
| Title | A multi-strategy improved electric eel foraging optimization algorithm: continuous and binary variants for solving optimization problems |
| URI | https://link.springer.com/article/10.1007/s13042-025-02609-w https://www.proquest.com/docview/3247562877 |
| Volume | 16 |
| WOSCitedRecordID | wos001463319500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAVX databaseName: SpringerLINK Contemporary 1997-Present customDbUrl: eissn: 1868-808X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000603302 issn: 1868-8071 databaseCode: RSV dateStart: 20101201 isFulltext: true titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22 providerName: Springer Nature |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7RpYdyaGFbxJYt8qEHUGtpYyexww1VXXFaIbqq9hYlttNGWrJosw_xD_jZjB2H9C2Va2I7ij3j-cae-Qbgvd300fCE1BLH0JAZ1Dkeacq0ibiSIx5lyhWbEJOJnM2SK58UVrfR7u2VpNupu2Q363lTW37V8mAldPsMdtHcSVuw4frL11aKeGD5VTojy3noeKYeT15GMT5rghFlLC0bb-Czaf78mZ8tVgdDf7k5dQZp_Oppv7IPLz0AJReNxBzAjqn6sPcDLWEfDrzC1-TUs1KfvYb7C-KCD2nd8NnekdKdRxhNmlI6pSLGzAmCYFf4iCxwM7rxWZ4km39bLMvV95tzYoPjy2q9WNckqzTJXUIw2aDPbkNybH-C-rD5bQhf-qZ-A9Px5-mnS-rLOFDFWbCioUL3G92-XCLciBORxzoPAyUDVehEskLqJI-lKoyK4iIxItYsjrTIc54opjJ-CL1qUZkjIKNC65xrhLC8CEXBJaITJRiCxkQznqkBBO1KpcpTnNtKG_O0I2e2M5_izKdu5tPtAD489rltCD7-2XrYCkDqlb1OEZMKhJFSiAF8bBe8e_330d7-X_NjeMGczNgItyH0Vsu1eQfP1WZV1ssTpwQPrkL_3A |
| linkProvider | Springer Nature |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3BTtwwEB1RQGp7gEKp2ALFhx6oWksbO4md3lBVRAVdVWWFuEWJ7UCkJYs2u4v6B3w2Y8chBUql9prYjmLPeN7YM28A3ttNHw1PSC1xDA2ZQZ3jkaZMm4gr2edRplyxCTEYyLOz5IdPCqvbaPf2StLt1F2ym_W8qS2_anmwEnr9DJZCtFiWMf_nyWkrRTyw_CqdkeU8dDxTdycv_RifNcGIMpaWjTfw2TR__sx9i9XB0Ac3p84gHaz-36-8ghUPQMl-IzFrsGCqdXj5Gy3hOqx5ha_Jnmel_vAabvaJCz6kdcNn-4uU7jzCaNKU0ikVMWZEEAS7wkdkjJvRpc_yJNnofDwppxeXn4kNji-r2XhWk6zSJHcJwWSOPrsNybH9CerD_NEQvvRNvQHDg6_DL4fUl3GgirNgSkOF7je6fblEuBEnIo91HgZKBqrQiWSF1EkeS1UYFcVFYkSsWRxpkec8UUxl_A0sVuPKbALpF1rnXCOE5UUoCi4RnSjBEDQmmvFM9SBoVypVnuLcVtoYpR05s535FGc-dTOfXvfg412fq4bg46-tt1sBSL2y1yliUoEwUgrRg0_tgnevnx7t7b8134Xnh8Pvx-nxt8HRFrxgTn5stNs2LE4nM7MDy2o-LevJO6cQt7K5As8 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4VihAcaIEitjzqA4cisHZjJ7HDDUFXrUArpCLELUpsh0ZasmiTXcQ_4GfXdhxCy0NCXJPYSezxzDf2zDcAO0bpa8PjY0Mcg32i9JqjgcREqoAK3qNBImyxCTYY8MvL6OxRFr-Ndm-OJOucBsPSVFTdG5l128Q344VjU4rVcGJF-HYGPvomkN74678vGominuFaaQ0upb7lnHrYhemF-lodmMhDbph5PZdZ8_xr_rVeLST97xTVGqf-p_f_1mdYcsAUHdaStAwfVLECi4_oCldg2SmCEn13bNW7q3B_iGxQIi5rnts7lNt9CiVRXWInF0ipIdLg2BZEQiOtpK5d9idKhlejcV79uT5A5lPzYjKalCgpJEptojCaal_ehOqY9kivk-mTLlxJnPILnPd_nB_9xK68AxaUeBX2hXbLtTuYcg1DwoiloUx9T3BPZDLiJOMySkMuMiWCMIsUCyUJA8nSlEaCiISuwWwxKtQ6oF4mZUqlhrY081lGuUYtghENJiNJaCI64DWzFgtHfW4qcAzjlrTZjHysRz62Ix_fdmDvoc1NTfzx6tObjTDETgmUscaqTMNLzlgH9pvJb2-_3NvXtz3-DebPjvvx6a_ByQYsECs-JghuE2ar8URtwZyYVnk53rZr4y94Zguz |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+multi-strategy+improved+electric+eel+foraging+optimization+algorithm%3A+continuous+and+binary+variants+for+solving+optimization+problems&rft.jtitle=International+journal+of+machine+learning+and+cybernetics&rft.au=Mostafa%2C+Reham+R.&rft.au=Khedr%2C+Ahmed+M.&rft.au=AL+Aghbari%2C+Zaher&rft.au=Afyouni%2C+Imad&rft.date=2025-09-01&rft.pub=Springer+Berlin+Heidelberg&rft.issn=1868-8071&rft.eissn=1868-808X&rft.volume=16&rft.issue=9&rft.spage=5985&rft.epage=6030&rft_id=info:doi/10.1007%2Fs13042-025-02609-w&rft.externalDocID=10_1007_s13042_025_02609_w |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1868-8071&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1868-8071&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1868-8071&client=summon |