Generalized Finite Integration Method with Laplace transform for European option pricing under Black–Scholes and Heston models

In this paper, we combine a recently developed Generalized Finite Integration Method (GFIM) with Laplace transform technique for pricing options under the Black Scholes model and Heston model respectively. Instead of using traditional time-stepping process, we first perform Laplace transform on the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Engineering analysis with boundary elements Ročník 164; s. 105751
Hlavní autoři: Ma, Y., Shi, C.Z., Hon, Y.C.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.07.2024
Témata:
ISSN:0955-7997
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:In this paper, we combine a recently developed Generalized Finite Integration Method (GFIM) with Laplace transform technique for pricing options under the Black Scholes model and Heston model respectively. Instead of using traditional time-stepping process, we first perform Laplace transform on the governing equation and boundary conditions to remove the temporal derivatives. The Generalized Finite Integration Method is then exploited to handle the spatial differential operators in the transformed space. From numerical Laplace inversion algorithm, we restore the required time-dependent option price. For verification, several option pricing models governed by one-dimensional Black–Scholes equation and two-dimensional extended Heston equation are constructed to demonstrate the efficiency and feasibility of the proposed approach.
ISSN:0955-7997
DOI:10.1016/j.enganabound.2024.105751