Magnetic object recognition with magnetic gradient tensor system heading-line surveys based on kernel extreme learning machine and sparrow search algorithm

•Innovatively proposed a pattern recognition method for the physical properties such as the posture and shape of the magnetic targets with the MGTS single heading-line surveys;•Studies the feature extraction method of MGT route signal, including a) use the magnetization offset sensitivity analysis o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Measurement : journal of the International Measurement Confederation Jg. 203; S. 111967
Hauptverfasser: Li, Qingzhu, Li, Zhining, Shi, Zhiyong, Fan, Hongbo
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 15.11.2022
Schlagworte:
ISSN:0263-2241, 1873-412X
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract •Innovatively proposed a pattern recognition method for the physical properties such as the posture and shape of the magnetic targets with the MGTS single heading-line surveys;•Studies the feature extraction method of MGT route signal, including a) use the magnetization offset sensitivity analysis of MGT various attribute quantities to screen types of magnetic objects; b) summarize the statistical features of dimensionless and dimensionless time-domain waveforms applicable to different attribute signals;•Optimized the KELM classifier with the sparrow search algorithm (SSA) and have improved the efficiency and accuracy of samples training; designed a target pattern recognition flow based on SSA-KELM for training and learning of MGTS single heading-line surveys data. We found that single heading-line surveys from magnetic gradient tensor system (MGTS) can be used to realize pattern recognition of magnetic objects, such as shape and posture, which can greatly improve the target detection efficiency compared with the two-dimensional grid measurement. Abandoning complex mathematical process, we measure and learn several training routes in advance, and use kernel extreme learning machine (KELM) and sparrow search algorithm (SSA) to recognize the target. The magnetic gradient tensor and its derived variables are analyzed for the sensitivity of the magnetization direction, and two types of characteristic attributes suitable for the target posture and shape categories are summarized. Time-domain waveform feature extraction from continuously sampled signals helps build datasets with corresponding category labels. Principal component analysis (PCA) is used to reduce feature dimensionality and improve classifier efficiency. Both simulation and experiment dataset have achieved 100% accurate recognition of the target posture and shape categories.
AbstractList •Innovatively proposed a pattern recognition method for the physical properties such as the posture and shape of the magnetic targets with the MGTS single heading-line surveys;•Studies the feature extraction method of MGT route signal, including a) use the magnetization offset sensitivity analysis of MGT various attribute quantities to screen types of magnetic objects; b) summarize the statistical features of dimensionless and dimensionless time-domain waveforms applicable to different attribute signals;•Optimized the KELM classifier with the sparrow search algorithm (SSA) and have improved the efficiency and accuracy of samples training; designed a target pattern recognition flow based on SSA-KELM for training and learning of MGTS single heading-line surveys data. We found that single heading-line surveys from magnetic gradient tensor system (MGTS) can be used to realize pattern recognition of magnetic objects, such as shape and posture, which can greatly improve the target detection efficiency compared with the two-dimensional grid measurement. Abandoning complex mathematical process, we measure and learn several training routes in advance, and use kernel extreme learning machine (KELM) and sparrow search algorithm (SSA) to recognize the target. The magnetic gradient tensor and its derived variables are analyzed for the sensitivity of the magnetization direction, and two types of characteristic attributes suitable for the target posture and shape categories are summarized. Time-domain waveform feature extraction from continuously sampled signals helps build datasets with corresponding category labels. Principal component analysis (PCA) is used to reduce feature dimensionality and improve classifier efficiency. Both simulation and experiment dataset have achieved 100% accurate recognition of the target posture and shape categories.
ArticleNumber 111967
Author Shi, Zhiyong
Fan, Hongbo
Li, Qingzhu
Li, Zhining
Author_xml – sequence: 1
  givenname: Qingzhu
  surname: Li
  fullname: Li, Qingzhu
– sequence: 2
  givenname: Zhining
  surname: Li
  fullname: Li, Zhining
  email: lgdsxq@163.com
– sequence: 3
  givenname: Zhiyong
  surname: Shi
  fullname: Shi, Zhiyong
– sequence: 4
  givenname: Hongbo
  surname: Fan
  fullname: Fan, Hongbo
BookMark eNqNkd1OwyAUx4nRxDl9B3yATqCVtVfGLH4lM95o4h05pacds4UF8GPP4stKM02MV14R4Px_5_DjiOxbZ5GQU85mnHF5tp4NCOHV44A2zgQTYsY5r-R8j0x4Oc-zgovnfTJhQuaZEAU_JEchrBljMq_khHzeQ2cxGk1dvUYdqUftOmuicZa-m7iiw09B56ExqQuNaIPzNGxDxIGuMB3bLuuNRZomecNtoDUEbGhCvKC32FP8iOOItEfwNlUnql6NAbANDRvw3r3TkC71ikLfOZ86D8fkoIU-4Mn3OiVP11ePi9ts-XBzt7hcZjoXPGYFK9u6YgWet0K2NVZtWTYVAOSi5jgvG9R12uQCoSillJxJXp0XNa8a4HPZ5lNyseNq70Lw2CptIowGogfTK87U6Fqt1S_XanStdq4TofpD2HgzgN_-K7vYZTE98c2gV0EnzRobk_4iqsaZf1C-AJWYqX0
CitedBy_id crossref_primary_10_1016_j_resourpol_2023_104189
crossref_primary_10_1016_j_jmmm_2024_172586
crossref_primary_10_1016_j_saa_2024_124858
crossref_primary_10_1016_j_measurement_2024_114550
crossref_primary_10_1109_TGRS_2024_3405478
crossref_primary_10_1109_TIM_2025_3548822
crossref_primary_10_1016_j_measurement_2025_117819
crossref_primary_10_1109_TGRS_2022_3222799
crossref_primary_10_1515_teme_2023_0116
crossref_primary_10_1007_s10462_023_10549_6
crossref_primary_10_1109_TIM_2025_3568958
Cites_doi 10.1063/1.5110626
10.1109/TMAG.2019.2914881
10.1071/EG12020
10.1007/s00024-019-02202-7
10.1109/JSEN.2021.3085573
10.1190/1.3493639
10.1080/08123985.2019.1615834
10.1088/1361-6501/ab8dfe
10.1016/j.jmmm.2019.03.066
10.1016/j.measurement.2014.09.045
10.1016/j.neucom.2005.12.126
10.1046/j.1365-2478.2000.00171.x
10.1016/j.ijhydene.2020.12.107
10.1109/TGRS.2011.2164086
10.1016/j.jappgeo.2016.03.022
10.1109/ACCESS.2020.3030676
10.1109/34.824819
10.1016/j.cageo.2009.10.002
10.1046/j.1365-2478.2000.00188.x
10.1093/gji/ggz421
10.1016/0926-9851(94)90022-1
10.1080/21642583.2019.1708830
10.1007/s12559-014-9255-2
10.1002/wics.101
10.1016/j.geoderma.2009.09.008
10.1016/j.knosys.2021.106924
10.1016/j.jappgeo.2003.10.001
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.measurement.2022.111967
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1873-412X
ExternalDocumentID 10_1016_j_measurement_2022_111967
S0263224122011630
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFRF
ABJNI
ABMAC
ABNEU
ABYKQ
ACDAQ
ACFVG
ACGFO
ACGFS
ACIWK
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEFWE
AEGXH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GS5
IHE
J1W
JJJVA
KOM
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SPD
SSQ
SST
SSZ
T5K
ZMT
~G-
29M
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABXDB
ACLOT
ACNNM
ACVFH
ADCNI
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SET
SEW
WUQ
XPP
~HD
ID FETCH-LOGICAL-c321t-408fb904e5f26fbe9f88d9aaa32b1e78decbaa332ea486661061954b19da176f3
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000862034000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0263-2241
IngestDate Tue Nov 18 20:41:43 EST 2025
Sat Nov 29 07:19:38 EST 2025
Fri Feb 23 02:39:20 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Heading-line survey
Magnetic target pattern recognition
Sparrow search algorithm
Magnetic gradient tensor
Kernel extreme learning machine
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-408fb904e5f26fbe9f88d9aaa32b1e78decbaa332ea486661061954b19da176f3
ParticipantIDs crossref_citationtrail_10_1016_j_measurement_2022_111967
crossref_primary_10_1016_j_measurement_2022_111967
elsevier_sciencedirect_doi_10_1016_j_measurement_2022_111967
PublicationCentury 2000
PublicationDate 2022-11-15
PublicationDateYYYYMMDD 2022-11-15
PublicationDate_xml – month: 11
  year: 2022
  text: 2022-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Measurement : journal of the International Measurement Confederation
PublicationYear 2022
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Jain, Duin, Mao (b0065) 2000; 22
Turlapaty, Anantharaj, Younan (b0090) 2010; 36
Zhu, Yousefi (b0165) 2021; 46
Gang, Yingtang, Hongbo, Zhining, Guoquan (b0015) 2016; 128
Qingzhu, Zhiyong, Zhining (b0060) 2021; 70
Miller, Singh (b0035) 1994; 32
Fernández, Barrowes, O'Neill (b0085) 2006; 6217
Ehret (b0095) 2010; 160
Zhang, Ma, Lin (b0155) 2015; 59
Beiki (b0140) 2010; 75
Kim (b0030) 2018; 54
Zheng, Fan, Zhang (b0100) 2019; 55
Yin, Zhang (b0040) 2019; 482
Li, Li, Shi (b0050) 2022; 111612
Zhou, Zhang, Chen (b0110) 2020; 8
Zheng, Fan, Yin (b0105) 2019; 9
Abdi, Williams (b0125) 2010; 2
Sheinker, Ginzburg, Salomonski, Dickstein, Frumkis, Kaplan (b0005) April 2012; 50
Clack (b0010) 2012; 43
Li, Shi, Li (b0135) 2020; 31
Snydsman, Aminzadeh, Weil (b0075) 1987; 768
Huang (b0120) 2014; 6
Zhang, Ding (b0160) 2021; 220
Huang, Zhu, Siew (b0070) 2006; 70
Paoletti, Buggi, Pašteka (b0025) 2019; 176
Calderón-Macías, Sen, Stoffa (b0080) 2000; 48
Gerovska, Araúzo-Bravo, Stavrev (b0145) 2004; 55
Xue, Shen (b0115) 2020; 8
Stavrev, Gerovska (b0150) 2000; 48
Wigh, Hansen, Døssing (b0020) 2020; 220
Li, Zhang, Fan (b0045) 2019; 50
Li, Zhiyong, Zhining (b0055) 2021; 21
Qingzhu, Zhining, Yingtang (b0130) 2018; 54
Li (10.1016/j.measurement.2022.111967_b0055) 2021; 21
Calderón-Macías (10.1016/j.measurement.2022.111967_b0080) 2000; 48
Yin (10.1016/j.measurement.2022.111967_b0040) 2019; 482
Ehret (10.1016/j.measurement.2022.111967_b0095) 2010; 160
Qingzhu (10.1016/j.measurement.2022.111967_b0130) 2018; 54
Snydsman (10.1016/j.measurement.2022.111967_b0075) 1987; 768
Xue (10.1016/j.measurement.2022.111967_b0115) 2020; 8
Zheng (10.1016/j.measurement.2022.111967_b0100) 2019; 55
Li (10.1016/j.measurement.2022.111967_b0135) 2020; 31
Kim (10.1016/j.measurement.2022.111967_b0030) 2018; 54
Sheinker (10.1016/j.measurement.2022.111967_b0005) 2012; 50
Miller (10.1016/j.measurement.2022.111967_b0035) 1994; 32
Turlapaty (10.1016/j.measurement.2022.111967_b0090) 2010; 36
Zhang (10.1016/j.measurement.2022.111967_b0155) 2015; 59
Qingzhu (10.1016/j.measurement.2022.111967_b0060) 2021; 70
Stavrev (10.1016/j.measurement.2022.111967_b0150) 2000; 48
Zhang (10.1016/j.measurement.2022.111967_b0160) 2021; 220
Zhou (10.1016/j.measurement.2022.111967_b0110) 2020; 8
Li (10.1016/j.measurement.2022.111967_b0045) 2019; 50
Li (10.1016/j.measurement.2022.111967_b0050) 2022; 111612
Zheng (10.1016/j.measurement.2022.111967_b0105) 2019; 9
Abdi (10.1016/j.measurement.2022.111967_b0125) 2010; 2
Beiki (10.1016/j.measurement.2022.111967_b0140) 2010; 75
Paoletti (10.1016/j.measurement.2022.111967_b0025) 2019; 176
Fernández (10.1016/j.measurement.2022.111967_b0085) 2006; 6217
Zhu (10.1016/j.measurement.2022.111967_b0165) 2021; 46
Gerovska (10.1016/j.measurement.2022.111967_b0145) 2004; 55
Wigh (10.1016/j.measurement.2022.111967_b0020) 2020; 220
Huang (10.1016/j.measurement.2022.111967_b0070) 2006; 70
Huang (10.1016/j.measurement.2022.111967_b0120) 2014; 6
Jain (10.1016/j.measurement.2022.111967_b0065) 2000; 22
Clack (10.1016/j.measurement.2022.111967_b0010) 2012; 43
Gang (10.1016/j.measurement.2022.111967_b0015) 2016; 128
References_xml – volume: 2
  start-page: 433
  year: 2010
  end-page: 459
  ident: b0125
  article-title: Principal component analysis[J]
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
– volume: 46
  start-page: 9541
  year: 2021
  end-page: 9552
  ident: b0165
  article-title: Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm
  publication-title: Int. J. Hydrogen Energy
– volume: 128
  start-page: 131
  year: 2016
  end-page: 139
  ident: b0015
  article-title: Detection, localization and classification of multiple dipole-like magnetic sources using magnetic gradient tensor data
  publication-title: J. Appl. Geophys.
– volume: 32
  start-page: 213
  year: 1994
  end-page: 217
  ident: b0035
  article-title: Potential field tilt—a new concept for location of potential field sources[J]
  publication-title: J. Appl. Geophys.
– volume: 8
  start-page: 22
  year: 2020
  end-page: 34
  ident: b0115
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm[J]
  publication-title: Systems Science & Control Engineering
– volume: 54
  start-page: 4001011
  year: 2018
  ident: b0130
  article-title: Integrated Compensation and Rotation Alignment for Three-Axis Magnetic Sensors Array[J]
  publication-title: IEEE Trans. Magn.
– volume: 176
  start-page: 4363
  year: 2019
  end-page: 4381
  ident: b0025
  article-title: UXO detection by multiscale potential field methods
  publication-title: Pure Appl. Geophys.
– volume: 21
  start-page: 18237
  year: 2021
  end-page: 18248
  ident: b0055
  article-title: Magnetic Object Positioning Based on Second-Order Magnetic Gradient Tensor System[J]
  publication-title: IEEE Sens. J.
– volume: 54
  start-page: 1
  year: 2018
  end-page: 5
  ident: b0030
  article-title: Determination scheme for accurate defect depth in underground pipeline inspection by using magnetic flux leakage sensors
  publication-title: IEEE Trans. Magn.
– volume: 482
  start-page: 229
  year: 2019
  end-page: 238
  ident: b0040
  article-title: Three-dimensional reconstruction of a small-scale magnetic target from magnetic gradient observations[J]
  publication-title: J. Magn. Magn. Mater.
– volume: 9
  year: 2019
  ident: b0105
  article-title: A method of using geomagnetic anomaly to recognize objects based on HOG and 2D-AVMD[J]
  publication-title: AIP Adv.
– volume: 160
  start-page: 111
  year: 2010
  end-page: 125
  ident: b0095
  article-title: Pattern recognition of geophysical data[J]
  publication-title: Geoderma
– volume: 50
  start-page: 1095
  year: April 2012
  end-page: 1103
  ident: b0005
  article-title: Magnetic Anomaly Detection Using High-Order Crossing Method
  publication-title: IEEE Trans. Geosci. Remote Sens.
– volume: 43
  start-page: 267
  year: 2012
  end-page: 282
  ident: b0010
  article-title: New methods for interpretation of magnetic vector and gradient tensor data I: eigenvector analysis and the normalised source strength[J]
  publication-title: Explor. Geophys.
– volume: 48
  start-page: 317
  year: 2000
  end-page: 340
  ident: b0150
  article-title: Magnetic field transforms with low sensitivity to the direction of source magnetization and high centricity [J]
  publication-title: Geophys. Prospect.
– volume: 50
  start-page: 600
  year: 2019
  end-page: 612
  ident: b0045
  article-title: Estimating the location of magnetic sources using magnetic gradient tensor data[J]
  publication-title: Explor. Geophys.
– volume: 220
  start-page: 37
  year: 2020
  end-page: 58
  ident: b0020
  article-title: Inference of unexploded ordnance (UXO) by probabilistic inversion of magnetic data
  publication-title: Geophys. J. Int.
– volume: 70
  start-page: 1010214
  year: 2021
  ident: b0060
  article-title: Preferred Configuration and Detection Limits Estimation of Magnetic Gradient Tensor System[J]
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 6
  start-page: 376
  year: 2014
  end-page: 390
  ident: b0120
  article-title: An insight into extreme learning machines: random neurons, random features and kernels[J]
  publication-title: Cognitive Computation
– volume: 220
  year: 2021
  ident: b0160
  article-title: A stochastic configuration network based on chaotic sparrow search algorithm
  publication-title: Knowl.-Based Syst.
– volume: 768
  start-page: 53
  year: 1987
  end-page: 60
  ident: b0075
  article-title: Pattern recognition in geophysical exploration[C]//Pattern Recognition and Acoustical Imaging
  publication-title: International Society for Optics and Photonics
– volume: 36
  start-page: 464
  year: 2010
  end-page: 476
  ident: b0090
  article-title: A pattern recognition based approach to consistency analysis of geophysical datasets[J]
  publication-title: Comput. Geosci.
– volume: 59
  start-page: 73
  year: 2015
  end-page: 87
  ident: b0155
  article-title: Fault diagnosis approach for rotating machinery based on dynamic model and computational intelligence[J]
  publication-title: Measurement
– volume: 22
  start-page: 4
  year: 2000
  end-page: 37
  ident: b0065
  article-title: Statistical pattern recognition: A review[J]
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 55
  start-page: 173
  year: 2004
  end-page: 186
  ident: b0145
  article-title: Determination of the parameters of compact ferro-metallic objects with transforms of magnitude magnetic anomalies[J]
  publication-title: J. Appl. Geophys.
– volume: 31
  year: 2020
  ident: b0135
  article-title: Magnetic object positioning method based on tensor spacial invariant relations[J]
  publication-title: Meas. Sci. Technol.
– volume: 111612
  year: 2022
  ident: b0050
  article-title: Application of Helbig integrals to magnetic gradient tensor multi-target detection[J]
  publication-title: Measurement
– volume: 70
  start-page: 489
  year: 2006
  end-page: 501
  ident: b0070
  article-title: Extreme learning machine: theory and applications[J]
  publication-title: Neurocomputing
– volume: 6217
  year: 2006
  ident: b0085
  article-title: Evaluation of SVM classification of metallic objects based on a magnetic-dipole representation[C]//Detection and Remediation Technologies for Mines and Minelike Targets XI
  publication-title: International Society for Optics and Photonics
– volume: 48
  start-page: 21
  year: 2000
  end-page: 47
  ident: b0080
  article-title: Artificial neural networks for parameter estimation in geophysics [Link][J]
  publication-title: Geophys. Prospect.
– volume: 55
  start-page: 1
  year: 2019
  end-page: 8
  ident: b0100
  article-title: Magnetic anomaly target recognition based on svd and svms[J]
  publication-title: IEEE Trans. Magn.
– volume: 8
  start-page: 187202
  year: 2020
  end-page: 187207
  ident: b0110
  article-title: Detection and classification of multi-magnetic targets using mask-RCNN[J]
  publication-title: IEEE Access
– volume: 75
  start-page: I59
  year: 2010
  end-page: I74
  ident: b0140
  article-title: Analytic signals of gravity gradient tensor and their application to estimate source location
  publication-title: Geophysics
– volume: 9
  issue: 7
  year: 2019
  ident: 10.1016/j.measurement.2022.111967_b0105
  article-title: A method of using geomagnetic anomaly to recognize objects based on HOG and 2D-AVMD[J]
  publication-title: AIP Adv.
  doi: 10.1063/1.5110626
– volume: 6217
  year: 2006
  ident: 10.1016/j.measurement.2022.111967_b0085
  article-title: Evaluation of SVM classification of metallic objects based on a magnetic-dipole representation[C]//Detection and Remediation Technologies for Mines and Minelike Targets XI
  publication-title: International Society for Optics and Photonics
– volume: 55
  start-page: 1
  issue: 9
  year: 2019
  ident: 10.1016/j.measurement.2022.111967_b0100
  article-title: Magnetic anomaly target recognition based on svd and svms[J]
  publication-title: IEEE Trans. Magn.
  doi: 10.1109/TMAG.2019.2914881
– volume: 43
  start-page: 267
  issue: 04
  year: 2012
  ident: 10.1016/j.measurement.2022.111967_b0010
  article-title: New methods for interpretation of magnetic vector and gradient tensor data I: eigenvector analysis and the normalised source strength[J]
  publication-title: Explor. Geophys.
  doi: 10.1071/EG12020
– volume: 176
  start-page: 4363
  issue: 10
  year: 2019
  ident: 10.1016/j.measurement.2022.111967_b0025
  article-title: UXO detection by multiscale potential field methods
  publication-title: Pure Appl. Geophys.
  doi: 10.1007/s00024-019-02202-7
– volume: 21
  start-page: 18237
  issue: 16
  year: 2021
  ident: 10.1016/j.measurement.2022.111967_b0055
  article-title: Magnetic Object Positioning Based on Second-Order Magnetic Gradient Tensor System[J]
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2021.3085573
– volume: 75
  start-page: I59
  issue: 6
  year: 2010
  ident: 10.1016/j.measurement.2022.111967_b0140
  article-title: Analytic signals of gravity gradient tensor and their application to estimate source location
  publication-title: Geophysics
  doi: 10.1190/1.3493639
– volume: 50
  start-page: 600
  issue: 6
  year: 2019
  ident: 10.1016/j.measurement.2022.111967_b0045
  article-title: Estimating the location of magnetic sources using magnetic gradient tensor data[J]
  publication-title: Explor. Geophys.
  doi: 10.1080/08123985.2019.1615834
– volume: 70
  start-page: 1010214
  year: 2021
  ident: 10.1016/j.measurement.2022.111967_b0060
  article-title: Preferred Configuration and Detection Limits Estimation of Magnetic Gradient Tensor System[J]
  publication-title: IEEE Trans. Instrum. Meas.
– volume: 31
  issue: 11
  year: 2020
  ident: 10.1016/j.measurement.2022.111967_b0135
  article-title: Magnetic object positioning method based on tensor spacial invariant relations[J]
  publication-title: Meas. Sci. Technol.
  doi: 10.1088/1361-6501/ab8dfe
– volume: 482
  start-page: 229
  year: 2019
  ident: 10.1016/j.measurement.2022.111967_b0040
  article-title: Three-dimensional reconstruction of a small-scale magnetic target from magnetic gradient observations[J]
  publication-title: J. Magn. Magn. Mater.
  doi: 10.1016/j.jmmm.2019.03.066
– volume: 59
  start-page: 73
  year: 2015
  ident: 10.1016/j.measurement.2022.111967_b0155
  article-title: Fault diagnosis approach for rotating machinery based on dynamic model and computational intelligence[J]
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.09.045
– volume: 70
  start-page: 489
  issue: 1–3
  year: 2006
  ident: 10.1016/j.measurement.2022.111967_b0070
  article-title: Extreme learning machine: theory and applications[J]
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– volume: 48
  start-page: 21
  issue: 1
  year: 2000
  ident: 10.1016/j.measurement.2022.111967_b0080
  article-title: Artificial neural networks for parameter estimation in geophysics [Link][J]
  publication-title: Geophys. Prospect.
  doi: 10.1046/j.1365-2478.2000.00171.x
– volume: 46
  start-page: 9541
  issue: 14
  year: 2021
  ident: 10.1016/j.measurement.2022.111967_b0165
  article-title: Optimal parameter identification of PEMFC stacks using adaptive sparrow search algorithm
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2020.12.107
– volume: 50
  start-page: 1095
  issue: 4
  year: 2012
  ident: 10.1016/j.measurement.2022.111967_b0005
  article-title: Magnetic Anomaly Detection Using High-Order Crossing Method
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2011.2164086
– volume: 128
  start-page: 131
  year: 2016
  ident: 10.1016/j.measurement.2022.111967_b0015
  article-title: Detection, localization and classification of multiple dipole-like magnetic sources using magnetic gradient tensor data
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2016.03.022
– volume: 8
  start-page: 187202
  year: 2020
  ident: 10.1016/j.measurement.2022.111967_b0110
  article-title: Detection and classification of multi-magnetic targets using mask-RCNN[J]
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.3030676
– volume: 22
  start-page: 4
  issue: 1
  year: 2000
  ident: 10.1016/j.measurement.2022.111967_b0065
  article-title: Statistical pattern recognition: A review[J]
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/34.824819
– volume: 36
  start-page: 464
  issue: 4
  year: 2010
  ident: 10.1016/j.measurement.2022.111967_b0090
  article-title: A pattern recognition based approach to consistency analysis of geophysical datasets[J]
  publication-title: Comput. Geosci.
  doi: 10.1016/j.cageo.2009.10.002
– volume: 48
  start-page: 317
  issue: 2
  year: 2000
  ident: 10.1016/j.measurement.2022.111967_b0150
  article-title: Magnetic field transforms with low sensitivity to the direction of source magnetization and high centricity [J]
  publication-title: Geophys. Prospect.
  doi: 10.1046/j.1365-2478.2000.00188.x
– volume: 220
  start-page: 37
  issue: 1
  year: 2020
  ident: 10.1016/j.measurement.2022.111967_b0020
  article-title: Inference of unexploded ordnance (UXO) by probabilistic inversion of magnetic data
  publication-title: Geophys. J. Int.
  doi: 10.1093/gji/ggz421
– volume: 54
  start-page: 1
  issue: 11
  year: 2018
  ident: 10.1016/j.measurement.2022.111967_b0030
  article-title: Determination scheme for accurate defect depth in underground pipeline inspection by using magnetic flux leakage sensors
  publication-title: IEEE Trans. Magn.
– volume: 32
  start-page: 213
  issue: 2–3
  year: 1994
  ident: 10.1016/j.measurement.2022.111967_b0035
  article-title: Potential field tilt—a new concept for location of potential field sources[J]
  publication-title: J. Appl. Geophys.
  doi: 10.1016/0926-9851(94)90022-1
– volume: 768
  start-page: 53
  year: 1987
  ident: 10.1016/j.measurement.2022.111967_b0075
  article-title: Pattern recognition in geophysical exploration[C]//Pattern Recognition and Acoustical Imaging
  publication-title: International Society for Optics and Photonics
– volume: 8
  start-page: 22
  issue: 1
  year: 2020
  ident: 10.1016/j.measurement.2022.111967_b0115
  article-title: A novel swarm intelligence optimization approach: sparrow search algorithm[J]
  publication-title: Systems Science & Control Engineering
  doi: 10.1080/21642583.2019.1708830
– volume: 6
  start-page: 376
  issue: 3
  year: 2014
  ident: 10.1016/j.measurement.2022.111967_b0120
  article-title: An insight into extreme learning machines: random neurons, random features and kernels[J]
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-014-9255-2
– volume: 2
  start-page: 433
  issue: 4
  year: 2010
  ident: 10.1016/j.measurement.2022.111967_b0125
  article-title: Principal component analysis[J]
  publication-title: Wiley Interdiscip. Rev. Comput. Stat.
  doi: 10.1002/wics.101
– volume: 54
  start-page: 4001011
  issue: 10
  year: 2018
  ident: 10.1016/j.measurement.2022.111967_b0130
  article-title: Integrated Compensation and Rotation Alignment for Three-Axis Magnetic Sensors Array[J]
  publication-title: IEEE Trans. Magn.
– volume: 111612
  year: 2022
  ident: 10.1016/j.measurement.2022.111967_b0050
  article-title: Application of Helbig integrals to magnetic gradient tensor multi-target detection[J]
  publication-title: Measurement
– volume: 160
  start-page: 111
  issue: 1
  year: 2010
  ident: 10.1016/j.measurement.2022.111967_b0095
  article-title: Pattern recognition of geophysical data[J]
  publication-title: Geoderma
  doi: 10.1016/j.geoderma.2009.09.008
– volume: 220
  year: 2021
  ident: 10.1016/j.measurement.2022.111967_b0160
  article-title: A stochastic configuration network based on chaotic sparrow search algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2021.106924
– volume: 55
  start-page: 173
  issue: 3–4
  year: 2004
  ident: 10.1016/j.measurement.2022.111967_b0145
  article-title: Determination of the parameters of compact ferro-metallic objects with transforms of magnitude magnetic anomalies[J]
  publication-title: J. Appl. Geophys.
  doi: 10.1016/j.jappgeo.2003.10.001
SSID ssj0006396
Score 2.3867567
Snippet •Innovatively proposed a pattern recognition method for the physical properties such as the posture and shape of the magnetic targets with the MGTS single...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 111967
SubjectTerms Heading-line survey
Kernel extreme learning machine
Magnetic gradient tensor
Magnetic target pattern recognition
Sparrow search algorithm
Title Magnetic object recognition with magnetic gradient tensor system heading-line surveys based on kernel extreme learning machine and sparrow search algorithm
URI https://dx.doi.org/10.1016/j.measurement.2022.111967
Volume 203
WOSCitedRecordID wos000862034000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-412X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006396
  issn: 0263-2241
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3bbtQwELWWFhA8IChFlJuMxFuUauPcbImXqmpVUFuBKNKKl8hJnF3KblJlLyr8Sr-t_9IZO07CTRQhXqxdK7aTnbOe8cnxmJBXfhByEeXKjSGWdgPFPJcrBQXD_FxeULBcJ3E9jI-P-Wgk3g0Gl3YvzGoalyU_Pxdn_9XUUAfGxq2zf2HutlOogM9gdCjB7FBey_BHclzizkSnSpFjcVqJUGV2bDsze8G41nqvhYMq9spmdcbYER2aqwPQ-bJegbEd9HY5vln4oupSTR2Y05FZtKdOjKFXVGWalxEwS2FqR6ehVOR0XNUw8qwfCR915KSmJXopLDpBp2Uq-xfrPYqYL7QvITjUooT3cCPfJsvvKz9N9BkYLZU0sbVfq6523_DAB1CVVn0mBBbRqMYLO3rObtHp9FBznVnWdzFOMQ7PzPI89t3A0-e4t26A6VwLP7sUw26cbs-6J93G0dHZCHOUyA8Zuz_gmDgkw-gq8oc3yDqLQwF-Y33nzd7obRsqQHgYGRLQ3ONt8rITIP5mwF8HUL2g6OQ-udesZuiOQeEDMlDlBrnby3G5QW5pjXE2f0guLDKpQSbtIZMiMqlFJrXIpAaZ1CCT9pFJG2RSjUwKXRhk0gaZ1CKTNsikgEzaIJMaZNIWmZvk4_7eye6B25wN4mY-8xZuMORFKoaBCgsWFakSBee5kFL6LPVUzHOVpfDFZ0oGHJboyHyIMEg9kUsvjgr_EVkrq1I9JjSMJM88UUhfoaC6kDIMQx_68JgMpAi3CLc_eJI1ifPx_JZpYhWSp0nPVgnaKjG22iKsbXpmssdcp9Fra9WkCYNNeJsAJP_c_Mm_NX9K7nT_rWdkbVEv1XNyM1stPs_rFw2ArwD86umb
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Magnetic+object+recognition+with+magnetic+gradient+tensor+system+heading-line+surveys+based+on+kernel+extreme+learning+machine+and+sparrow+search+algorithm&rft.jtitle=Measurement+%3A+journal+of+the+International+Measurement+Confederation&rft.au=Li%2C+Qingzhu&rft.au=Li%2C+Zhining&rft.au=Shi%2C+Zhiyong&rft.au=Fan%2C+Hongbo&rft.date=2022-11-15&rft.pub=Elsevier+Ltd&rft.issn=0263-2241&rft.eissn=1873-412X&rft.volume=203&rft_id=info:doi/10.1016%2Fj.measurement.2022.111967&rft.externalDocID=S0263224122011630
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0263-2241&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0263-2241&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0263-2241&client=summon