Design and analysis of quaternion-valued neural networks for storing and retrieving color images

In this paper, we address the global exponential stability (GES) issue for the quaternion-valued neural networks (QVNNs) with non-differentiable distributed delays using the matrix measure method (MMM). Given the complex nature of quaternion algebra, the QVNNs are first transformed into similar four...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of applied mathematics & computing Ročník 71; číslo Suppl 1; s. 617 - 643
Hlavní autori: Manoj, N., Sriraman, R., Gurusamy, R., Shang, Yilun
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Berlin/Heidelberg Springer Berlin Heidelberg 01.09.2025
Springer Nature B.V
Predmet:
ISSN:1598-5865, 1865-2085
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:In this paper, we address the global exponential stability (GES) issue for the quaternion-valued neural networks (QVNNs) with non-differentiable distributed delays using the matrix measure method (MMM). Given the complex nature of quaternion algebra, the QVNNs are first transformed into similar four-dimensional real-valued neural networks (RVNNs) to overcome the complexities of quaternion multiplication. Through the construction of applicable Lyapunov functions and the application of MMM, rigorous stability conditions are established. Furthermore, the study presents novel and easily verifiable results, offering new perspectives into the GES of QVNNs. The proposed conditions are also applicable when QVNNs are reformulated as complex-valued neural networks (CVNNs) or RVNNs. To validate the obtained findings, some numerical examples with graphical analysis are presented, along with their application to storing and retrieving color image patterns.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:1598-5865
1865-2085
DOI:10.1007/s12190-025-02485-1