Simulation-Based Parameter Optimization for Self-adaptive HPL on Parallel Systems

Computational benchmarks are essential for dependable systems, applications, and technologies across multiple domains. However, traditional benchmarks such as High-Performance Linpack (HPL) require parameters to be set to reflect the characteristics of the system under test, and the adoption of empi...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:International journal of parallel programming Ročník 53; číslo 4; s. 24
Hlavní autori: Rista, Cassiano, Teixeira, Marcelo, Fonseca, Mauro
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York Springer US 01.08.2025
Springer Nature B.V
Predmet:
ISSN:0885-7458, 1573-7640
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Computational benchmarks are essential for dependable systems, applications, and technologies across multiple domains. However, traditional benchmarks such as High-Performance Linpack (HPL) require parameters to be set to reflect the characteristics of the system under test, and the adoption of empirical fine-tuning strategies is inevitable. As an alternative, adopting simulation models allows the representation of the stochastic nature of benchmark events and provides in-advance estimations instead of stress analysis. This paper extends the HPL benchmark with self-adaptation capabilities (SA-HPL) and proposes a simulation model that enables the automatic configuration of the SA-HPL parameters, allowing the benchmark to adapt effectively, quickly, and autonomously to various scheduling strategies, including static and on-demand schedulers. Experiments conducted over real data show reasonable accuracy between estimated and measured performance. The observed Mean Absolute Percentage Error in throughput was 1.26% for the Server and 3.76% for the Workstation experiments, while for efficiency, they were 1.15% and 3.52%, respectively. These results suggest significant savings in time, effort, and costs.
AbstractList Computational benchmarks are essential for dependable systems, applications, and technologies across multiple domains. However, traditional benchmarks such as High-Performance Linpack (HPL) require parameters to be set to reflect the characteristics of the system under test, and the adoption of empirical fine-tuning strategies is inevitable. As an alternative, adopting simulation models allows the representation of the stochastic nature of benchmark events and provides in-advance estimations instead of stress analysis. This paper extends the HPL benchmark with self-adaptation capabilities (SA-HPL) and proposes a simulation model that enables the automatic configuration of the SA-HPL parameters, allowing the benchmark to adapt effectively, quickly, and autonomously to various scheduling strategies, including static and on-demand schedulers. Experiments conducted over real data show reasonable accuracy between estimated and measured performance. The observed Mean Absolute Percentage Error in throughput was 1.26% for the Server and 3.76% for the Workstation experiments, while for efficiency, they were 1.15% and 3.52%, respectively. These results suggest significant savings in time, effort, and costs.
ArticleNumber 24
Author Fonseca, Mauro
Rista, Cassiano
Teixeira, Marcelo
Author_xml – sequence: 1
  givenname: Cassiano
  surname: Rista
  fullname: Rista, Cassiano
  email: rista@utfpr.edu.br
  organization: Federal University of Technology – PR – CPGEI
– sequence: 2
  givenname: Marcelo
  surname: Teixeira
  fullname: Teixeira, Marcelo
  organization: Federal University of Technology – PR – CPGEI, Federal University of Technology – PR – PPGEEC
– sequence: 3
  givenname: Mauro
  surname: Fonseca
  fullname: Fonseca, Mauro
  organization: Federal University of Technology – PR – CPGEI
BookMark eNp9kE1LAzEQhoNUsK3-AU8LnqOT3U02OWpRKxRaqZ5Dmp3Ilv2oyVaov960FQQPPQ0z8z7z8Y7IoO1aJOSawS0DKO4Cg0IICimnABIyys_IkPEio4XIYUCGICWnRc7lBRmFsAYAVUg5JK_LqtnWpq-6lj6YgGWyMN402KNP5pu-aqrvQzNxnU-WWDtqShPrX5hMF7MkNvb6usY6We5Cj024JOfO1AGvfuOYvD89vk2mdDZ_fpncz6jNUtbTVKVCAmYgjUDlnHDClEWuGNpcZUqlHFeWWbSu5Javcm5AlOCEyGJSoM3G5OY4d-O7zy2GXq-7rW_jSh0XKJaDkjKq5FFlfReCR6dt1R8-6r2pas1A7w3URwN1NFAfDNQ8ouk_dOOrxvjdaSg7QiGK2w_0f1edoH4AdRaFLA
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3606742
Cites_doi 10.1109/PMBS.2016.006
10.1109/IJCNN52387.2021.9533785
10.1109/WSC.2017.8247804
10.1145/1454115.1454128
10.1109/HPEC43674.2020.9286138
10.1109/PDCAT46702.2019.00053
10.1109/CVPR.2019.00407
10.1109/SC2.2017.15
10.1109/NPSC.2018.8771852
10.1007/978-3-031-60227-6_22
10.1145/3555776.3577665
10.1109/IGSC51522.2020.9290859
10.1109/5.24143
10.1016/j.eswa.2015.02.004
10.1109/IPDPSW.2016.28
10.1109/JSYST.2024.3380584
10.1109/PMBS56514.2022.00014
10.1109/HUSTProtools51951.2020.00016
10.1007/s00607-021-01025-6
10.1109/HPCC-SmartCity-DSS.2016.0151
10.1109/ACCESS.2022.3147846
10.1109/TPDS.2018.2878699
10.1109/SCC.2017.70
10.1016/j.ijepes.2021.106897
10.1109/TSE.2021.3101130
10.1109/SEAMS.2015.10
10.1002/0471791571
10.1109/IPDPS.2018.00087
10.1109/TSMC.2018.2837643
10.1109/SC41405.2020.00066
10.1109/ISCC.2018.8538558
10.1016/j.ifacol.2021.04.067
10.1016/j.iot.2020.100273
10.1109/TPDS.2015.2398438
10.1145/190.191
10.1145/2807591.2807644
10.1007/s10796-023-10440-3
10.1007/s10796-023-10409-2
10.1007/3-540-58021-2_7
10.1007/978-1-4471-5007-7
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2025.
DBID AAYXX
CITATION
7SC
8FD
JQ2
L7M
L~C
L~D
DOI 10.1007/s10766-025-00803-5
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Advanced Technologies Database with Aerospace
ProQuest Computer Science Collection
Computer and Information Systems Abstracts Professional
DatabaseTitleList Computer and Information Systems Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1573-7640
ExternalDocumentID 10_1007_s10766_025_00803_5
GroupedDBID -~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
203
29J
2J2
2JN
2JY
2KG
2LR
2~H
30V
4.4
406
408
409
40D
40E
5GY
5VS
67Z
6NX
78A
7WY
8FL
8TC
8UJ
95-
95.
95~
96X
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDBF
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACREN
ACSTC
ACUHS
ACZOJ
ADHIR
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEAQA
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFHIU
AFLOW
AFOHR
AFQWF
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARAPS
ARMRJ
ATHPR
AXYYD
AYFIA
AYJHY
AZFZN
B-.
BA0
BENPR
BGNMA
BKOMP
BSONS
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAP
EBLON
EBS
EIOEI
ESBYG
ESX
FEDTE
FERAY
FFXSO
FIGPU
FNLPD
FRRFC
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
LAK
LLZTM
M2O
M4Y
MA-
MS~
NB0
NPVJJ
NQJWS
NU0
O93
O9G
O9I
O9J
OAM
P19
P9O
PF0
PT4
PT5
QOK
QOS
R89
R9I
RHV
RNS
ROL
RPX
RSV
S16
S1Z
S27
S3B
SAP
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
TAE
TN5
TSG
TSK
TSV
TUC
U2A
U5U
UG4
UOJIU
UTJUX
VC2
W23
W48
WH7
WK8
YLTOR
Z45
ZMTXR
~EX
-Y2
.4S
2.D
28-
2P1
2VQ
5QI
8FE
8FG
8G5
AAOBN
AARHV
AAYJJ
AAYTO
AAYXX
ABDPE
ABFSI
ABQSL
ABULA
ABUWG
ACBXY
ADHKG
ADMLS
AEBTG
AEFIE
AEKMD
AFEXP
AFFHD
AFGCZ
AFKRA
AGGDS
AGQPQ
AJBLW
ARCSS
AZQEC
B0M
BBWZM
BDATZ
BEZIV
BGLVJ
BPHCQ
CAG
CCPQU
CITATION
COF
DWQXO
E.L
EAD
EAS
EDO
EJD
EMK
EPL
FINBP
FRNLG
FSGXE
GNUQQ
GROUPED_ABI_INFORM_RESEARCH
GUQSH
H13
H~9
I-F
K6V
K7-
KOW
M0C
N2Q
NDZJH
O9-
OVD
P62
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
Q2X
RNI
RZC
RZE
RZK
S26
S28
SCJ
SCLPG
T16
TEORI
TUS
UZXMN
VFIZW
ZY4
~8M
7SC
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c321t-292680e308a6e9ff6f6ad7491ec4939925ebc1cecfd5c5b45a06d0f6635b47ec3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001509913400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0885-7458
IngestDate Wed Nov 05 08:31:27 EST 2025
Sat Nov 29 07:35:53 EST 2025
Tue Nov 18 21:53:07 EST 2025
Sat Jul 26 01:16:00 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Simulation
Empirical development
Benchmarks
Autonomous computing
Modeling
Model-driven development
Reconfiguration
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-292680e308a6e9ff6f6ad7491ec4939925ebc1cecfd5c5b45a06d0f6635b47ec3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3219140988
PQPubID 48389
ParticipantIDs proquest_journals_3219140988
crossref_citationtrail_10_1007_s10766_025_00803_5
crossref_primary_10_1007_s10766_025_00803_5
springer_journals_10_1007_s10766_025_00803_5
PublicationCentury 2000
PublicationDate 2025-08-01
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: 2025-08-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle International journal of parallel programming
PublicationTitleAbbrev Int J Parallel Prog
PublicationYear 2025
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References 803_CR50
T Murata (803_CR42) 1989; 77
M Ajmone Marsan (803_CR4) 1984; 2
803_CR18
803_CR19
803_CR17
803_CR14
803_CR15
803_CR13
803_CR11
DF Simon (803_CR34) 2022; 137
803_CR29
803_CR27
803_CR28
803_CR25
803_CR26
C Girault (803_CR45) 2013
803_CR23
D Ye (803_CR16) 2024; 18
803_CR20
C Mandrioli (803_CR22) 2022; 48
K Hwang (803_CR24) 2016; 27
PJ Haas (803_CR46) 2006
R Jain (803_CR6) 1991
D Mustafa (803_CR8) 2022; 10
C Ababei (803_CR12) 2019; 30
803_CR38
803_CR39
803_CR36
803_CR37
AM Garcia (803_CR21) 2023; 105
803_CR32
803_CR1
803_CR30
803_CR2
803_CR31
DMR Maschio (803_CR35) 2020; 53
803_CR3
803_CR40
803_CR7
C Rista (803_CR5) 2024
803_CR9
G Bolch (803_CR49) 2006
803_CR47
803_CR48
M Teixeira (803_CR33) 2015; 42
MS Aslanpour (803_CR10) 2020; 12
803_CR43
803_CR44
803_CR41
References_xml – ident: 803_CR18
  doi: 10.1109/PMBS.2016.006
– volume-title: The Art of Computer Systems Performance Analysis: Techniques for Experimental Design, Measurement, Simulation, and Modeling
  year: 1991
  ident: 803_CR6
– ident: 803_CR43
  doi: 10.1109/IJCNN52387.2021.9533785
– ident: 803_CR15
  doi: 10.1109/WSC.2017.8247804
– ident: 803_CR1
– ident: 803_CR2
  doi: 10.1145/1454115.1454128
– ident: 803_CR41
– ident: 803_CR19
  doi: 10.1109/HPEC43674.2020.9286138
– ident: 803_CR27
  doi: 10.1109/PDCAT46702.2019.00053
– ident: 803_CR32
  doi: 10.1109/CVPR.2019.00407
– ident: 803_CR14
  doi: 10.1109/SC2.2017.15
– volume-title: Petri Nets for Systems Engineering: A Guide to Modeling, Verification, and Applications
  year: 2013
  ident: 803_CR45
– ident: 803_CR30
  doi: 10.1109/NPSC.2018.8771852
– start-page: 242
  volume-title: Good Practices and New Perspectives in Information Systems and Technologies
  year: 2024
  ident: 803_CR5
  doi: 10.1007/978-3-031-60227-6_22
– ident: 803_CR23
  doi: 10.1145/3555776.3577665
– volume-title: Stochastic Petri Nets: Modelling, Stability
  year: 2006
  ident: 803_CR46
– ident: 803_CR26
  doi: 10.1109/IGSC51522.2020.9290859
– volume: 77
  start-page: 541
  issue: 4
  year: 1989
  ident: 803_CR42
  publication-title: Proc. IEEE
  doi: 10.1109/5.24143
– volume: 42
  start-page: 5366
  issue: 12
  year: 2015
  ident: 803_CR33
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.02.004
– ident: 803_CR25
  doi: 10.1109/IPDPSW.2016.28
– volume: 18
  start-page: 1288
  issue: 2
  year: 2024
  ident: 803_CR16
  publication-title: IEEE Syst. J.
  doi: 10.1109/JSYST.2024.3380584
– ident: 803_CR20
  doi: 10.1109/PMBS56514.2022.00014
– ident: 803_CR29
  doi: 10.1109/HUSTProtools51951.2020.00016
– volume: 105
  start-page: 1077
  issue: 5
  year: 2023
  ident: 803_CR21
  publication-title: Computing
  doi: 10.1007/s00607-021-01025-6
– ident: 803_CR28
  doi: 10.1109/HPCC-SmartCity-DSS.2016.0151
– volume: 10
  start-page: 15036
  year: 2022
  ident: 803_CR8
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2022.3147846
– volume: 30
  start-page: 1184
  issue: 5
  year: 2019
  ident: 803_CR12
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2018.2878699
– ident: 803_CR31
  doi: 10.1109/SCC.2017.70
– volume: 137
  year: 2022
  ident: 803_CR34
  publication-title: Int. J. Electr. Power Energy Syst.
  doi: 10.1016/j.ijepes.2021.106897
– volume: 48
  start-page: 3554
  issue: 9
  year: 2022
  ident: 803_CR22
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2021.3101130
– ident: 803_CR3
– ident: 803_CR38
  doi: 10.1109/SEAMS.2015.10
– volume-title: Queueing Networks and Markov Chains: Modeling and Performance Evaluation with Computer Science Applications
  year: 2006
  ident: 803_CR49
  doi: 10.1002/0471791571
– ident: 803_CR13
  doi: 10.1109/IPDPS.2018.00087
– ident: 803_CR44
  doi: 10.1109/TSMC.2018.2837643
– ident: 803_CR17
  doi: 10.1109/SC41405.2020.00066
– ident: 803_CR36
  doi: 10.1109/ISCC.2018.8538558
– volume: 53
  start-page: 423
  issue: 4
  year: 2020
  ident: 803_CR35
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2021.04.067
– volume: 12
  start-page: 100273
  year: 2020
  ident: 803_CR10
  publication-title: Internet of Things
  doi: 10.1016/j.iot.2020.100273
– ident: 803_CR50
– ident: 803_CR37
– volume: 27
  start-page: 130
  issue: 1
  year: 2016
  ident: 803_CR24
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2015.2398438
– volume: 2
  start-page: 93
  issue: 2
  year: 1984
  ident: 803_CR4
  publication-title: ACM Trans. Comp. Syst.
  doi: 10.1145/190.191
– ident: 803_CR9
  doi: 10.1145/2807591.2807644
– ident: 803_CR11
  doi: 10.1007/s10796-023-10440-3
– ident: 803_CR7
  doi: 10.1007/s10796-023-10409-2
– ident: 803_CR47
  doi: 10.1007/3-540-58021-2_7
– ident: 803_CR40
– ident: 803_CR48
– ident: 803_CR39
  doi: 10.1007/978-1-4471-5007-7
SSID ssj0009788
Score 2.3650217
Snippet Computational benchmarks are essential for dependable systems, applications, and technologies across multiple domains. However, traditional benchmarks such as...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 24
SubjectTerms Benchmarks
Computer Science
Parameters
Processor Architectures
Simulation
Simulation models
Software Engineering/Programming and Operating Systems
Stress analysis
Theory of Computation
Title Simulation-Based Parameter Optimization for Self-adaptive HPL on Parallel Systems
URI https://link.springer.com/article/10.1007/s10766-025-00803-5
https://www.proquest.com/docview/3219140988
Volume 53
WOSCitedRecordID wos001509913400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK Contemporary 1997-Present
  customDbUrl:
  eissn: 1573-7640
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009788
  issn: 0885-7458
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMLBQnqJQkAc2sOQktmOPgKg6oFIooG6R44dUKS1VW_j92KlDAAESzL5YyZ3vEfnu-wA4jSznRHGJGBUcuf8NgTxBEkosMcJGRmi-JJtIez0-HIp-GAqbV93u1ZVkGak_DLulzDfMUuTLnATRVbDm0h337ng_eKqhdtOSbdK5D0UpoTyMyny_x-d0VNeYX65Fy2zTaf7vPbfAZqgu4cXyOGyDFTPZAc2KuQEGR94Fd4PROPB2oUuXxzTsS9-l5YVuXRAZh-lM6EpaODCFRVLLqY-MsNu_gW7ByxeFKWCAPN8Dj53rh6suCuQKSCVxtECxiBnHJsFcMmcVyyyTOiUiMooIj1ZLTa4iZZTVVNGcUImZxtYXKDlJjUr2QWPyPDEHAGJrMNeM5rEWhCVYCsPinOeM5Mzg2LRAVOk4UwF53BNgFFmNmex1ljmdZaXOMtoCZ-_PTJe4G79KtyvTZcEH55n7TOHhvDhvgfPKVPXyz7sd_k38CGzEpbV9V2AbNBazF3MM1tXrYjSfnZRn8w3VRNv5
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dS8MwED90Cvri_MTp1Dz4poF-JGnyqOKYOOd0U3wrbZrAoJtjm_79Jl3qVFTQ51xDe5f7KLn7_QCOfc05kTzBjAqOzf-GwJYgCYeaKKF9JTI-I5uI2m3-9CQ6bihsUna7l1eSRaT-MOwWMdswS7Etc0JMF2GJmIxlG_nuu49zqN2oYJs07kNxRCh3ozLf7_E5Hc1rzC_XokW2aVT_957rsOaqS3Q2Ow4bsKCGm1AtmRuQc-QtuOv2B463C5-bPJahTmK7tKzQrQkiAzediUxJi7oq1zjJkpGNjKjZaSGzYOXzXOXIQZ5vw0PjsnfRxI5cAcsw8Kc4EAHjngo9njBjFc00S7KICF9JIixaLVWp9KWSOqOSpoQmHss8bQuUlERKhjtQGT4P1S4gTyuPZ4ymQSYIC71EKBakPGUkZcoLVA38UsexdMjjlgAjj-eYyVZnsdFZXOgspjU4eX9mNMPd-FW6Xpoudj44ic1nCgvnxXkNTktTzZd_3m3vb-JHsNLs3bTi1lX7eh9Wg8LytkOwDpXp-EUdwLJ8nfYn48PinL4BLYre3Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60injxLVar5uBNQ_eRZJOjr1JRaqUqvS27eYCw1qLV32-yzdoqKojnzIbsTCYzITPfB3AQGs6J5BlmVHBs7xsCO4IkHBuihQm1UHxMNpF0OrzfF92pLv6y2r16khz3NDiUpsGoOVSmOdX4ljBXPEuxS3liTGdhjjjSIHdf791PYHeTknnSuhLFCaHct818P8fn0DTJN788kZaRp7X8_zWvwJLPOtHxeJuswowerMFyxeiAvIOvw03v4dHzeeETG98U6mauessJXdvD5dF3bSKb6qKeLgzOVDZ0JyZqd6-QHXDyRaEL5KHQN-CudX572saedAHLOApHOBIR44GOA54xay3DDMtUQkSoJREOxZbqXIZSS6OopDmhWcBUYFzikpNEy3gTaoOngd4CFBgdcMVoHilBWBxkQrMo5zkjOdNBpOsQVvpOpUckd8QYRTrBUnY6S63O0lJnKa3D4cc3wzEex6_SjcqMqffNl9T-pnAwX5zX4agy22T459m2_ya-Dwvds1Z6ddG53IHFqDS8KxxsQG30_Kp3YV6-jR5envfKLfsOlTrnwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simulation-Based+Parameter+Optimization+for+Self-adaptive+HPL+on+Parallel+Systems&rft.jtitle=International+journal+of+parallel+programming&rft.au=Rista%2C+Cassiano&rft.au=Teixeira%2C+Marcelo&rft.au=Fonseca%2C+Mauro&rft.date=2025-08-01&rft.pub=Springer+Nature+B.V&rft.issn=0885-7458&rft.eissn=1573-7640&rft.volume=53&rft.issue=4&rft.spage=24&rft_id=info:doi/10.1007%2Fs10766-025-00803-5&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0885-7458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0885-7458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0885-7458&client=summon