EEG-based drowsiness estimation for safety driving using independent component analysis

Preventing accidents caused by drowsiness has become a major focus of active safety driving in recent years. It requires an optimal technique to continuously detect drivers' cognitive state related to abilities in perception, recognition, and vehicle control in (near-) real-time. The major chal...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on circuits and systems. I, Regular papers Ročník 52; číslo 12; s. 2726 - 2738
Hlavní autori: Lin, Chin-Teng, Wu, Ruei-Cheng, Liang, Sheng-Fu, Chao, Wen-Hung, Chen, Yu-Jie, Jung, Tzyy-Ping
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: New York IEEE 01.12.2005
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:1549-8328, 1558-0806
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Preventing accidents caused by drowsiness has become a major focus of active safety driving in recent years. It requires an optimal technique to continuously detect drivers' cognitive state related to abilities in perception, recognition, and vehicle control in (near-) real-time. The major challenges in developing such a system include: 1) the lack of significant index for detecting drowsiness and 2) complicated and pervasive noise interferences in a realistic and dynamic driving environment. In this paper, we develop a drowsiness-estimation system based on electroencephalogram (EEG) by combining independent component analysis (ICA), power-spectrum analysis, correlation evaluations, and linear regression model to estimate a driver's cognitive state when he/she drives a car in a virtual reality (VR)-based dynamic simulator. The driving error is defined as deviations between the center of the vehicle and the center of the cruising lane in the lane-keeping driving task. Experimental results demonstrate the feasibility of quantitatively estimating drowsiness level using ICA-based multistream EEG spectra. The proposed ICA-based method applied to power spectrum of ICA components can successfully (1) remove most of EEG artifacts, (2) suggest an optimal montage to place EEG electrodes, and estimate the driver's drowsiness fluctuation indexed by the driving performance measure. Finally, we present a benchmark study in which the accuracy of ICA-component-based alertness estimates compares favorably to scalp-EEG based.
AbstractList Preventing accidents caused by drowsiness has become a major focus of active safety driving in recent years. It requires an optimal technique to continuously detect drivers' cognitive state related to abilities in perception, recognition, and vehicle control in (near-) real-time. The major challenges in developing such a system include: 1) the lack of significant index for detecting drowsiness and 2) complicated and pervasive noise interferences in a realistic and dynamic driving environment. In this paper, we develop a drowsiness-estimation system based on electroencephalogram (EEG) by combining independent component analysis (ICA), power-spectrum analysis, correlation evaluations, and linear regression model to estimate a driver's cognitive state when he/she drives a car in a virtual reality (VR)-based dynamic simulator. The driving error is defined as deviations between the center of the vehicle and the center of the cruising lane in the lane-keeping driving task. Experimental results demonstrate the feasibility of quantitatively estimating drowsiness level using ICA-based multistream EEG spectra. The proposed ICA-based method applied to power spectrum of ICA components can successfully (1) remove most of EEG artifacts, (2) suggest an optimal montage to place EEG electrodes, and estimate the driver's drowsiness fluctuation indexed by the driving performance measure. Finally, we present a benchmark study in which the accuracy of ICA-component-based alertness estimates compares favorably to scalp-EEG based.
[...] we present a benchmark study in which the accuracy of ICA-component-based alertness estimates compares favorably to scalp-EEG based.
Author Sheng-Fu Liang
Ruei-Cheng Wu
Yu-Jie Chen
Wen-Hung Chao
Chin-Teng Lin
Tzyy-Ping Jung
Author_xml – sequence: 1
  givenname: Chin-Teng
  surname: Lin
  fullname: Lin, Chin-Teng
– sequence: 2
  givenname: Ruei-Cheng
  surname: Wu
  fullname: Wu, Ruei-Cheng
– sequence: 3
  givenname: Sheng-Fu
  surname: Liang
  fullname: Liang, Sheng-Fu
– sequence: 4
  givenname: Wen-Hung
  surname: Chao
  fullname: Chao, Wen-Hung
– sequence: 5
  givenname: Yu-Jie
  surname: Chen
  fullname: Chen, Yu-Jie
– sequence: 6
  givenname: Tzyy-Ping
  surname: Jung
  fullname: Jung, Tzyy-Ping
BookMark eNotkEFLw0AQhRepYFu9C16C99TZ3exmcpRSa6HgwYrHsEkmsqXdjdlU6b93Q728eQMfjzczYxPnHTF2z2HBORRPu-X7ZiEA1AJVrpS6YlOuFKaAoCejz4oUpcAbNgthDyAKkHzKPlerdVqZQE3S9P43WEchJBQGezSD9S5pfZ8E09JwjoD9se4rOYVRrWuooyhuSGp_7GKd6Iwzh3Ow4ZZdt-YQ6O5_ztnHy2q3fE23b-vN8nmb1lLwIRWoM94UlcmpanVLta4zWQkErpvc1BWSKVBQBTUnICIOUhphUI8bFlzO2eMlt-v99yn2Lvf-1McSoUSUmcplNkIPF8jGiLLr4239uYzv0TmC_APKRl_8
CODEN ITCSCH
CitedBy_id crossref_primary_10_1007_s11554_025_01745_4
crossref_primary_10_1109_TSMC_2018_2850323
crossref_primary_10_1155_2008_519480
crossref_primary_10_1080_00207721_2013_772677
crossref_primary_10_1088_2057_1976_adb58b
crossref_primary_10_3389_fnins_2015_00054
crossref_primary_10_1016_j_eswa_2020_113240
crossref_primary_10_1109_MCI_2009_934559
crossref_primary_10_1109_TITS_2016_2600300
crossref_primary_10_1016_j_neucom_2012_02_041
crossref_primary_10_1080_00222895_2014_959887
crossref_primary_10_1061_JCEMD4_COENG_13675
crossref_primary_10_1109_TITS_2014_2330000
crossref_primary_10_1177_03611981221096118
crossref_primary_10_1007_s11517_025_03375_1
crossref_primary_10_1109_TCSI_2006_884408
crossref_primary_10_1109_TBME_2010_2102353
crossref_primary_10_1051_itmconf_20224403030
crossref_primary_10_1109_TITS_2021_3105326
crossref_primary_10_3390_s21155091
crossref_primary_10_1109_JPROC_2008_922561
crossref_primary_10_1021_acs_chas_2c00006
crossref_primary_10_1088_1741_2552_aa7a25
crossref_primary_10_1016_j_snb_2012_05_056
crossref_primary_10_3389_fnhum_2022_866118
crossref_primary_10_1016_j_aap_2019_105296
crossref_primary_10_1080_02564602_2015_1118362
crossref_primary_10_1109_ACCESS_2022_3176451
crossref_primary_10_1088_1757_899X_396_1_012067
crossref_primary_10_1109_TITS_2014_2335151
crossref_primary_10_1186_1743_0003_8_11
crossref_primary_10_1016_j_aap_2015_02_021
crossref_primary_10_3390_s22031100
crossref_primary_10_1109_TNSRE_2017_2699784
crossref_primary_10_1007_s11042_022_13822_y
crossref_primary_10_1109_TITS_2010_2092770
crossref_primary_10_3390_s24082625
crossref_primary_10_1016_j_eswa_2010_07_115
crossref_primary_10_1109_ACCESS_2018_2811723
crossref_primary_10_1016_j_measurement_2017_11_060
crossref_primary_10_1016_j_irbm_2020_07_005
crossref_primary_10_1177_09544119211017813
crossref_primary_10_1080_15389588_2017_1303140
crossref_primary_10_1088_1741_2552_acee20
crossref_primary_10_3389_fnins_2014_00385
crossref_primary_10_3390_s21051734
crossref_primary_10_1007_s11042_025_20880_5
crossref_primary_10_1007_s00521_021_06038_y
crossref_primary_10_1016_j_procs_2015_05_298
crossref_primary_10_3390_bioengineering12060669
crossref_primary_10_1109_JSEN_2020_3038440
crossref_primary_10_1109_TBME_2008_918566
crossref_primary_10_3389_fpsyg_2021_646406
crossref_primary_10_1177_0142331213508804
crossref_primary_10_1186_2193_1801_2_662
crossref_primary_10_3390_s22051785
crossref_primary_10_3390_s24020545
crossref_primary_10_1016_j_neunet_2024_106351
crossref_primary_10_1155_2014_860517
crossref_primary_10_1007_s42154_022_00209_w
crossref_primary_10_1016_j_eswa_2016_01_013
crossref_primary_10_1177_03611981221090937
crossref_primary_10_1109_TNSRE_2023_3237319
crossref_primary_10_1109_TSMC_2020_3041382
crossref_primary_10_1016_j_ymeth_2021_04_017
crossref_primary_10_1080_13588265_2022_2074719
crossref_primary_10_1002_hbm_22178
crossref_primary_10_1109_ACCESS_2019_2946053
crossref_primary_10_1590_2446_4740_0693
crossref_primary_10_3389_fnins_2015_00308
crossref_primary_10_3109_07420528_2013_810222
crossref_primary_10_1016_j_jsr_2020_04_006
crossref_primary_10_1016_j_physrep_2021_03_002
crossref_primary_10_1109_ACCESS_2019_2914088
crossref_primary_10_1007_s10015_023_00898_4
crossref_primary_10_3390_app9235078
crossref_primary_10_3390_s19112574
crossref_primary_10_1016_j_biopsycho_2015_04_002
crossref_primary_10_1109_TCSI_2012_2185290
crossref_primary_10_1109_TBME_2016_2574812
crossref_primary_10_1109_TITS_2013_2292115
crossref_primary_10_3233_IFS_151779
crossref_primary_10_1109_TITS_2018_2889962
crossref_primary_10_1016_j_bspc_2022_103806
crossref_primary_10_1109_JBHI_2024_3352081
crossref_primary_10_1109_TNNLS_2022_3147208
crossref_primary_10_1109_JSEN_2016_2519392
crossref_primary_10_3390_s20195699
crossref_primary_10_3389_fnhum_2016_00219
crossref_primary_10_1016_j_patrec_2009_08_014
crossref_primary_10_1088_1757_899X_993_1_012101
crossref_primary_10_1109_JPROC_2012_2184829
crossref_primary_10_1016_j_ifacol_2021_04_188
crossref_primary_10_3389_fnins_2014_00321
crossref_primary_10_1155_2013_891431
crossref_primary_10_1109_TITS_2017_2740427
crossref_primary_10_1007_s10044_018_0758_4
crossref_primary_10_1049_iet_rsn_2012_0255
crossref_primary_10_1016_j_neuroimage_2012_05_035
crossref_primary_10_1088_1741_2552_ac4085
crossref_primary_10_1109_TMM_2013_2241416
crossref_primary_10_1016_j_inffus_2017_11_005
crossref_primary_10_1109_TBME_2019_2921198
crossref_primary_10_1109_TNSRE_2023_3336897
crossref_primary_10_1371_journal_pone_0242857
crossref_primary_10_3390_s17030486
crossref_primary_10_1016_j_aap_2017_11_010
crossref_primary_10_1109_JSEN_2018_2807245
crossref_primary_10_1109_TITS_2008_928241
crossref_primary_10_3389_fnins_2017_00325
crossref_primary_10_1109_JBHI_2014_2305403
crossref_primary_10_1016_j_compbiomed_2019_02_023
crossref_primary_10_1049_iet_its_2012_0005
crossref_primary_10_1109_TAES_2019_2933960
crossref_primary_10_1109_TBCAS_2010_2046415
crossref_primary_10_1109_TSMC_2019_2956022
crossref_primary_10_1109_TNSRE_2014_2319334
crossref_primary_10_5130_ajict_v5i2_1126
crossref_primary_10_1088_1741_2552_ad1055
crossref_primary_10_1007_s11042_020_08844_3
crossref_primary_10_3390_s150819181
crossref_primary_10_3389_fnins_2025_1567146
crossref_primary_10_1080_19479832_2011_590458
crossref_primary_10_3389_fnhum_2019_00057
crossref_primary_10_3390_s17091991
crossref_primary_10_1109_JBHI_2020_3015471
crossref_primary_10_1109_JSYST_2012_2192756
crossref_primary_10_1016_j_trf_2016_11_002
crossref_primary_10_1109_TNSRE_2018_2791936
crossref_primary_10_1016_j_biopsycho_2015_12_009
crossref_primary_10_1177_03611981241252768
crossref_primary_10_3390_s21113786
crossref_primary_10_1088_1741_2560_10_5_056014
crossref_primary_10_1109_TIV_2022_3224690
crossref_primary_10_1016_j_physbeh_2008_02_015
crossref_primary_10_1016_j_micpro_2018_02_004
crossref_primary_10_1016_j_jneumeth_2012_05_017
crossref_primary_10_1016_j_neulet_2017_01_018
crossref_primary_10_1109_ACCESS_2023_3236814
crossref_primary_10_3390_s16020242
crossref_primary_10_1007_s10015_024_01001_1
crossref_primary_10_1007_s13534_016_0223_5
crossref_primary_10_1016_j_knosys_2025_113074
crossref_primary_10_1109_JIOT_2021_3128548
crossref_primary_10_1109_TNSRE_2018_2790359
crossref_primary_10_1109_TITS_2013_2257759
crossref_primary_10_1080_10739149_2013_796560
crossref_primary_10_3389_fnins_2021_634147
crossref_primary_10_1109_TITS_2015_2462084
crossref_primary_10_1016_j_neunet_2014_03_010
crossref_primary_10_1109_TASE_2024_3441055
crossref_primary_10_3390_s18124477
crossref_primary_10_3390_s130303270
crossref_primary_10_1016_j_neuroimage_2018_03_032
crossref_primary_10_4271_2008_01_2691
crossref_primary_10_1088_1741_2560_8_1_016003
crossref_primary_10_3390_s110605819
crossref_primary_10_1038_srep43933
crossref_primary_10_1109_TFUZZ_2017_2688423
crossref_primary_10_1016_j_medengphy_2013_07_011
crossref_primary_10_1007_s11571_022_09898_9
crossref_primary_10_1016_j_compbiomed_2025_110758
crossref_primary_10_3390_electronics13112084
crossref_primary_10_1109_ACCESS_2020_3018995
crossref_primary_10_1115_1_4035611
crossref_primary_10_3390_s21165617
crossref_primary_10_1016_j_image_2016_05_018
crossref_primary_10_3390_electronics13173388
crossref_primary_10_1049_iet_its_2012_0032
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2005
DBID 97E
RIA
RIE
7SP
8FD
L7M
DOI 10.1109/TCSI.2005.857555
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
Electronics & Communications Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1558-0806
EndPage 2738
ExternalDocumentID 2425234451
1556780
Genre orig-research
GroupedDBID 0R~
29I
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
AETIX
AGQYO
AGSQL
AHBIQ
AIBXA
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
HZ~
H~9
IFIPE
IPLJI
JAVBF
M43
O9-
OCL
PZZ
RIA
RIE
RNS
VJK
7SP
8FD
L7M
ID FETCH-LOGICAL-c321t-28641d9ba7ebf6fec6c43b28016d7acb8ea982eb0c1e0eee1033a2a86e0ee8913
IEDL.DBID RIE
ISICitedReferencesCount 322
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000233946100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1549-8328
IngestDate Sun Nov 30 04:11:40 EST 2025
Tue Aug 26 16:40:12 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c321t-28641d9ba7ebf6fec6c43b28016d7acb8ea982eb0c1e0eee1033a2a86e0ee8913
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 883457341
PQPubID 85411
PageCount 13
ParticipantIDs ieee_primary_1556780
proquest_journals_883457341
PublicationCentury 2000
PublicationDate 2005-12-01
PublicationDateYYYYMMDD 2005-12-01
PublicationDate_xml – month: 12
  year: 2005
  text: 2005-12-01
  day: 01
PublicationDecade 2000
PublicationPlace New York
PublicationPlace_xml – name: New York
PublicationTitle IEEE transactions on circuits and systems. I, Regular papers
PublicationTitleAbbrev TCSI
PublicationYear 2005
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
SSID ssj0029031
Score 2.3525376
Snippet Preventing accidents caused by drowsiness has become a major focus of active safety driving in recent years. It requires an optimal technique to continuously...
[...] we present a benchmark study in which the accuracy of ICA-component-based alertness estimates compares favorably to scalp-EEG based.
SourceID proquest
ieee
SourceType Aggregation Database
Publisher
StartPage 2726
SubjectTerms Accidents
Brain modeling
Correlation coefficient
drowsiness
electroencephalogram
Electroencephalography
Independent component analysis
independent component analysis (ICA)
linear regression model
Optimal control
power spectrum
Safety
Spectrum analysis
Studies
Traffic accidents & safety
Vehicle detection
Vehicle driving
Vehicle dynamics
virtual reality (VR)
Working environment noise
Title EEG-based drowsiness estimation for safety driving using independent component analysis
URI https://ieeexplore.ieee.org/document/1556780
https://www.proquest.com/docview/883457341
Volume 52
WOSCitedRecordID wos000233946100023&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-0806
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0029031
  issn: 1549-8328
  databaseCode: RIE
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JSwMxFA61eNCDWxVrVXLwaHQySbMcpbQqSBGs2FvJ8kZ6aaWdCv57k8m0CHrxloFZXyb53vo9hK68cSBd5kjBVJdwzzSx1mri8q6yQZtjvKh4Zp_kcKjGY_3cQNebWhgAqJLP4CYOq1i-n7tVdJXdBuwLe2sw0LekFKlWa2Nc6YwlblSuSfhL1TokmenbUe_lMXlPYjvKWNRXNVL5tftWkDLY_9_LHKC9WnXEd2muD1EDZkdo9wehYAu99fv3JAKTxz7Y1ymnHUcijVShiIOKipemgPIrnDCNzgQcM9_f8XTTDrfEMc18PosjU1OWHKPXQX_UeyB16wTiWE5LkivBqdfWSLCFKMAJx5nNAxwJL42zCoxWOdjMUcjCp9GMMZMbJeJRjFyeoOYsPOkUYQhLVDjlQVHDneaGCpW7glIvbRZu2katKJzJR2LHmNRyaaPOWrqTelksJ0ox3pUBOM_-vqiDdhI1akwXOUfNcrGCC7TtPsvpcnFZTfg37-etQQ
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1JTwIxFG4ImqgHNzQiLj14tDJdZqY9GgJCRGIiRm6TbmO4gIHBxH9vOx2IiV68dZJZX6f93vo9AG6M1DbVkUY55TFihgqklBJIk5grp81Rlpc8s8N0NOKTiXiugdtNLYy1tkw-s3d-WMbyzVyvvKus7bDP7a3OQN-KGSNRqNbamFciooEdlQnk_lO-DkpGoj3uvAyC_8Q3pPRlfWUrlV_7bwkqvYP_vc4h2K-UR3gfZvsI1OzsGOz9oBRsgLdu9wF5aDLQOAs7ZLVDT6URahShU1LhUua2-HInTL07Afrc93c43TTELaBPNJ_P_EhWpCUn4LXXHXf6qGqegDQluECEJwwboWRqVZ7kVieaUUUcICUmlVpxKwUnVkUa28h9Go4olUTyxB_52OUpqM_ck84AtG6RJpoby7FkWjCJE050jrFJVeRu2gQNL5zsI_BjZJVcmqC1lm5WLYxlxjllceqg8_zvi67BTn_8NMyGg9FjC-wGolSfPHIB6sViZS_Btv4spsvFVTn53x9CsIg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=EEG-based+drowsiness+estimation+for+safety+driving+using+independent+component+analysis&rft.jtitle=IEEE+transactions+on+circuits+and+systems.+I%2C+Regular+papers&rft.au=Lin%2C+Chin-Teng&rft.au=Wu%2C+Ruei-Cheng&rft.au=Liang%2C+Sheng-Fu&rft.au=Chao%2C+Wen-Hung&rft.date=2005-12-01&rft.pub=The+Institute+of+Electrical+and+Electronics+Engineers%2C+Inc.+%28IEEE%29&rft.issn=1549-8328&rft.eissn=1558-0806&rft.volume=52&rft.issue=12&rft.spage=2726&rft_id=info:doi/10.1109%2FTCSI.2005.857555&rft.externalDBID=NO_FULL_TEXT&rft.externalDocID=2425234451
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1549-8328&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1549-8328&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1549-8328&client=summon