Improved Forward Backward Method With Spectral Acceleration for Scattering From Randomly Rough Lossy Surfaces

An efficient and accurate iterative method is proposed for computing electromagnetic (EM) scattering from 1-D dielectric rough surfaces. The communication improves the convergence of forward backward method, applying it to the problem of 2D wave scattering from random lossy rough surfaces using a co...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on antennas and propagation Vol. 61; no. 7; pp. 3922 - 3926
Main Authors: Brennan, Conor, Dung Trinh-Xuan, Mullen, Marie, Bradley, Patrick, Condon, Marissa
Format: Journal Article
Language:English
Published: New York, NY IEEE 01.07.2013
Institute of Electrical and Electronics Engineers
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects:
ISSN:0018-926X, 1558-2221
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:An efficient and accurate iterative method is proposed for computing electromagnetic (EM) scattering from 1-D dielectric rough surfaces. The communication improves the convergence of forward backward method, applying it to the problem of 2D wave scattering from random lossy rough surfaces using a coupled surface integral equation formulation. A matrix splitting technique is introduced to reduce the number of matrix-vector multiplications required by the correction step and Spectral Acceleration (SA) is applied to reduce the computational complexity of each matrix-vector product from O(N 2 ) to O(N). The proposed method is called the improved forward backward method with spectral acceleration (IFBM-SA). The numerical analysis demonstrates that IFBM-SA has a higher convergence rate than FBM-SA and a recent technique which is used as a reference method. Moreover, IFBM-SA is more robust than the reference method and has smaller storage requirements meaning that it can readily scale to larger problems. In addition an eigenvalue based analysis is provided illustrating how the improvement step works.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0018-926X
1558-2221
DOI:10.1109/TAP.2013.2255091