A two-layered eco-cooling control strategy for electric car air conditioning systems with integration of dynamic programming and fuzzy PID

•A two layered control strategy integrating DP and fuzzy PID is built.•PPTC can accurately describe the thermal habit of passenger.•DP integrates the PPTC, VVP and WIR and achieves a low energy cost.•Fuzzy PID well responses the requirement of refrigeration capacity from DP.•Two layered strategy rai...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied thermal engineering Ročník 211; s. 118488
Hlavní autoři: Xie, Yi, Yang, Peng, Qian, Yuping, Zhang, Yangjun, Li, Kuining, Zhou, Yi
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Elsevier Ltd 05.07.2022
Elsevier BV
Témata:
ISSN:1359-4311, 1873-5606
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract •A two layered control strategy integrating DP and fuzzy PID is built.•PPTC can accurately describe the thermal habit of passenger.•DP integrates the PPTC, VVP and WIR and achieves a low energy cost.•Fuzzy PID well responses the requirement of refrigeration capacity from DP.•Two layered strategy raises comfort and control precision and saves energy. A two-layered control strategy is proposed for the air conditioning (AC) systems of electric vehicles. Unlike traditional rule-based controllers such as the on–off controller and proportion-integral-derivative (PID) controller, this strategy includes a decision layer and a control strategy. The core algorithm in the decision layer is the dynamic programming (DP), which integrates information from the thermal habit predictor of the passenger, vehicle velocity planner, and weather information receiver. The DP optimises the development of the cabin temperature to minimise the energy consumption of the AC system and sends the planned temperature to the control layer. The control layer uses a fuzzy PID algorithm to adjust the compressor speed based on the planned temperature profile, such that the real-world cabin temperature approaches the planned temperature. This two-layered control strategy is applied to a car whose AC-cabin system was verified by test data, and the results are compared with those obtained by the on–off controller and PID. When the target cabin temperature is not manually adjusted, the energy cost of the proposed strategy is 28.2% and 5.4% lower than those of the on–off controller and PID, respectively, at the ambient temperature profile of Environment 1 (described herein), and its maximum fluctuation of the cabin temperature is 92.8% and 68.2% smaller than those of the on–off controller and PID, respectively. At the ambient temperature of Environment 2 (described herein, lower than that of Environment 1), the energy cost of the proposed strategy is 37.1% and 5.9% lower, and the maximum fluctuation of the cabin temperature is 96.8% and 86.4% smaller, compared to the on–off controller and PID, respectively. When the target temperature is repeatedly set for the on–off controller and PID (first to 20 °C, then to 24.3 °C), the AC system consumes extra energy, leading to poor thermal comfort. Because the proposed strategy automatically sets the cabin temperature to the temperature preferred by the passenger, there is no extra adjustment of the target and the thermal environment inside the cabin is optimal for the passenger. Under this condition, the developed strategy can produce energy savings of 30.2% and 12.4%, compared to the on–off strategy and PID, respectively. Thus, the two-layered strategy can control the cabin temperature precisely, provide the passenger with a good thermal environment, and produce energy savings for the AC system.
AbstractList •A two layered control strategy integrating DP and fuzzy PID is built.•PPTC can accurately describe the thermal habit of passenger.•DP integrates the PPTC, VVP and WIR and achieves a low energy cost.•Fuzzy PID well responses the requirement of refrigeration capacity from DP.•Two layered strategy raises comfort and control precision and saves energy. A two-layered control strategy is proposed for the air conditioning (AC) systems of electric vehicles. Unlike traditional rule-based controllers such as the on–off controller and proportion-integral-derivative (PID) controller, this strategy includes a decision layer and a control strategy. The core algorithm in the decision layer is the dynamic programming (DP), which integrates information from the thermal habit predictor of the passenger, vehicle velocity planner, and weather information receiver. The DP optimises the development of the cabin temperature to minimise the energy consumption of the AC system and sends the planned temperature to the control layer. The control layer uses a fuzzy PID algorithm to adjust the compressor speed based on the planned temperature profile, such that the real-world cabin temperature approaches the planned temperature. This two-layered control strategy is applied to a car whose AC-cabin system was verified by test data, and the results are compared with those obtained by the on–off controller and PID. When the target cabin temperature is not manually adjusted, the energy cost of the proposed strategy is 28.2% and 5.4% lower than those of the on–off controller and PID, respectively, at the ambient temperature profile of Environment 1 (described herein), and its maximum fluctuation of the cabin temperature is 92.8% and 68.2% smaller than those of the on–off controller and PID, respectively. At the ambient temperature of Environment 2 (described herein, lower than that of Environment 1), the energy cost of the proposed strategy is 37.1% and 5.9% lower, and the maximum fluctuation of the cabin temperature is 96.8% and 86.4% smaller, compared to the on–off controller and PID, respectively. When the target temperature is repeatedly set for the on–off controller and PID (first to 20 °C, then to 24.3 °C), the AC system consumes extra energy, leading to poor thermal comfort. Because the proposed strategy automatically sets the cabin temperature to the temperature preferred by the passenger, there is no extra adjustment of the target and the thermal environment inside the cabin is optimal for the passenger. Under this condition, the developed strategy can produce energy savings of 30.2% and 12.4%, compared to the on–off strategy and PID, respectively. Thus, the two-layered strategy can control the cabin temperature precisely, provide the passenger with a good thermal environment, and produce energy savings for the AC system.
A two-layered control strategy is proposed for the air conditioning (AC) systems of electric vehicles. Unlike traditional rule-based controllers such as the on–off controller and proportion-integral-derivative (PID) controller, this strategy includes a decision layer and a control strategy. The core algorithm in the decision layer is the dynamic programming (DP), which integrates information from the thermal habit predictor of the passenger, vehicle velocity planner, and weather information receiver. The DP optimises the development of the cabin temperature to minimise the energy consumption of the AC system and sends the planned temperature to the control layer. The control layer uses a fuzzy PID algorithm to adjust the compressor speed based on the planned temperature profile, such that the real-world cabin temperature approaches the planned temperature. This two-layered control strategy is applied to a car whose AC-cabin system was verified by test data, and the results are compared with those obtained by the on–off controller and PID. When the target cabin temperature is not manually adjusted, the energy cost of the proposed strategy is 28.2% and 5.4% lower than those of the on–off controller and PID, respectively, at the ambient temperature profile of Environment 1 (described herein), and its maximum fluctuation of the cabin temperature is 92.8% and 68.2% smaller than those of the on–off controller and PID, respectively. At the ambient temperature of Environment 2 (described herein, lower than that of Environment 1), the energy cost of the proposed strategy is 37.1% and 5.9% lower, and the maximum fluctuation of the cabin temperature is 96.8% and 86.4% smaller, compared to the on–off controller and PID, respectively. When the target temperature is repeatedly set for the on–off controller and PID (first to 20 °C, then to 24.3 °C), the AC system consumes extra energy, leading to poor thermal comfort. Because the proposed strategy automatically sets the cabin temperature to the temperature preferred by the passenger, there is no extra adjustment of the target and the thermal environment inside the cabin is optimal for the passenger. Under this condition, the developed strategy can produce energy savings of 30.2% and 12.4%, compared to the on–off strategy and PID, respectively. Thus, the two-layered strategy can control the cabin temperature precisely, provide the passenger with a good thermal environment, and produce energy savings for the AC system.
ArticleNumber 118488
Author Li, Kuining
Zhou, Yi
Qian, Yuping
Yang, Peng
Xie, Yi
Zhang, Yangjun
Author_xml – sequence: 1
  givenname: Yi
  orcidid: 0000-0002-1811-2997
  surname: Xie
  fullname: Xie, Yi
  email: claudexie@cqu.edu.cn
  organization: College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
– sequence: 2
  givenname: Peng
  surname: Yang
  fullname: Yang, Peng
  organization: College of Mechanical and Vehicle Engineering, Chongqing University, Chongqing 400044, China
– sequence: 3
  givenname: Yuping
  surname: Qian
  fullname: Qian, Yuping
  email: qianyuping@tsinghua.edu.cn
  organization: State Key Lab of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
– sequence: 4
  givenname: Yangjun
  surname: Zhang
  fullname: Zhang, Yangjun
  organization: State Key Lab of Automotive Safety and Energy, School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China
– sequence: 5
  givenname: Kuining
  surname: Li
  fullname: Li, Kuining
  organization: School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
– sequence: 6
  givenname: Yi
  surname: Zhou
  fullname: Zhou, Yi
  organization: Chongqing Chang’an New Energy Vehicle Technology Co. Ltd, Chongqing 401120, China
BookMark eNqNkctOJCEUhonRxOs7kDjbaoG6J7NRZ7wkJrrQNaEOp1o6VdACPaZ8hHlqKduNrlxB4P9-4OOQ7FpnkZBfnC0449XZaqHW6yE-ox_VgHa5EEyIBedN0TQ75IA3dZ6VFat20zwv26zIOd8nhyGsGOOiqYsD8v-cxleXDWpCj5oiuAycG4xdUnA2ejfQEL2KuJxo7zzFASF6AxSUp8r4OaVNNM7OSJhCxDHQVxOfqbGJSmjao66nerJqTODau7Q6jnNeWU37zdvbRB9u_xyTvV4NAU8-xyPydPX38fImu7u_vr08v8sgFzxm6XlNXTLsdKXaFkvBlWZdqwTorgOAvi5BI_ZY16Lo2oYLXSB0bc3Tnq76_IicbnvTTV42GKJcuY236UgpqlrkDeN5nlK_tynwLgSPvVx7Myo_Sc7kbF-u5Ff7crYvt_YTfvENBxM_XCSbZvhpydW2BJOOfwa9DGDQAmrj0zdI7czPit4BmcS0Gw
CitedBy_id crossref_primary_10_1016_j_applthermaleng_2024_122817
crossref_primary_10_1109_TTE_2023_3345895
crossref_primary_10_1016_j_enbuild_2022_112229
crossref_primary_10_12677_mos_2025_141113
crossref_primary_10_3389_fenrg_2023_1142243
crossref_primary_10_1016_j_tsep_2025_104057
crossref_primary_10_1016_j_jpowsour_2022_232133
crossref_primary_10_1016_j_applthermaleng_2024_122375
crossref_primary_10_1177_09544070241239697
crossref_primary_10_1016_j_buildenv_2022_109866
crossref_primary_10_1016_j_applthermaleng_2023_121089
crossref_primary_10_3390_en17174227
crossref_primary_10_1016_j_energy_2022_126606
crossref_primary_10_1016_j_jclepro_2023_137982
crossref_primary_10_3390_machines13010017
crossref_primary_10_1016_j_enconman_2023_117154
crossref_primary_10_1109_TTE_2023_3339146
crossref_primary_10_1177_09544070241272899
crossref_primary_10_3390_su15129481
crossref_primary_10_3390_buildings12101602
crossref_primary_10_1016_j_ijthermalsci_2023_108804
crossref_primary_10_1016_j_buildenv_2025_112745
crossref_primary_10_1155_2022_3612032
crossref_primary_10_1016_j_etran_2024_100336
crossref_primary_10_1016_j_jclepro_2022_133936
crossref_primary_10_1016_j_csite_2025_106808
crossref_primary_10_1016_j_etran_2025_100396
crossref_primary_10_1016_j_enbuild_2024_114095
Cites_doi 10.3390/en11051273
10.1016/j.conengprac.2009.09.008
10.1080/10789669.1998.10391401
10.1109/TSMCB.2005.851538
10.1016/j.trc.2018.05.027
10.1016/j.apenergy.2016.09.086
10.1016/j.apenergy.2016.01.097
10.1016/j.apenergy.2013.05.058
10.1016/j.apenergy.2016.12.033
10.1016/j.applthermaleng.2012.10.028
10.1016/j.applthermaleng.2020.116084
10.1243/09544070JAUTO221
10.1016/0142-727X(92)90040-G
10.1016/j.ymssp.2019.05.027
10.1016/j.applthermaleng.2014.08.044
10.1073/pnas.38.8.716
10.1016/j.egypro.2017.03.724
10.1109/IEVC.2014.7056171
10.1109/3477.764871
10.1016/j.isatra.2017.09.005
10.1016/j.applthermaleng.2007.12.025
10.1016/j.rser.2018.04.005
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright Elsevier BV Jul 5, 2022
Copyright_xml – notice: 2022 Elsevier Ltd
– notice: Copyright Elsevier BV Jul 5, 2022
DBID AAYXX
CITATION
7TB
8FD
FR3
KR7
DOI 10.1016/j.applthermaleng.2022.118488
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
DatabaseTitleList
Civil Engineering Abstracts
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-5606
ExternalDocumentID 10_1016_j_applthermaleng_2022_118488
S1359431122004422
GroupedDBID --K
--M
.~1
0R~
1B1
1RT
1~.
1~5
23M
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABNUV
ABYKQ
ACDAQ
ACGFS
ACIWK
ACRLP
ADBBV
ADEWK
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BELTK
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
ENUVR
EO8
EO9
EP2
EP3
FDB
FEDTE
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
IHE
J1W
JARJE
JJJVA
KOM
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
TN5
~G-
9DU
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FGOYB
HZ~
R2-
SEW
~HD
7TB
8FD
FR3
KR7
ID FETCH-LOGICAL-c321t-1188750ebd6a99e521ad0b9a2cdbbcccf75cdeefe7724b9812d4ecb971ccfd6f3
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000796260600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1359-4311
IngestDate Sun Nov 09 08:04:00 EST 2025
Tue Nov 18 22:14:05 EST 2025
Sat Nov 29 07:03:03 EST 2025
Fri Feb 23 02:35:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Dynamic programming algorithm
Velocity planning
Air conditioning system
Cabin temperature
Passenger’s thermal comfort
Energy saving
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c321t-1188750ebd6a99e521ad0b9a2cdbbcccf75cdeefe7724b9812d4ecb971ccfd6f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-1811-2997
PQID 2672380133
PQPubID 2045278
ParticipantIDs proquest_journals_2672380133
crossref_primary_10_1016_j_applthermaleng_2022_118488
crossref_citationtrail_10_1016_j_applthermaleng_2022_118488
elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2022_118488
PublicationCentury 2000
PublicationDate 2022-07-05
PublicationDateYYYYMMDD 2022-07-05
PublicationDate_xml – month: 07
  year: 2022
  text: 2022-07-05
  day: 05
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Applied thermal engineering
PublicationYear 2022
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Fleming, Wen, Shi (b0025) 2013; 112
Local weather, weather report for Columbus, Ohio, U.S https://www.wunderground.com/, 2020.
Zhang, Wang, Yuan (b0080) 2009
P. Liu, D.Y. Li, Issues and factors of train air-conditioning system design and operation, Proceedings of the Sixth International Conference for Enhanced Building Operations, Shenzhen (CN), 2006.
Grald, MacArthur (b0135) 1992; 13
R. Farrington, J. Rugh, Impact of vehicle air-conditioning on fuel economy, tailpipe emissions, and electric vehicle range: preprint, Earth Technologies Forum, Washington, DC (US), 2000.
Khayyam (b0070) 2013; 51
Kim, Lee (b0100) 2018; 11
Wang, Jin, Zhang (b0120) 2017; 71
Lambert, Jones (b0015) 2006; 220
Bellman (b0085) 1952; 38
B. Škugor, J. Deur, Dynamic programming-based optimization of electric vehicle fleet charging, 2014 IEEE International Electric Vehicle Conference (IEVC). (2014) 1-8, doi: 10.1109/IEVC.2014.7056171.
Xie, Liu, Li, Liu, Zhang, Dan, Wu, Wang, Wang (b0140) 2021; 182
Farzaneh, Tootoonchi (b0065) 2008; 28
Huang, Khajepour, Bagheri (b0130) 2016; 184
Zhang, Wang, Feng, Chang, Chen, Wang (b0035) 2018; 91
Xie, Luo, Zhang, Chen, Li (b0030) 2019; 130
Huang, Khajepour, Ding, Bagheri, Bahrami (b0045) 2017; 188
Li, Zhang, Cai (b0060) 2005; 35
He, Jia, Huo (b0090) 2017; 105
Hu, Liu, Yao, Du, Zhu, Guo (b0165) 2020; 50
Liu, Zhou, Zhou (b0040) 2011
Leva, Piroddi, Di Felice, Boer, Paganini (b0050) 2010; 18
Xie, Liu, Liu (b0095) 2020; 166
He, Liu, Asada (b0125) 1998; 4
Motor vehicle air-conditioning unit, GB/T 21361-2017, Standardization Administration of the P. R. C, 2017.
Fanger (b0110) 1972
Ergonomics of the thermal environment — instruments for measuring physical quantities, ISO 7726: 1998, International Standard Organization, 1998.
Lv, Li, Cheng (b0055) 2010
Fiori, Ahn, Rakha (b0005) 2016; 168
Zeng, Wang (b0150) 2018; 93
Mann, Hu, Gosine (b0115) 1999; 29
Ng, Darus, Jamaluddin, Kamar (b0075) 2014; 73
Huang (10.1016/j.applthermaleng.2022.118488_b0130) 2016; 184
Xie (10.1016/j.applthermaleng.2022.118488_b0095) 2020; 166
Fanger (10.1016/j.applthermaleng.2022.118488_b0110) 1972
Lv (10.1016/j.applthermaleng.2022.118488_b0055) 2010
He (10.1016/j.applthermaleng.2022.118488_b0090) 2017; 105
10.1016/j.applthermaleng.2022.118488_b0010
10.1016/j.applthermaleng.2022.118488_b0160
Ng (10.1016/j.applthermaleng.2022.118488_b0075) 2014; 73
Zhang (10.1016/j.applthermaleng.2022.118488_b0080) 2009
Li (10.1016/j.applthermaleng.2022.118488_b0060) 2005; 35
10.1016/j.applthermaleng.2022.118488_b0145
Kim (10.1016/j.applthermaleng.2022.118488_b0100) 2018; 11
10.1016/j.applthermaleng.2022.118488_b0105
Xie (10.1016/j.applthermaleng.2022.118488_b0030) 2019; 130
Grald (10.1016/j.applthermaleng.2022.118488_b0135) 1992; 13
Farzaneh (10.1016/j.applthermaleng.2022.118488_b0065) 2008; 28
Hu (10.1016/j.applthermaleng.2022.118488_b0165) 2020; 50
Mann (10.1016/j.applthermaleng.2022.118488_b0115) 1999; 29
Zhang (10.1016/j.applthermaleng.2022.118488_b0035) 2018; 91
Liu (10.1016/j.applthermaleng.2022.118488_b0040) 2011
10.1016/j.applthermaleng.2022.118488_b0020
Leva (10.1016/j.applthermaleng.2022.118488_b0050) 2010; 18
Zeng (10.1016/j.applthermaleng.2022.118488_b0150) 2018; 93
Fiori (10.1016/j.applthermaleng.2022.118488_b0005) 2016; 168
Lambert (10.1016/j.applthermaleng.2022.118488_b0015) 2006; 220
Huang (10.1016/j.applthermaleng.2022.118488_b0045) 2017; 188
10.1016/j.applthermaleng.2022.118488_b0155
Bellman (10.1016/j.applthermaleng.2022.118488_b0085) 1952; 38
Fleming (10.1016/j.applthermaleng.2022.118488_b0025) 2013; 112
He (10.1016/j.applthermaleng.2022.118488_b0125) 1998; 4
Wang (10.1016/j.applthermaleng.2022.118488_b0120) 2017; 71
Khayyam (10.1016/j.applthermaleng.2022.118488_b0070) 2013; 51
Xie (10.1016/j.applthermaleng.2022.118488_b0140) 2021; 182
References_xml – reference: Local weather, weather report for Columbus, Ohio, U.S https://www.wunderground.com/, 2020.
– reference: B. Škugor, J. Deur, Dynamic programming-based optimization of electric vehicle fleet charging, 2014 IEEE International Electric Vehicle Conference (IEVC). (2014) 1-8, doi: 10.1109/IEVC.2014.7056171.
– volume: 112
  start-page: 160
  year: 2013
  end-page: 169
  ident: b0025
  article-title: Thermodynamic model of a thermal storage air conditioning system with dynamic behavior
  publication-title: Appl. Energy.
– volume: 73
  start-page: 1244
  year: 2014
  end-page: 1254
  ident: b0075
  article-title: Application of adaptive neural predictive control for an automotive air conditioning system
  publication-title: Appl. Therm. Eng.
– reference: Motor vehicle air-conditioning unit, GB/T 21361-2017, Standardization Administration of the P. R. C, 2017.
– volume: 13
  start-page: 266
  year: 1992
  end-page: 272
  ident: b0135
  article-title: A moving-boundary formulation for modeling time-dependent two-phase flows
  publication-title: Int. J. Heat Fluid Flow.
– volume: 168
  start-page: 257
  year: 2016
  end-page: 268
  ident: b0005
  article-title: Power-based electric vehicle energy consumption model: Model development and validation
  publication-title: Appl. Energy.
– start-page: 3408
  year: 2011
  end-page: 3412
  ident: b0040
  article-title: Automative air conditioning system control - A survey
  publication-title: International Conference on Electronic and Mechanical Engineering and Information Technology
– volume: 105
  start-page: 2518
  year: 2017
  end-page: 2524
  ident: b0090
  article-title: Stochastic dynamic programming of air conditioning system for electric vehicles
  publication-title: Energy Procedia
– volume: 18
  start-page: 94
  year: 2010
  end-page: 102
  ident: b0050
  article-title: Adaptive relay-based control of household freezers with on-off actuators
  publication-title: Control. Eng. Pract.
– volume: 93
  start-page: 148
  year: 2018
  end-page: 160
  ident: b0150
  article-title: Globally energy-optimal speed planning for road vehicles on a given route
  publication-title: Transp. Res. Part C: Emerging Technol.
– reference: R. Farrington, J. Rugh, Impact of vehicle air-conditioning on fuel economy, tailpipe emissions, and electric vehicle range: preprint, Earth Technologies Forum, Washington, DC (US), 2000.
– volume: 51
  start-page: 1154
  year: 2013
  end-page: 1161
  ident: b0070
  article-title: Adaptive intelligent control of vehicle air conditioning system
  publication-title: Appl. Therm. Eng.
– volume: 91
  start-page: 443
  year: 2018
  end-page: 463
  ident: b0035
  article-title: The solutions to electric vehicle air conditioning systems: A review
  publication-title: Renew. Sust. Energ. Rev.
– volume: 28
  start-page: 1906
  year: 2008
  end-page: 1917
  ident: b0065
  article-title: Controlling automobile thermal comfort using optimized fuzzy controller
  publication-title: Appl. Therm. Eng.
– volume: 182
  start-page: 116084
  year: 2021
  ident: b0140
  article-title: An improved intelligent model predictive controller for cooling system of electric vehicle
  publication-title: Appl. Therm. Eng.
– volume: 188
  start-page: 576
  year: 2017
  end-page: 585
  ident: b0045
  article-title: An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems
  publication-title: Appl. Energy.
– volume: 11
  start-page: 1273
  year: 2018
  ident: b0100
  article-title: Dynamic programming-based vessel speed adjustment for energy saving and emission reduction
  publication-title: Energies
– volume: 50
  start-page: 34
  year: 2020
  end-page: 41
  ident: b0165
  article-title: Calculation method of indoor average radiant temperature of floor radiant cooling system and analysis of wall emissivity factors
  publication-title: J. HV&AC.
– volume: 130
  start-page: 484
  year: 2019
  end-page: 501
  ident: b0030
  article-title: Intelligent energy-saving control strategy for electric vehicle based on preceding vehicle movement
  publication-title: Mech. Syst. Signal Process.
– reference: Ergonomics of the thermal environment — instruments for measuring physical quantities, ISO 7726: 1998, International Standard Organization, 1998.
– year: 2010
  ident: b0055
  article-title: Research on PID control parameters tuning based on election-survey optimization algorithm
  publication-title: International Conference on Computing, Control and Industrial Engineering, Wuhan(CN)
– volume: 166
  year: 2020
  ident: b0095
  article-title: A Self-learning intelligent passenger vehicle comfort cooling system control strategy
  publication-title: Appl. Therm. Eng.
– volume: 184
  start-page: 605
  year: 2016
  end-page: 618
  ident: b0130
  article-title: Optimal energy-efficient predictive controllers in automotive air-conditioning/refrigeration systems
  publication-title: Appl. Energy.
– volume: 38
  start-page: 716
  year: 1952
  end-page: 719
  ident: b0085
  article-title: On the theory of dynamic programming
  publication-title: PNAS
– volume: 29
  start-page: 371
  year: 1999
  end-page: 388
  ident: b0115
  article-title: Analysis of direct action fuzzy PID controller structures
  publication-title: IEEE Trans. Syst. Man & Cybernetics. Part B, Cybernetics
– volume: 4
  start-page: 205
  year: 1998
  end-page: 230
  ident: b0125
  article-title: Multivariable control of vapor compression systems
  publication-title: HVACR. Res.
– reference: P. Liu, D.Y. Li, Issues and factors of train air-conditioning system design and operation, Proceedings of the Sixth International Conference for Enhanced Building Operations, Shenzhen (CN), 2006.
– volume: 35
  start-page: 1283
  year: 2005
  end-page: 1294
  ident: b0060
  article-title: An improved robust fuzzy-PID controller with optimal fuzzy reasoning
  publication-title: IEEE Trans. Syst., Man, and Cybernetics, Part B (Cybernetics).
– start-page: 578
  year: 2009
  end-page: 581
  ident: b0080
  article-title: An Intelligent Fuzzy Controller for Air-condition with Frequency Change
  publication-title: 2009 International Conference on Artificial Intelligence and Computational Intelligence
– year: 1972
  ident: b0110
  article-title: Thermal comfort: Analysis and applications in environmental engineering
– volume: 71
  start-page: 354
  year: 2017
  end-page: 363
  ident: b0120
  article-title: Improved fuzzy PID controller design using predictive functional control structure
  publication-title: ISA Trans.
– volume: 220
  start-page: 959
  year: 2006
  end-page: 972
  ident: b0015
  article-title: Automotive adsorption air conditioner powered by exhaust heat. Part 1: conceptual and embodiment design
  publication-title: Proc. Inst. Mech. Eng, Part D: J. Automob. Eng.
– volume: 11
  start-page: 1273
  issue: 5
  year: 2018
  ident: 10.1016/j.applthermaleng.2022.118488_b0100
  article-title: Dynamic programming-based vessel speed adjustment for energy saving and emission reduction
  publication-title: Energies
  doi: 10.3390/en11051273
– year: 1972
  ident: 10.1016/j.applthermaleng.2022.118488_b0110
– volume: 18
  start-page: 94
  issue: 1
  year: 2010
  ident: 10.1016/j.applthermaleng.2022.118488_b0050
  article-title: Adaptive relay-based control of household freezers with on-off actuators
  publication-title: Control. Eng. Pract.
  doi: 10.1016/j.conengprac.2009.09.008
– ident: 10.1016/j.applthermaleng.2022.118488_b0010
– volume: 4
  start-page: 205
  issue: 2
  year: 1998
  ident: 10.1016/j.applthermaleng.2022.118488_b0125
  article-title: Multivariable control of vapor compression systems
  publication-title: HVACR. Res.
  doi: 10.1080/10789669.1998.10391401
– volume: 35
  start-page: 1283
  issue: 12
  year: 2005
  ident: 10.1016/j.applthermaleng.2022.118488_b0060
  article-title: An improved robust fuzzy-PID controller with optimal fuzzy reasoning
  publication-title: IEEE Trans. Syst., Man, and Cybernetics, Part B (Cybernetics).
  doi: 10.1109/TSMCB.2005.851538
– volume: 93
  start-page: 148
  issue: 8
  year: 2018
  ident: 10.1016/j.applthermaleng.2022.118488_b0150
  article-title: Globally energy-optimal speed planning for road vehicles on a given route
  publication-title: Transp. Res. Part C: Emerging Technol.
  doi: 10.1016/j.trc.2018.05.027
– volume: 184
  start-page: 605
  issue: 12
  year: 2016
  ident: 10.1016/j.applthermaleng.2022.118488_b0130
  article-title: Optimal energy-efficient predictive controllers in automotive air-conditioning/refrigeration systems
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2016.09.086
– volume: 168
  start-page: 257
  issue: 4
  year: 2016
  ident: 10.1016/j.applthermaleng.2022.118488_b0005
  article-title: Power-based electric vehicle energy consumption model: Model development and validation
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2016.01.097
– volume: 112
  start-page: 160
  issue: 12
  year: 2013
  ident: 10.1016/j.applthermaleng.2022.118488_b0025
  article-title: Thermodynamic model of a thermal storage air conditioning system with dynamic behavior
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2013.05.058
– volume: 188
  start-page: 576
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.118488_b0045
  article-title: An energy-saving set-point optimizer with a sliding mode controller for automotive air-conditioning/refrigeration systems
  publication-title: Appl. Energy.
  doi: 10.1016/j.apenergy.2016.12.033
– ident: 10.1016/j.applthermaleng.2022.118488_b0155
– ident: 10.1016/j.applthermaleng.2022.118488_b0145
– volume: 51
  start-page: 1154
  issue: 3
  year: 2013
  ident: 10.1016/j.applthermaleng.2022.118488_b0070
  article-title: Adaptive intelligent control of vehicle air conditioning system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2012.10.028
– volume: 166
  issue: 2
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.118488_b0095
  article-title: A Self-learning intelligent passenger vehicle comfort cooling system control strategy
  publication-title: Appl. Therm. Eng.
– volume: 182
  start-page: 116084
  year: 2021
  ident: 10.1016/j.applthermaleng.2022.118488_b0140
  article-title: An improved intelligent model predictive controller for cooling system of electric vehicle
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2020.116084
– volume: 220
  start-page: 959
  issue: 7
  year: 2006
  ident: 10.1016/j.applthermaleng.2022.118488_b0015
  article-title: Automotive adsorption air conditioner powered by exhaust heat. Part 1: conceptual and embodiment design
  publication-title: Proc. Inst. Mech. Eng, Part D: J. Automob. Eng.
  doi: 10.1243/09544070JAUTO221
– volume: 13
  start-page: 266
  issue: 11
  year: 1992
  ident: 10.1016/j.applthermaleng.2022.118488_b0135
  article-title: A moving-boundary formulation for modeling time-dependent two-phase flows
  publication-title: Int. J. Heat Fluid Flow.
  doi: 10.1016/0142-727X(92)90040-G
– volume: 50
  start-page: 34
  issue: 5
  year: 2020
  ident: 10.1016/j.applthermaleng.2022.118488_b0165
  article-title: Calculation method of indoor average radiant temperature of floor radiant cooling system and analysis of wall emissivity factors
  publication-title: J. HV&AC.
– volume: 130
  start-page: 484
  year: 2019
  ident: 10.1016/j.applthermaleng.2022.118488_b0030
  article-title: Intelligent energy-saving control strategy for electric vehicle based on preceding vehicle movement
  publication-title: Mech. Syst. Signal Process.
  doi: 10.1016/j.ymssp.2019.05.027
– ident: 10.1016/j.applthermaleng.2022.118488_b0160
– volume: 73
  start-page: 1244
  issue: 1
  year: 2014
  ident: 10.1016/j.applthermaleng.2022.118488_b0075
  article-title: Application of adaptive neural predictive control for an automotive air conditioning system
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2014.08.044
– year: 2010
  ident: 10.1016/j.applthermaleng.2022.118488_b0055
  article-title: Research on PID control parameters tuning based on election-survey optimization algorithm
  publication-title: International Conference on Computing, Control and Industrial Engineering, Wuhan(CN)
– start-page: 578
  year: 2009
  ident: 10.1016/j.applthermaleng.2022.118488_b0080
  article-title: An Intelligent Fuzzy Controller for Air-condition with Frequency Change
– volume: 38
  start-page: 716
  issue: 8
  year: 1952
  ident: 10.1016/j.applthermaleng.2022.118488_b0085
  article-title: On the theory of dynamic programming
  publication-title: PNAS
  doi: 10.1073/pnas.38.8.716
– volume: 105
  start-page: 2518
  issue: 5
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.118488_b0090
  article-title: Stochastic dynamic programming of air conditioning system for electric vehicles
  publication-title: Energy Procedia
  doi: 10.1016/j.egypro.2017.03.724
– ident: 10.1016/j.applthermaleng.2022.118488_b0105
  doi: 10.1109/IEVC.2014.7056171
– volume: 29
  start-page: 371
  issue: 3
  year: 1999
  ident: 10.1016/j.applthermaleng.2022.118488_b0115
  article-title: Analysis of direct action fuzzy PID controller structures
  publication-title: IEEE Trans. Syst. Man & Cybernetics. Part B, Cybernetics
  doi: 10.1109/3477.764871
– start-page: 3408
  year: 2011
  ident: 10.1016/j.applthermaleng.2022.118488_b0040
  article-title: Automative air conditioning system control - A survey
– ident: 10.1016/j.applthermaleng.2022.118488_b0020
– volume: 71
  start-page: 354
  issue: 11
  year: 2017
  ident: 10.1016/j.applthermaleng.2022.118488_b0120
  article-title: Improved fuzzy PID controller design using predictive functional control structure
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2017.09.005
– volume: 28
  start-page: 1906
  issue: 10
  year: 2008
  ident: 10.1016/j.applthermaleng.2022.118488_b0065
  article-title: Controlling automobile thermal comfort using optimized fuzzy controller
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2007.12.025
– volume: 91
  start-page: 443
  year: 2018
  ident: 10.1016/j.applthermaleng.2022.118488_b0035
  article-title: The solutions to electric vehicle air conditioning systems: A review
  publication-title: Renew. Sust. Energ. Rev.
  doi: 10.1016/j.rser.2018.04.005
SSID ssj0012874
Score 2.5030255
Snippet •A two layered control strategy integrating DP and fuzzy PID is built.•PPTC can accurately describe the thermal habit of passenger.•DP integrates the PPTC, VVP...
A two-layered control strategy is proposed for the air conditioning (AC) systems of electric vehicles. Unlike traditional rule-based controllers such as the...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 118488
SubjectTerms Air conditioning
Air conditioning system
Algorithms
Ambient temperature
Cabin temperature
Closed loop systems
Controllers
Dynamic programming
Dynamic programming algorithm
Electric vehicles
Energy consumption
Energy costs
Energy saving
Fuzzy control
Heat transfer
Meteorological data
Passengers
Passenger’s thermal comfort
Proportional integral derivative
Temperature
Temperature profiles
Thermal comfort
Thermal environments
Velocity planning
Title A two-layered eco-cooling control strategy for electric car air conditioning systems with integration of dynamic programming and fuzzy PID
URI https://dx.doi.org/10.1016/j.applthermaleng.2022.118488
https://www.proquest.com/docview/2672380133
Volume 211
WOSCitedRecordID wos000796260600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1873-5606
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0012874
  issn: 1359-4311
  databaseCode: AIEXJ
  dateStart: 19960101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFLbKhhB7QNwmBgP5YeKl8pQmcROLB1RBJ4amUqQOdU9WYjtSqi4tvez2E_hJ_DqOazv1EEPlAamKKseO7J6vJ985Pj4HoQPKMviEBaFBoEjMQkEylVDSVomiQSYC2ZKrYhNJr5cOh6zfaPx0Z2EuxklVpVdXbPpfRQ1tIGx9dPYfxF0_FBrgOwgdriB2uG4k-E5zcTkh4-xaV-FsgnVJxGQyNmdrTVj63GSkNaGapg5OKXSO6mZWznQvWTo3rUn0bI_AudQSlmNKU8zehXidu-OOxfLm5rrZP_7oE1_HdjXfPAdYqHUeRCfzodkqOStrTWR92X217vS1NB7bs-XUG1q7vfWQ0bLyfRmhiXulawdbfcjmm6eSI8oI0ByDQGXa0iQiwNXavh4PbRejiVt_fD8YV8XoUEcH2AXDEg71XODlkcamxODttNy9L_zo9OSED7rDwdvpd6IrlumdfVu-5R7aDhPKQKNud467w8_1HpauJLAy9-38H6CDdXTh3RO4iyD9RhVW_GfwGD2yhgvuGMA9QQ1VPUU7XjrLZ-hHB3vQwx70sIUedtDDAD3soIcBehigh33oYQs9rKGHPejhSYEt9LAHPQzQwyvoYYDec3R61B18-ERsrQ8iorC1ILB2sJwDlct2xpgCUpnJIActImSeCyGKhAqpVKHAGoxzBrRUxkrkLGnBPdkuol20VU0q9QJhEaZg1sRUwNiYZUnGIlHozJiChmkq8z30zv3AXNhE-Loey5i7iMcRvy0ersXDjXj2EK1HT01CmA3HvXey5JbcGtLKAZsbPmHfQYBbfTPnYVtXDQQ7Lnr599uv0MP1P24fbS1mS_Ua3RcXi3I-e2Ox-ws7CNzI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+two-layered+eco-cooling+control+strategy+for+electric+car+air+conditioning+systems+with+integration+of+dynamic+programming+and+fuzzy+PID&rft.jtitle=Applied+thermal+engineering&rft.au=Xie%2C+Yi&rft.au=Yang%2C+Peng&rft.au=Qian%2C+Yuping&rft.au=Zhang%2C+Yangjun&rft.date=2022-07-05&rft.pub=Elsevier+BV&rft.issn=1359-4311&rft.eissn=1873-5606&rft.volume=211&rft.spage=1&rft_id=info:doi/10.1016%2Fj.applthermaleng.2022.118488&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon