Feature Selection and Dwarf Mongoose Optimization Enabled Deep Learning for Heart Disease Detection

Heart disease causes major death across the entire globe. Hence, heart disease prediction is a vital part of medical data analysis. Recently, various data mining and machine learning practices have been utilized to detect heart disease. However, these techniques are inadequate for effectual heart di...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computational intelligence and neuroscience Ročník 2022; s. 1 - 11
Hlavní autoři: Balasubramaniam, S., Satheesh Kumar, K., Kavitha, V., Prasanth, A., Sivakumar, T. A.
Médium: Journal Article
Jazyk:angličtina
Vydáno: United States Hindawi 07.12.2022
John Wiley & Sons, Inc
Témata:
ISSN:1687-5265, 1687-5273, 1687-5273
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Heart disease causes major death across the entire globe. Hence, heart disease prediction is a vital part of medical data analysis. Recently, various data mining and machine learning practices have been utilized to detect heart disease. However, these techniques are inadequate for effectual heart disease prediction due to the deficient test data. In order to progress the efficacy of detection performance, this research introduces the hybrid feature selection method for selecting the best features. Moreover, the missed value from the input data is filled with the quantile normalization and missing data imputation method. In addition, the best features relevant to disease detection are selected through the proposed hybrid Congruence coefficient Kumar–Hassebrook similarity. In addition, heart disease is predicted using SqueezeNet, which is tuned by the dwarf mongoose optimization algorithm (DMOA) that adapts the feeding aspects of dwarf mongoose. Moreover, the experimental result reveals that the DMOA-SqueezeNet method attained a maximum accuracy of 0.925, sensitivity of 0.926, and specificity of 0.918.
Bibliografie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Academic Editor: Navid Razmjooy
ISSN:1687-5265
1687-5273
1687-5273
DOI:10.1155/2022/2819378