Prediction of kidney disease stages using data mining algorithms

Early detection and characterization are considered to be critical factors in the management and control of chronic kidney disease. Herein, use of efficient data mining techniques is shown to reveal and extract hidden information from clinical and laboratory patient data, which can be helpful to ass...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Informatics in medicine unlocked Ročník 15; s. 100178
Hlavní autori: Rady, El-Houssainy A., Anwar, Ayman S.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Ltd 2019
Elsevier
Predmet:
ISSN:2352-9148, 2352-9148
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:Early detection and characterization are considered to be critical factors in the management and control of chronic kidney disease. Herein, use of efficient data mining techniques is shown to reveal and extract hidden information from clinical and laboratory patient data, which can be helpful to assist physicians in maximizing accuracy for identification of disease severity stage. The results of applying Probabilistic Neural Networks (PNN), Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Radial Basis Function (RBF) algorithms have been compared, and our findings show that the PNN algorithm provides better classification and prediction performance for determining severity stage in chronic kidney disease.
ISSN:2352-9148
2352-9148
DOI:10.1016/j.imu.2019.100178