Prediction of kidney disease stages using data mining algorithms

Early detection and characterization are considered to be critical factors in the management and control of chronic kidney disease. Herein, use of efficient data mining techniques is shown to reveal and extract hidden information from clinical and laboratory patient data, which can be helpful to ass...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Informatics in medicine unlocked Ročník 15; s. 100178
Hlavní autoři: Rady, El-Houssainy A., Anwar, Ayman S.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 2019
Elsevier
Témata:
ISSN:2352-9148, 2352-9148
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Early detection and characterization are considered to be critical factors in the management and control of chronic kidney disease. Herein, use of efficient data mining techniques is shown to reveal and extract hidden information from clinical and laboratory patient data, which can be helpful to assist physicians in maximizing accuracy for identification of disease severity stage. The results of applying Probabilistic Neural Networks (PNN), Multilayer Perceptron (MLP), Support Vector Machine (SVM) and Radial Basis Function (RBF) algorithms have been compared, and our findings show that the PNN algorithm provides better classification and prediction performance for determining severity stage in chronic kidney disease.
ISSN:2352-9148
2352-9148
DOI:10.1016/j.imu.2019.100178